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Abstract
In this paper, we develop a plane wave discontinuous Galerkin method combined with local
spectral element method for the elastic wave propagation in two and three space dimensions.
We derive the error estimates of the approximation solutions in the mesh-dependent norm
and the mesh-independent norm. Some dependence of the error bounds on the orders q of
local spectral elements and the number p of plane wave propagation directions is given.
Numerical results assess the validity of the theoretical results and indicate that the resulting
approximate solutions generated by the PWDG–LSFE possess high accuracy.

Keywords Elastic waves · Nonhomogeneous · Local spectral element · Plane wave
discontinuous Galerkin · Plane wave basis functions · Error estimates
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1 Introduction

The plane wave method turned out to be an efficient and popular method for solving wave
propagation problems in time-harmonic regime at medium and high frequencies. The main
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feature of themethod is to choose plane wave solutions of the governing differential equation
without boundary conditions as the basis functions. The plane wave method was first intro-
duced to solve Helmholtz equations and was then extended to solve the Maxwell equations
and time-harmonic elastic wave problems. Examples of this approach include the partition
of unity-type method (Perrey-Debain et al. 2003a, b), the plane wave partition of unity finite-
element method (El Kacimi and Laghrouche 2009, 2010), the variational theory of complex
rays (VTCR) (Riou et al. 2008, 2012; Yuan and Hu 2018), the ultra weak variational for-
mulation (UWVF) (Cessenat and Despres 1998, 2003; Huttunen et al. 2004, 2007; Luostari
2013), the plane wave discontinuous Galerkin (PWDG) method (Gittelson et al. 2009; Hipt-
mair et al. 2013, 2016; Moiola 2013; Yuan 2019; Yuan and Hu 2019) and the plane wave
least-squares (PWLS) method (Monk and Wang 1999; Hu and Yuan 2014a, b, 2018; Peng
et al. 2018; Yuan et al. 2016) and the plane wave least-squares combined with local spectral
finite-element (PWLS–LSFE) method (Hu and Yuan 2018).

The UWVF method was developed for the Helmholtz equations (Cessenat and Despres
1998, 2003) and for Maxwell’s equations (Cessenat 1996; Cessenat and Despres 1998;
Huttunen et al. 2007; Huttunen and Monk 2007). The UWVF method is derived from non-
overlapping domain decomposition with mixed interface conditions. The PWDG method
developed in Gittelson et al. (2009), Hiptmair et al. (2011, 2013, 2016) was derived from
standard discontinuous Galerkin (DG) methods. We see that the choice α = β = δ = 1/2
of flux parameters gives rise to the original UWVF introduced in Cessenat (1996), Cessenat
and Despres (1998). The PWLS method, first put forward in Monk and Wang (1999), starts
from a minimization problem in which the objective functional contains the jumps of the
standard traces on local interfaces and a relaxation factor. To our knowledge, the existing
numerical results indicate that the PWDG method can generate approximate solutions with
higher accuracy for the homogeneous governing equations with real coefficients.

The UWVF method was extended to solve homogeneous elastic wave problems in Hut-
tunen et al. (2004), Luostari (2013). The studies (Huttunen et al. 2004; Luostari 2013) were
devoted to approximating the S− and P−wave components of the analytic solution in a bal-
anced way for the accuracy and stability in two-dimensional case. For the UWVF method,
the traction of the approximation solution on the boundaries of every elements is chosen
as the unknowns, and the conjugation of each traction has to be defined by introducing an
additional mappings. The displacement field on the skeleton of the mesh can be recovered
by the unknowns.

Since plane wave basis functions on each element are solutions of the homogeneous
governing equations without boundary condition, it was pointed out in (Hiptmair et al. 2011,
p. 265) that In particular, in Gittelson et al. (2009), an h-version error analysis for the
PWDG method applied to the two-dimensional (2D) inhomogeneous Helmholtz problem
was carried out. In that case, independent of how many plane waves are used in the local
approximation spaces, only first-order convergence can be achieved in general . In the recently
published work (Hu and Yuan 2018), the plane wave method combined with local spectral
elements (PWLS–LSFE ) for the discretization of such nonhomogeneous equationswasfirstly
proposed. The key ingredient of this method is to first solve a series of nonhomogeneous local
problems on auxiliary smooth subdomains by the spectral elementmethod, and then discretize
the resulting (locally homogeneous) residue problem on the global solution domain by the
standard plane wave method. The numerical results show that the approximate solutions
generated by the PWLS–LSFE method possess satisfactory error estimates with high h-
convergence orders.

In this paper, we are mainly interested in extending the PWDG method combined with
local spectral elements (PWDG–LSFE) to discretize the nonhomogeneous elastic wave prob-
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lems in two and three dimensions. We derive error estimates of the approximate solutions
generated by the proposed method. To our knowledge, there are no error estimates with high
h-convergence orders for the plane wave methods solving the nonhomogeneous elastic wave
equations in the existing literature. In addition, in the error estimates, some dependence of
the error bounds on the orders q of local spectral elements and also on the number p of plane
wave propagation directions is explicitly given. We can also extend the results to other plane
wave methods for the considered model.

Numerical experiments verify the validity of the theoretical results and indicate that the
resulting approximate solutions generated by the PWDG–LSFE possess the high accuracies.
To obtain an approximate solution with high accuracy but without superfluous cost, some
balance relations satisfied by the parameters m and q are discussed. Moreover, the approxi-
mate solutions generated by the proposed method have high accuracy when the wavenumber
increases for the fixed value ωh.

The paper is organized as follows: In Sect. 2, we introduce the linear time-harmonic
equations of elasticity, together with triangulation of the computational domain. In Sect. 3,
we present the proposed PWDG–LSFE for elastic wave problems. In Sect. 4, we explain how
to discretize the variational problem. In Sect. 5, we give error estimates for the approximate
solutions of the nonhomogeneous equations. Finally, in Sect. 6, we report some numerical
results to confirm the effectiveness of the methods.

2 Description of the underlying time-harmonic elastic wave
propagation

In this section, we shall recall the problem to be solved.
The considered original problem is based on a triangulation of the solution domain. Let

� be the underlying domain in R
d (d = 2, 3). For convenience, assume that � is a bounded

polygon or polyhedron. Let � be divided into the union of some subdomains in the sense
that

� =
N⋃

k=1

�k, �l

⋂
� j = ∅ for l �= j,

where each �k is a polygon for two-dimensional case or polyhedron for three-dimensional
case. Let Th denote the triangulation comprised of the elements {�k}, where h is the mesh-
width of the triangulation. As usual, we assume that Th is quasi-uniform and regular. We
denote the diameter of a simplex �k ∈ Th by hk and the diameter of its largest inscribed disc
or sphere by ρk . The conditions that Th is quasi-uniform and regular mean that there exists
a constant C independent of �k and Th such that for all �k ∈ Th and all Th ,

hK
ρK

≤ C and
h

hK
≤ C,

respectively.
Define

�l j = ∂�l

⋂
∂� j , for l �= j
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and

γk = �k

⋂
∂� (k = 1, . . . , N ), γ =

N⋃

k=1

γk .

We denote by Fh = ⋃
k ∂�k the skeleton of the mesh, and set FB

h = Fh
⋂

∂� and
F I
h = Fh\FB

h . Then, we want to compute a numerical approximation of the time-harmonic
displacement vector u satisfying the Navier equation [refer to Graff (1991)]:

μ�u + (λ + μ)∇(∇ · u) + ω2ρu = f in � (2.1)

with the lowest-order absorbing boundary condition (see Huttunen et al. (2004))

T(n)(u) − iηu = g on γ = ∂�. (2.2)

Here, the Lamé constants λ and μ can be expressed by means of the Poisson ratio ν and
Young’s modulus E as follows.

μ = E

2(1 + ν)
, λ = Eν

(1 + ν)(1 − 2ν)
.

The density of the medium ρ is independent of position, ω is the angular frequency of the
field. All these coefficients are assumed to be constant in the whole domain. We shall assume
that g ∈ (L2

T(∂�))d, and the traction operator T(n) defined on a curve S (d = 2) or a surface
(d = 3) with a unit normal n is

T(n)(u) = 2μ
∂u
∂n

+ λn ∇ · u + μn × (∇ × u). (2.3)

Define the wave speed CP for the P-wave and the wave speed CS for the S-wave as follows
( P-wave and S-wave will be introduced in Sect. 4).

CP =
√

λ + 2μ

ρ
and CS =

√
μ

ρ
.

Moreover, a positive definite real-valued matrix function σ on the external boundary γ is
defined by

η = ωρ(CPn ⊗ n + CSs ⊗ s) (2.4)

for two-dimensional case and by

η = ωρ(CPn ⊗ n + CSs1 ⊗ s1 + CSs2 ⊗ s2) (2.5)

for three-dimensional case, respectively. Here, s and s1, s2 are the tangential vectors to the
boundary, and ⊗ denotes the outer product so that n ⊗ n = nnT .

For each element �k , let u|�k = uk (k = 1, . . . , N ). Then, the reference problem (2.1)–
(2.2) to be solved consists of finding the local displacement vector uk such that

μ�uk + (λ + μ)∇(∇ · uk) + ω2ρuk = f in �k, (2.6)

and the interface conditions (note that nl = −n j )
{
ul = u j

T(nl )(ul) = −T(n j )(u j )
on �l j (l < j; l, j = 1, 2, . . . , N ). (2.7)
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The boundary condition becomes

T(n)(uk) − iηuk = gk on γk = ∂�k ∩ γ. (2.8)

In the next section,we introduce a newvariational formulation of the elasticwave problems
(2.6), (2.7), and (2.8).

3 The PWDG–LSFE for the nonhomogeneous time-harmonic elastic
wave equations

In this section, we shall detail the PWDG–LSFE method for the elastic wave problems. As
in Hu and Yuan (2018), the basic idea is to decompose the solution u of (2.1), (2.2) into

u = u(1) + u(2), (3.1)

where u(1) is a particular solution of (2.6) without the primal boundary condition, and u(2)

satisfies a locally homogeneous elastic wave equation.

3.1 Local variational formulation for the local nonhomogeneous problems

For each element �k , let �∗
k be a fictitious domain that has almost the same size with �k

and contains �k as its subdomain. We choose each fictitious domain �∗
k so that it possesses

sufficiently smooth boundary ∂�∗
k . A natural way is to choose �∗

k as a disc for the two-
dimensional case or a sphere for the three-dimensional case that has the same center Ok with
�k and has the radius rk = max

r
{dist(Ok, V r

k )}, where V r
k denotes a vertex of �k .

Let u(1) ∈ L2(�)) be defined as u(1) |�k= u(1)
k |�k for each �k , where u

(1)
k ∈ H1(�∗

k)

satisfies the nonhomogeneous local elastic wave equation on the fictitious domain �∗
k :

{
μ�u(1)

k + (λ + μ)∇(∇ · u(1)
k ) + ω2ρu(1)

k = f in �∗
k

T(nk )(u(1)
k ) − i η u(1)

k = 0 on ∂�∗
k

(k = 1, 2, . . . , N ). (3.2)

The variational problem of (3.2) is to find u(1)
k ∈ H1(�∗

k) such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

�∗
k

( − λ ∇ · u(1)
k ∇ · vk − 2μ ε(u(1)

k ) · ε(vk) + ω2ρu(1)
k · vk

)
dx +

∫

∂�∗
k

i η u(1)
k · vk dS

=
∫

�∗
k

f · vkdx, ∀vk ∈ H1(�∗
k) (k = 1, 2, . . . , N ),

(3.3)
where the strain tensor is defined by ε(v) := 1

2 (∇v + ∇vT).
When f satisfies f ∈ L2(�∗

k ), the variational problem (3.3) possesses a unique solution

u(1)
k ∈ H2(�∗

k) [see (Cummings and Feng 2006, Theorem 2)].

3.2 Global variational formulation for the residual and global homogeneous
problem

It is easy to see that u(2) = u − u(1) is uniquely determined by the following homogeneous
elastic wave equations:

μ�u(2) + (λ + μ)∇(∇ · u(2)) + ω2ρu(2) = 0 in �k (k = 1, 2, . . . , N ), (3.4)
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with the following boundary condition on γ and the interface conditions on�l j (l < j; l, j =
1, . . . , N ):
{ [[T(n)(u(1) + u(2))]] = [[u(1) + u(2)]] = 0, on �l j , (l < j; l, j = 1, 2, . . . , N ),

T(n)(u(1) + u(2)) − iη(u(1) + u(2)) = g on γ = ∂�,
(3.5)

where [[T(n)(u)]] = T(nl )(ul) + T(n j )(u j ).
Define the stress tensor

σ (u) = (λ∇ · u)Id + 2με(u), (3.6)

where Id is the identity matrix. Note that the stress tensor is symmetric. By direct calculation,
we can obtain

σ (u)n = T(n)(u),

and ∇ · σ (u) = μ�u + (λ + μ)∇(∇ · u).

Then the original problem (2.1, 2.2) can be rewritten as a first-order system
⎧
⎨

⎩

σ (u) = (λ∇ · u)Id + 2με(u) in �,

∇ · σ (u) + ω2ρu = f in �,

σ (u)n − iηu = g on γ = ∂�.

(3.7)

Define the averages and jumps across a common face ∂�l
⋂

∂� j by

the averages: {{u}} := ul + u j

2
, {{σ (u)}} := σ (ul) + σ (u j )

2
,

the jumps: [[u]] := ul ⊗ nl + u j ⊗ n j , [[σ (u)]] = σ (ul)nl + σ (u j )n j . (3.8)

To derive the PWDG–LSFE method, define the Trefftz spaces as follows:

V(�k) = {v ∈ H1(�k); ∇ · σ (v) + ω2ρv = 0}, (3.9)

and

V(Th) = {v ∈ (L2(�))d ; v ∈ V(�k) on each �k}.
Define the approximation uh of the original problem by uh = u(1)

h + u(2)
h , where u(1)

h and

u(2)
h defined in next section are the approximation of (3.3) and the plane wave approximation

of (3.4, 3.5), respectively.
Integrating by parts the second equation of (3.7) for every �k ∈ Th , we get the equation

of the vector-valued function u ∈ V(�k)

∫

�k

( − σ (u) : ∇v + ω2ρu · v)dx +
∫

∂�k

σ (u)n · vdS =
∫

�k

f · vdx, ∀v ∈ V(�k).

(3.10)

Here, the matrix inner product A : B is

A : B =
M∑

k=1

M∑

l=1

aklbkl ,

where A = (akl)M×M and B = (bkl)M×M .
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By the direct computation, for any sufficiently smooth functions v and w, the following
relation holds

σ (v) : ∇w = λ∇ · v∇ · w + 2με(v) : ε(w) = σ (w) : ∇v. (3.11)

Substituting this equation into (3.10) and integrating by parts, we can deduce that
∫

�k

u · (∇ · σ (v) + ω2ρv
)
dx +

∫

∂�k

σ (u)n · vdS −
∫

∂�k

u · σ (v)ndS

=
∫

�k

f · vdx, ∀v ∈ V(�k). (3.12)

Using the Trefftz property (3.9) satisfied by the test function v, we can obtain the elemental
equation defining the PWDG method

∫

∂�k

σ (u) n · vdS −
∫

∂�k

u · σ (v) ndS =
∫

�k

f · vdx, ∀v ∈ V(�k). (3.13)

Then, the above problem can be discretized as follows: for every �k ∈ Th , the vector-
valued functions uh satisfy

∫

∂�k

σ̂ (uh) n · vhdS −
∫

∂�k

ûh · σ (vh) ndS =
∫

�k

f · vhdx, ∀vh ∈ Vp(�k). (3.14)

where Vp(�k) ⊂ V(�k) is the discretized space to be specified later, and σ̂ (uh) and ûh are
the single-valued numerical fluxes defined by

{
ûh = {{uh}} − β[[σ (u)]],
σ̂ (uh) = {{σ (uh)}} + α[[uh]] (3.15)

on F I
h , and ⎧

⎪⎪⎨

⎪⎪⎩

ûh = uh − iδη−1
(

σ (u) n − iηu − g
)

,

σ̂ (uh) = σ (u) − (1 − δ)

(
σ (u) n − iηu − g

)
⊗ n

(3.16)

on FB
h , where the parameters α, β and δ are strictly positive constants, with 0 < δ ≤ 1/2.

Defining the finite-dimensional discretized space

Vp(Th) = {uh ∈ (L2(�))d ; uh ∈ Vp(�k) on each �k},
inserting the numerical fluxes into (3.14) and adding over all elements finish the definition
of the PWDG method: find u(2)

h ∈ Vp(Th) such that,

Ah(u
(2)
h , vh) = �h(vh), ∀vh ∈ Vp(Th), (3.17)

where

Ah(u, v) =
∫

F I
h

{{σ (u)}}n · [[v]]n dS +
∫

F I
h

α[[u]]n · [[v]]n dS

−
∫

F I
h

{{u}} · [[σ (v)]] dS +
∫

F I
h

β[[σ (u)]] · [[σ (v)]] dS

+
∫

FB
h

δσ (u)n · v dS +
∫

FB
h

δu · σ (v)n dS +
∫

FB
h

(1 − δ)iηu · v dS
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−
∫

FB
h

u · σ (v)n dS +
∫

FB
h

iδη−1σ (u)n · σ (v)n dS, (3.18)

and

�h(v) =
∑

k

∫

�k

f · v dx − Ah(u
(1)
h , v)

−
∫

FB
h

(1 − δ)g · v dS +
∫

FB
h

iδη−1g · σ (v)n dS. (3.19)

3.3 Auxiliary results

Here, we collect technical prerequisites for the convergence analysis.
Define the broken Sobolev space

Hr (Th) = {w ∈ L2(�)d : w|�k ∈ Hr (�k)
d , ∀�k ∈ Th}. (3.20)

Let T(Th) be the piecewise Trefftz space defined on Th by

T(Th) =
{
w ∈ L2(�)d : ∃s > 1/2 s.t . w ∈ H1+s(Th),

and ∇ · σ (w) + ω2ρw = 0 in each �k ∈ Th
}
. (3.21)

We endow T(Th) with the mesh-skeleton norm

∣∣∣∣∣∣w
∣∣∣∣∣∣2

Fh
= ∣∣∣∣β1/2[[σ (w)]]∣∣∣∣20,F I

h
+ ∣∣∣∣α1/2[[w]] n∣∣∣∣2

0,F I
h

+∣∣∣∣δ1/2η−1/2σ (w) n
∣∣∣∣2
0,F B

h
+ ∣∣∣∣(1 − δ)1/2η1/2w

∣∣∣∣2
0,F B

h
(3.22)

and the following augmented norm

∣∣∣∣∣∣w
∣∣∣∣∣∣2

F+
h

= ∣∣∣∣∣∣w
∣∣∣∣∣∣2

Fh
+ ∣∣∣∣β−1/2{{w}}∣∣∣∣20,F I

h

+∣∣∣∣α−1/2{{σ (w)}}∣∣∣∣20,F I
h

+ ∣∣∣∣δ−1/2η1/2w
∣∣∣∣2
0,F B

h
. (3.23)

Lemma 3.1 If u, v ∈ T(Th), we have

Ah(u, v) = Ah(v,u),

−Im[Ah(u,u)] = ∣∣∣∣∣∣u
∣∣∣∣∣∣2

Fh
,

and
∣∣Ah(u, v)

∣∣ ≤ C
∣∣∣∣∣∣u

∣∣∣∣∣∣
F+

h

∣∣∣∣∣∣v
∣∣∣∣∣∣

Fh
. (3.24)

Proof Provided that u, v ∈ T(Th), local integration by parts permits us to obtain

0 =
N∑

k=1

∫

�k

u · (∇ · σ (v) + ω2ρv
)
dx

=
N∑

k=1

∫

�k

−∇u : σ (v) + ω2ρu · vdx +
N∑

k=1

∫

∂�k

u · σ (v) n dS. (3.25)
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By the direct calculation, we can obtain

N∑

k=1

∫

∂�k

u · σ (v) n dS =
∫

FB
h

u · σ (v) n dS

+
∫

F I
h

{{u}} · [[σ (v)]] + [[u]] n{{σ (v)}} n dS. (3.26)

Substituting (3.11) and (3.26) into (3.25), we have

0 =
N∑

k=1

∫

�k

−λ∇ · u ∇ · v − 2με(u) : ε(v) + ω2ρu · vdx

+
∫

FB
h

u · σ (v) n dS +
∫

F I
h

{{u}} · [[σ (v)]] + [[u]] n{{σ (v)}} n dS. (3.27)

Adding (3.27) to (3.18) gives

Ah(u, v) =
N∑

k=1

∫

�k

−λ∇ · u ∇ · v − 2με(u) : ε(v) + ω2ρu · vdx

+
∫

F I
h

{{σ (u)}}n · [[v]]n dS +
∫

F I
h

[[u]]n · {{σ (v)}}n dS

+
∫

FB
h

δσ (u)n · v dS +
∫

FB
h

δu · σ (v)n dS

+
∫

F I
h

α[[u]]n · [[v]]n dS +
∫

F I
h

β[[σ (u)]] · [[σ (v)]] dS

+
∫

FB
h

(1 − δ)iηu · v dS +
∫

FB
h

iδη−1σ (u)n · σ (v)n dS. (3.28)

Therefore, we can directly obtain the first equality of (3.24).
By taking the imaginary part of (3.28), we get the second equality of (3.24).

By the definition of Ah(·, ·), δ
1
2 ≤ (1 − δ)

1
2 and repeated applications of the weighted

Cauchy–Schwarz inequality, we can deduce the third inequality of (3.24). ��

4 Discretization of the variational problems

In this section, we introduce discretizations of the variational problems described in the last
section.

4.1 Spectral element discretization of the local nonhomogeneous problems

Since �∗
k is a sufficiently smooth domain and f is smooth on �∗

k , the solution u
(1)
k possesses

high regularity on �∗
k . Moreover, the fictitious domain �∗

k has almost the same size as
the element �k . Thus, the subproblems (3.3) should be discretized by the spectral element
method, so that the resulting approximate solutions have higher accuracies.

123



137 Page 10 of 29 L. Yuan, Y. Liu

Let q be a positive integer and D be a bounded and connected domain in R
d . Let Sq(D)

denote the set of polynomials defined on D, whose orders are less than or equal to q . Set
Sq(D) = (Sq(D))d .

The discrete variational problems of Eq. (3.3) are: to find u(1)
k,h ∈ Sq(�∗

k) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�∗
k

( − λ ∇ · u(1)
k,h ∇ · vk,h − 2μ ε(u(1)

k,h) · ε(vk,h) + ω2ρu(1)
k,h · vk,h

)
dx

+
∫

∂�∗
k

i η u(1)
k,h · vk,h dS

=
∫

�∗
k

f · vk,hdx, ∀vk,h ∈ Sq(�∗
k) (k = 1, 2, . . . , N ).

(4.1)

In this paper, we choose the fictitious domain�∗
k to be a disc for the two-dimensional case

or a sphere for the three-dimensional case (see Remark 2.1 in Hu and Yuan (2018)). Then,
the variational problems (4.1) can be solved easily using the polar coordinate transformation
for the calculation of the involved integrations. We would like to emphasize that the discrete
problems (4.1) are local and independent each other for k = 1, . . . , N , so they can be solved
in parallel and the cost is very small.

Define u(1)
h ∈ ∏N

k=1 Sq(�k) by u
(1)
h |�k = u(1)

k,h |�k .

4.2 Basis functions of Vp(Th)

In this section, we describe the discretization of the variational problem (3.17). The dis-
cretization is based on a finite-dimensional space Vp(Th) ⊂ V(Th). We first give the precise
definition of such a space Vp(Th).

Let us consider a time-harmonic elastic plane wave moving in an unit direction d. The
plane wave can be split into two components for two-dimensional case:

v = xP d exp(iκPd · x) + yS e exp(iκSd · x) (4.2)

and three components for three-dimensional case:

v = xP d exp(iκPd · x) + yS e exp(iκSd · x) + zS f exp(iκSd · x), (4.3)

where the wavenumbers κP = ω/CP and κS = ω/CS, xP , yS and zS are scalar coefficients,
and d · e = 0, f = e × d. The first component, denoted by vP = xP d exp(iκPd · x), is
called the compressional (P−) wave, and we see that ∇ × vP = 0 and that vP is a solution
of the Navier equation by the definition of the wavenumber κP and the wave speed CP for
the P-wave.

Similarly, the remaining components of the plane wave solution, called the shear (S−)

wave and given by vS = yS e exp(iκSd·x)
(

+zS f exp(iκSd·x) for three-dimensional case

)
,

are a solution of the Navier equation by the definition of the wavenumber κS and the wave
speed CS for the S-wave. Moreover, in this case, ∇ · vS = 0.

In a homogeneous medium, the P−wave vP and S−wave vS satisfy the Helmholtz equa-
tions

{�vP + κ2
PvP = 0

�vS + κ2
SvS = 0.

in �k . (4.4)
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These two component waves propagate independently in the homogeneous medium but
interact on the medium interfaces.

In practice, a suitable family of planewaves,which are solutions of the constant-coefficient
Helmholtz equations, is generated on �k by choosing p unit propagation directions dl (l =
1, . . . , p). As advocated in earlier studies with the Helmholtz equations (Moiola et al. 2011),
the directions dl (l = 1, . . . , p) of the wave vectors of these wave functions, for two-
dimensional problems, are uniformly distributed by

dl =
(
cos(2π(l − 1)/p)
sin(2π(l − 1)/p)

)
(l = 1, . . . , p),

and for three-dimensional problems, are generated by the optimal spherical codes fromSloane
(2000). We then define two sets of complex plane wave basis functions by setting

{
vPl = dl exp(iκPdl · x)
vSl = el exp(iκSdl · x) (l = 1, . . . , p), (4.5)

for two-dimensional case, and three sets of complex plane wave basis functions by setting
⎧
⎨

⎩

vPl = dl exp(iκPdl · x)
vS1,l = el exp(iκSdl · x)
vS2,l = fl exp(iκSdl · x)

(l = 1, . . . , p), (4.6)

for three-dimensional case.
Let Qt (t = 2p for two-dimensional case and t = 3p for three-dimensional case) denote

the space spanned by the t plane wave functions. Define the finite-element space

Vp(Th) =
{
v ∈ (H1(�))d : v|K ∈ Qt for any K ∈ Th

}
. (4.7)

It is easy to see that the above space has N × t basis functions, which are defined by

vPk,l(x) =
{
vPl (x), x ∈ �k,

0, x ∈ � j satisfying j �= k
(k = 1, . . . , N ; l = 1, . . . , p), (4.8)

and

vSk,l(x) =
{
vSl (x), x ∈ �k,

0, x ∈ � j satisfying j �= k
(k = 1, . . . , N ; l = 1, . . . , p) (4.9)

for two-dimensional case, and by vPk,l defined in Eq. (4.8) and vSk,l defined in Eq. (4.10) for
three-dimensional case, where

vSk,s,l(x) =
{
vSs,l(x), x ∈ �k,

0, x ∈ � j satisfying j �= k
(k = 1, . . . , N ; s = 1, 2; l = 1, . . . , p).

(4.10)

For simplicity of claim in the section of error analysis, we decompose the finite-element
space Vp(Th) into two components by

Vp(Th) = VS
p(Th) + VP

p (Th), (4.11)

where the space VS
p(Th) is spanned by plane wave basis functions vSk,l for two-dimensional

case or vSk,s,l for three-dimensional case, and the space VP
p (Th) is spanned by plane wave

basis functions vPk,l .
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We can now define an approximation u(2)
h of u(2) by

u(2)
h |�k = u(2)

k,h =
p∑

l=1

xk,lvPk,l +
p∑

l=1

yk,lvSk,l
.= uP

k,h + uS
k,h (4.12)

for two-dimensional case, and

u(2)
h |�k = u(2)

k,h =
p∑

l=1

xk,lvPk,l +
p∑

l=1

(yk,lvSk,1,l + zk,lvSk,2,l)
.= uP

k,h + uS
k,h (4.13)

for three-dimensional case.
Define uP

h by uP
h |�k = uP

k,h , u
S
h by uS

h |�k = uS
k,h and u(2)

h = uP
h + uS

h .

5 Error estimates of the elastic PWDG–LSFEmethod

In this section, we derive the error estimates of the approximate solutions uh defined in the
previous section. We mention that the proofs of error estimates of the approximate solutions
generated by the proposed method are a translation to the elastic wave case of techniques
already used for acoustic and electromagnetic waves (see Hu and Yuan 2018). Besides, we
directly use the sharp approximation estimate (see Lemma 5.3) of homogeneous elastic wave
equations by plane wave basis functions, which was first introduced by Moiola in (Moiola
2013, Theorem 3.2). Moreover, we underline that the proof of Lemma 5.5 is based on the
technique of Theorem 3.13 from [25].

Assume a domain D ⊂ �. Let || · ||s,ω,D be the ω−weighted Sobolev norm defined by

||v||2s,ω,D =
s∑

j=0

ω2(s− j)|v|2j,D .

In the rest of this paper, we always useC to denote a generic positive constant independent
of h, p and ω, but its value might change at different occurrence. Moreover, we assume that
each�∗

k is a disc or a sphere, whose radius and center are denoted by rk and Ok , respectively.

5.1 Error estimate of the local spectral element approximations

In this section, we derive the error estimates of the approximate solutions u(1)
h based on the

framework introduced in Hu and Yuan (2018).
We first give a stability result of u(1)

k for each k.

Lemma 5.1 Assume that c0 ≤ hω ≤ C0 and f ∈ Hr−1(�∗
k) with an integer r ≥ 1. Let u(1)

k

denote the solution of the nonhomogeneous local equation (3.2). Then, u(1)
k ∈ Hr+1(�∗

k)

and

|u(1)
k |r+1,�∗

k
≤ C

r−1∑

l=0

ωr−1−l ||f||l,�∗
k
. (5.1)

Proof Define the scaling transformation x̂ = Fk(x) = r−1
k (x − Ok) + Ok . Under the coor-

dinate transformation x̂ = Fk(x), set u
(1)
k (x) = u(1)

k (F−1
k (x̂)) = û(1)

k (x̂). Besides, �∗
k is
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mapped to a disc (2d case) or a sphere (3d case) with the radius one, which is denoted by
D̂k . Set ω̂k = rkω. Then, the equation (3.2) becomes

{
μ�̂û(1)

k + (λ + μ)∇̂(∇̂ · û(1)
k ) + ω̂2ρû(1)

k = r2k f̂ in D̂k

T̂(nk )(û(1)
k ) − i η̂ û(1)

k = 0 on ∂ D̂k .
(5.2)

By the smoothness assumption of f , ω̂k = O(1) and the existing regularity results (see, for
example, Theorem 2 in Cummings and Feng (2006) and Lemma 3.3 in Du and Wu (2015)),
we know that û(1)

k ∈ Hr+1(D̂k) and

|û(1)
k |r+1,D̂k

≤ C
r−1∑

l=0

ω̂r−l
k ||r2k f̂ ||l,D̂k

. (5.3)

Now we use the integral transformation x̂ = Fk(x) to (5.3), and get the desired results. ��
Remark 5.1 We point out that it is unclear whether the assumption ωh ≥ c0 is indeed nec-
essary for the estimate (5.1). Besides, at least in the case with nonsingular solutions, for the
plane wave method and the spectral element method for the considered equations, increasing
the number p of basis functions on every element is more efficient than decreasing the mesh
size h to get approximate solutions with high accuracy. From the viewpoint of the numerical
results for the case of smooth solutions, we can simply choose h ≈ 1

ω
. Thus, the assumption

ωh ≥ c0 is not a limit in applications with smooth solutions. In future work, we will give
detailed numerical analysis of our method for the case of non-smooth analytic solution.

The following result gives estimates of the local spectral element approximations u(1)
k,h

(k = 1, . . . , N ).

Lemma 5.2 Let q ≥ 2 and 2 ≤ r + 1 ≤ q + 1. Under the assumptions in Lemma 5.1, we
have for each �∗

k

||u(1)
k − u(1)

k,h || j,�∗
k

≤ C

(
h

q

)r+1− j

|u(1)
k |r+1,�∗

k
( j = 0, 1, 2). (5.4)

Proof We use the same notations with that in the proof of the above Lemma. Under the
scaling transformation x̂ = Fk(x), the variational problems (3.3) and (3.3) become
⎧
⎪⎪⎨

⎪⎪⎩

∫

D̂k

( − λ ∇ · û(1)
k ∇ · vk − 2μ ε(û(1)

k ) · ε(vk) + ω̂2
kρû

(1)
k · vk

)
d x̂ +

∫

∂ D̂k

i η̂ û(1)
k · vk dS

=
∫

D̂k

r2k f̂ · vkd x̂, ∀vk ∈ H1(D̂k) (k = 1, 2, . . . , N ),

(5.5)
and
⎧
⎪⎪⎨

⎪⎪⎩

∫

D̂k

( − λ ∇ · û(1)
k,h ∇ · vk − 2μ ε(û(1)

k,h) · ε(vk) + ω̂2
kρû

(1)
k,h · vk

)
d x̂ +

∫

∂ D̂k

i η̂ û(1)
k,h · vk dS

=
∫

D̂k

r2k f̂ · vkd x̂, ∀vk ∈ Sq(D̂k) (k = 1, 2, . . . , N ),

(5.6)
respectively.Wefirst derive an error estimate of û(1)

k −û(1)
k,h based on the framework introduced

in Feng and Wu (2011). Let P̂q : H1(D̂k) → Sq(D̂k) denote the orthogonal projector

123



137 Page 14 of 29 L. Yuan, Y. Liu

associated with the complex inner product
∫

D̂k

( − λ ∇ · v̂ ∇ · w − 2μ ε(v̂) · ε(w)
)
d x̂ +

∫

∂ D̂k

i η̂ v̂ · w dS, v,w ∈ H1(D̂k).

Then, P̂q û
(1)
k satisfies

∫
D̂k

(
− λ ∇ · (P̂q û

(1)
k ) ∇ · w − 2μ ε(P̂q û

(1)
k ) · ε(w)

)
d x̂ + ∫

∂ D̂k
i η̂ (P̂q û

(1)
k ) · w dS

= ∫
D̂k

( − λ ∇ · û(1)
k ∇ · w − 2μ ε(û(1)

k ) · ε(w)
)
d x̂

+ ∫
∂ D̂k

i η̂ û(1)
k · w dS, ∀w ∈ Sq(D̂k).

(5.7)

By the approximation of the spectral element method (see, for example, Guo (2007)), there
is function v̂q ∈ Sq(D̂k) such that

||û(1)
k − v̂q || j,D̂k

≤ Cq−(r+1− j)|û(1)
k |r+1,D̂k

( j = 0, 1, 2). (5.8)

Then, by the standard technique (Zhu and Wu 2013, Sec 3.3), we can show that

||P̂q û
(1)
k − û(1)

k || j,D̂k
≤ ||v̂q − û(1)

k || j,D̂k
≤ Cq−(r+1− j)|û(1)

k |r+1,D̂k
( j = 0, 1). (5.9)

Set ξ = P̂q û
(1)
k − û(1)

k and ζ = û(1)
k,h − P̂q û

(1)
k . Combining (5.6) with (5.7), we know that the

function ζ ∈ Sq(D̂k) is the solution of the following variational problem (see Feng and Wu
2011)

⎧
⎪⎪⎨

⎪⎪⎩

∫

D̂k

( − λ ∇ · ζ ∇ · vk − 2μ ε(ζ ) · ε(vk) + ω̂2
kρζ · vk

)
d x̂ +

∫

∂ D̂k

i η̂ ζ · vk dS

= −
∫

D̂k

ω̂2
kρξ · vkd x̂, ∀vk ∈ Sq(D̂k).

(5.10)

Thus, by the stability result given in Theorem 2 of Cummings and Feng (2006), we have

||ζ ||1,D̂k
≤ C ||ξ ||0,D̂k

.

This, together with (5.9), leads to

||ζ ||1,D̂k
≤ Cq−r−1||û(1)

k ||r+1,D̂k
.

Notice that

û(1)
k − û(1)

k,h = (û(1)
k − P̂q û

(1)
k ) + (P̂q û

(1)
k − û(1)

k,h).

Using (5.9) again, we further get

||û(1)
k − û(1)

k,h || j,D̂k
≤ Cq−(r+1− j)|û(1)

k |r+1,D̂k
( j = 0, 1). (5.11)

Making the integral transformation x̂ = Fk(x) to (5.11), we can deduce that

||u(1)
k − u(1)

k,h || j,�∗
k

≤ Chr+1− j q−(r+1− j)|u(1)
k |r+1,�∗

k
( j = 0, 1). (5.12)

On the other hand, it follows by (5.8) that

||u(1)
k − vq || j,�∗

k
≤ Chr+1− j q−(r+1− j)|u(1)

k |r+1,�∗
k

( j = 1, 2). (5.13)

By the triangle inequality, we have

|u(1)
k − u(1)

k,h |2,�∗
k

≤ |u(1)
k − vq |2,�∗

k
+ |vq − u(1)

k,h |2,�∗
k
. (5.14)
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Applying the inverse estimate to the second term in the right side of the above inequality
leads to

|vq − u(1)
k,h |2,�∗

k
≤ Cqh−1||vq − u(1)

k,h ||1,�∗
k

= Cqh−1(||u(1)
k − vq ||1,�∗

k
+ ||u(1)

k − u(1)
k,h ||1,�∗

k
).

Substituting this into (5.14), and using (5.13) and (5.12), yields

|u(1)
k − u(1)

k,h |2,�∗
k

≤ Chr+1−2q−(r+1−2)|u(1)
k |r+1,�∗

k
.

This, together with (5.12), gives the desired result (5.4). ��
Combining Lemma 5.1 with Lemma 5.4, using the trace inequality and the definition of

the norm ||| · |||Fh and ||| · |||F+
h
, we can derive error estimates of the approximation u(1)

h
easily, and we will omit the details and only give the main results.

Theorem 5.1 Let q ≥ 2 and 2 ≤ r + 1 ≤ q + 1. Assume that c0 ≤ hω ≤ C0 and
f ∈ Hr−1(�δ̃). Then, the following error estimates hold

(
N∑

k=1

||u(1) − u(1)
h ||2j,�k

) 1
2

≤ C(
h

q
)r+1− j

r−1∑

l=0

ωr−1−l ||f||l,�
δ̃

( j = 0, 1, 2) (5.15)

and

|||u(1) − u(1)
h |||Fh , |||u(1) − u(1)

h |||F+
h

≤ C(
h

q
)r−

1
2

r−1∑

l=0

ωr−1−l ||f||l,�
δ̃
, (5.16)

where �δ̃ (see (Hu and Yuan 2018, Sec. 4.1.1) ) is the union of � and the boundary layer
with the thickness δ̃ > 0.

5.2 Error estimate of the plane wave approximations for three-dimensional case

The method of analysis for the electromagnetic PWLS presented in Hu and Yuan (2014b)
applies to the elastic PWDG method with major changes in the derivation of the variational
formulations and the approximation properties of the elastic plane wave basis functions. We
directly use the sharp approximation estimate (see Lemma 5.3) of homogeneous elastic wave
equations by plane wave basis functions, which was first introduced by Moiola in (Moiola
2013, Theorem 3.2).

It is known that under the constitutive relation, Eq. (3.4) can be rewritten as the following
equation:

u(2) + 1

κ2
P

∇(∇ · u(2)) − 1

κ2
S

∇ × (∇ × u(2)) = 0 in �. (5.17)

Let uP = − 1
κ2P

∇(∇ ·u(2)) be the compressional part (P−wave) and uS = 1
κ2S

∇ × (∇ ×u(2))

be the shear part (S−wave) of thewave field. Then,we haveu(2) = uP+uS in�,∇×uP = 0
and ∇ · uS = 0 in �. It is easy to verify that uP and uS satisfy the homogeneous vector
Helmholtz equations

{�uP + κ2
Pu

P = 0
�uS + κ2

Su
S = 0.

in �. (5.18)
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Let themesh triangulation Th satisfies the definition stated in (Hiptmair et al. 2013, Section
5) and set τ = minK∈Th τK , where τK is the positive parameter that depends only on the
shape of an element K of Th introduced in (Moiola et al. 2011, Theorem 3.2). Let r and m
be given positive integers satisfying m ≥ 2r + 1 and m ≥ 2(1 + 21/τ ). Let the number p of
plane wave propagation directions be chosen as p = (m + 1)2.

For ease of notation, in the rest of the paper, we set

F(u, f, r + 1) = ||∇ · u(2)||r+1,ω,� + ||∇ × u(2)||r+1,ω,� +
r−1∑

l=0

ωr−1−l ||f||l,�
δ̃
.

5.2.1 The error estimates of the approximations uh in the mesh-dependent norm

To derive the approximation estimates of u(2) in the mesh-dependent norm, we need to recall
the following fundamental approximation result [see (Moiola 2013, Theorem 3.2)].

Lemma 5.3 Assume that the analytical solution u(2) of the elastic wave problems (3.4)–(3.5)
belongs to Hr+1(div;�)

⋂
Hr+1(curl;�) (r ∈ N). There exists ξh ∈ VP

p (Th) + VS
p(Th)

such that, for 1 ≤ j ≤ r + 1,

||u(2) − ξh || j−1,ω,K ≤ Cω−2
(

h

mλ

)r+1− j(
||∇ · u(2)||r+1,ω,K + ||∇ × u(2)||r+1,ω,K

)
,

(5.19)

where C is a constant independent of p but dependent on ω and h only through the product
ωh as an increasing function, and may depend on the shape of the elements K ∈ Th, r , λ, μ

and ρ.

Now, we can derive the approximation estimates of u(2) in the mesh-dependent norm.

Theorem 5.2 Assume that the analytical solution u(2) of the elastic wave problems (3.4)–
(3.5) belongs toHr+1(div;�)

⋂
Hr+1(curl;�) (r ∈ N). There exists ξh ∈ VP

p (Th)+VS
p(Th)

such that

|||u(2) − ξ h |||F+
h

≤ Cω−2
(

h

mλ

)r− 1
2
(

||∇ · u(2)||r+1,ω,� + ||∇ × u(2)||r+1,ω,�

)
,

(5.20)

where C is a constant independent of p but dependent on ω and h only through the product
ωh as an increasing function, and may depend on the shape of the elements K ∈ Th, r , λ, μ

and ρ.

Proof Let ξh ∈ Vp(Th) be defined by Lemma 5.3. For ease of notation, set εh = u(2) − ξh .
By the definition of the norm

∣∣∣∣∣∣ · ∣∣∣∣∣∣
F+

h
, we get

∣∣∣∣∣∣εh
∣∣∣∣∣∣2

F+
h

≤ C
N∑

r=1

{∫

∂�r

|σ (εh)|2 + |εh |2
}
. (5.21)

Using the trace inequality, we prove by Lemma 5.3 that
∫

∂�r

|σ (εh)|2 + |εh |2 ≤ Cω−4
(

h

mλ

)2r−1(
||∇ · u(2)||2r+1,ω,K + ||∇ × u(2)||2r+1,ω,K

)
.

��
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Based on the previous lemmas, we can derive the error estimates of the approximations
u(2)
h and uh in the mesh-dependent norm.

Theorem 5.3 Assume that the analytical solution u of the elastic wave problems (2.1)-(2.2)
belongs to Hr+1(div;�)

⋂
Hr+1(curl;�) (r ∈ N). and c0 ≤ hω ≤ C0. Let q ≥ 2, 2 <

r + 1 ≤ min{m+1
2 , q + 1}, and uh = u(1)

h + u(2)
h be the approximation solution of the

PWDG–LSFE. Then, for large p = (m + 1)2, we have

|||u(2) − u(2)
h |||Fh , |||u − uh |||Fh ≤ C

(
ω−2

(
h

mλ

)r− 1
2 + (

h

q
)r−

1
2

)
F(u, f, r + 1),

(5.22)

where C is a constant independent of p but dependent on ω and h only through the product
ωh as an increasing function, and may depend on the shape of the elements K ∈ Th, r , λ, μ

and ρ.

Proof The PWDG formulation (3.17) is consistent by construction; thus if u(2) ∈ H2(�)

solves (3.4)-(3.5), then it holds that

Ah(u(2), vh) = �h(vh), ∀vh ∈ Vp(Th). (5.23)

From (3.17) and (5.23), we have

Ah(u(2) − u(2)
h , vh) = Ah(u

(1)
h − u(1), vh), ∀vh ∈ Vp(Th). (5.24)

Let ξh be the plane wave approximation defined in Theorem 5.2. It follows by (5.24) that

Ah(u(2) − u(2)
h , ξ h − u(2)

h ) = Ah(u
(1)
h − u(1), ξh − u(2)

h ).

Then, by the direct manipulation, we can deduce that

Ah(u(2) − u(2)
h ,u(2) − u(2)

h ) = Ah(u(2) − u(2)
h ,u(2) − ξh)

+Ah(u(1) − u(1)
h ,u(2) − ξh) + Ah(u(1) − u(1)

h ,u(2)
h − u(2)).

Set ε
(1)
h = u(1) − u(1)

h and ε
(2)
h = u(2) − ξ h . By taking the imaginary part of the last

equation and Lemma 3.1, we obtain

|||u(2) − u(2)
h |||2Fh

≤ |Ah(ε
(1)
h , ε

(2))
h | + |Ah(u(2) − u(2)

h , ε
(2)
h )| + |Ah(ε

(1)
h ,u(2)

h − u(2))|
= |Ah(ε

(1)
h , ε

(2)
h )| +

∣∣∣∣Ah
(
ε
(2)
h ,u(2) − u(2)

h

)∣∣∣∣ + |Ah(ε
(1)
h ,u(2)

h − u(2))|

≤ |||ε(1)
h |||F+

h
|||ε(2)

h |||Fh + |||ε(2)
h |||F+

h
|||u(2) − u(2)

h |||Fh + |||ε(1)
h |||F+

h
|||u(2) − u(2)

h |||Fh

≤ |||ε(1)
h |||F+

h
|||ε(2)

h |||F+
h

+ (|||ε(1)
h |||F+

h
+ |||ε(2)

h |||F+
h

)|||u(2) − u(2)
h |||Fh . (5.25)

It can be verified directly by (5.25) that

|||u(2) − u(2)
h |||Fh ≤

√
2 + 1

2
(|||ε(1)

h |||F+
h

+ |||ε(2)
h |||F+

h
). (5.26)

Notice thatu(2)|�k = (u−u(1))|�k . By the assumptions andLemma5.1,we haveu(2)|�k ∈
Hr+1(�k) for each k. Combining (5.26) andTheorems 5.1, 5.2, gives the desired result (5.22).

��
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5.2.2 L2 error estimates of the approximations uh

To prove an error estimate in L2(�) for the PWDG method, we adopt the approach from
Buffa and Monk (2008), Cummings and Feng (2006), Hiptmair et al. (2011), Luostari et al.
(2013). Considering the dual (nonhomogeneous) problem of the Navier equation (2.1) (see
Cummings and Feng 2006)

{
μ�v + (λ + μ)∇(∇ · v) + ω2ρv = ψ in �

T(n)(v) − iηv = 0 on γ = ∂�,
(5.27)

where ψ ∈ L2(�). Let us recall the regularity estimates for the elastic wave problem proved
in Cummings and Feng (2006).

Lemma 5.4 (Cummings and Feng 2006, Theorem 2) Let� be a convex polyhedron or smooth
domain. Then the following regularity estimates for v hold:

{
||v||1,� ≤ C(1 + ω + 1

ω2 )||ψ ||0,�,

||v||2,� ≤ C(1 + ω2 + 1
ω2 )||ψ ||0,�.

(5.28)

We can prove the following error estimate using duality. We underline that the proof is
based on the technique from (Luostari et al. 2013, Theorem 3.13). For completeness, we give
the detailed proof.

Lemma 5.5 Assuming� be a convex polyhedron and covered by a regular and quasi-uniform
mesh, then there exists a constant C > 0 independent of ω, h, and w such that for any
w ∈ V(Th),

||w||0,� ≤ Cω
3
2 |||w|||Fh . (5.29)

Proof Let v satisfy the dual problem (5.27). Integrating by parts, using the definition of the
Trefftz space V(Th) and the relation σ (v) : ∇w = ∇v : σ (w), we obtain

(w,ψ) =
N∑

k=1

∫

�k

( − ∇w : σ (v) + w · ω2ρv
)
dx +

N∑

k=1

∫

∂�k

w · σ (v)ndS

=
N∑

k=1

∫

�k

( − σ (w) : ∇v + w · ω2ρv
)
dx +

N∑

k=1

∫

∂�k

w · σ (v)ndS

=
N∑

k=1

∫

�k

(
(∇ · σ (w) + ω2ρw) · v)dx +

N∑

k=1

∫

∂�k

(w · σ (v)n − σ (w)n · v)dS

=
N∑

k=1

∫

∂�k

(w · σ (v)n − σ (w)n · v)dS.

Recalling the definition of the jumps [[w]] and [[σ (w)]] in (3.8) and taking into account the
boundary condition of (5.27), we obtain

(w,ψ) =
∑

�l j ,l< j

∫

�l j

(
[[w]]n · σ (v)n − [[σ (w)]] · v

)
dS

+
∑

γk∈γ

∫

γk

(
w · σ (v)n − σ (w)n · v

)
dS
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=
∑

�l j ,l< j

∫

�l j

(
[[w]]n · σ (v)n − [[σ (w)]] · v

)
dS

+
∑

γk∈γ

∫

γk

(
w · iηv − σ (w)n · v) dS

=
∑

�l j ,l< j

∫

�l j

(
α

1
2 [[w]]n · α− 1

2 σ (v)n − β
1
2 [[σ (w)]] · β− 1

2 v
)
dS

−
∑

γk∈γ

∫

�l j

(
i(1 − δ)

1
2 η

1
2w · (1 − δ)− 1

2 η
1
2 v + δ

1
2 η− 1

2 σ (w)n · δ− 1
2 η

1
2 v

)
dS,

wheren denotes the unit normal vector pointing from�l to� j . ByCauchy–Schwarz inequal-
ity, we have

|(w,ψ)| ≤
∑

�l j ,l< j

(||α 1
2 [[w]]n||0,�l j ||α− 1

2 σ (v)n||0,�l j + ||β 1
2 [[σ (w)]]||0,�l j ||β− 1

2 v||0,�l j

)

+
∑

γk∈γ

(||(1 − δ)
1
2 η

1
2w||0,γk ||(1 − δ)−

1
2 η

1
2 v||0,γk

+||δ 1
2 η− 1

2 σ (w)n||0,γk ||δ− 1
2 η

1
2 v||0,γk

) ≤ |||w|||Fh · G 1
2 , (5.30)

where G is defined by

G =
∑

�l j ,l< j

(||α− 1
2 σ (v)n||20,�l j

+ ||β− 1
2 v||20,�l j

)

+
∑

γk∈γ

(||(1 − δ)−
1
2 η

1
2 v||20,γk + ||δ− 1

2 η
1
2 v||20,γk

)
. (5.31)

By ||η||∞ ≤ Cω and ||η−1||∞ ≤ Cω−1, and applying the trace inequality and the regularity
estimates (5.28), we further get the following estimate

G ≤ C
∑

k

(
ω||∇v||20,�k

+ ω||v||20,�k
+ h||∇σ (v)||20,�k

+ h−1||σ (v)||20,�k

)

≤ C(ω||v||21,� + h||v||22,�) ≤ Cω3||ψ ||20,�. (5.32)

Taking (5.32) into (5.30) and choosing ψ = w, we obtain the estimate (5.29).
Combining Lemma 5.5 with Theorem 5.3, we obtain an error estimate in L2(�) for our

method. ��

Theorem 5.4 Under the assumption of Theorem 5.3 and Lemma 5.5, Let q ≥ 2, 2 < r +1 ≤
min{m+1

2 , q + 1}, and uh = u(1)
h + u(2)

h be the approximation solution of the PWDG–LSFE.
Then, for large p = (m + 1)2, we have

||u − uh ||0,� ≤ C

(
ω− 1

2

(
h

mλ

)r− 1
2 + ω

3
2 (
h

q
)r−

1
2

)
F(u, f, r + 1), (5.33)

where C is a constant independent of p,u but dependent onω and h only through the product
ωh as an increasing function, and may depend on the shape of the elements K ∈ Th, r , λ, μ

and ρ.
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5.3 Error estimate of the plane wave approximations for two-dimensional case

Let the mesh triangulation Th satisfy the shape regularity and quasi-uniformity, and set
p = 2m + 1, where the p directions {dl = (cosθl , sinθl)}pl=1 satisfy the following condition:
there exists ζ ∈ (0, 1] such that the minimum angle between two different directions is
greater that or equal to 2πζ/p.

By the plane wave approximation theory in Hiptmair et al. (2011) and (Moiola 2013,
Theorem 3.2), we can obtain the following approximation.

Lemma 5.6 Assume that the analytical solution u(2) of the elastic wave problems (3.4)-(3.5)
belongs to Hr+1(div;�)

⋂
Hr+1(curl;�) (r ∈ N). There exists ξh ∈ VP

p (Th) + VS
p(Th)

such that, for 1 ≤ j ≤ r + 1,

||u(2) − ξh || j−1,ω,K ≤ Cω−2hr+1− j
(
log(p)

p

)r+1− j

(
||∇ · u(2)||r+1,ω,K + ||∇ × u(2)||r+1,ω,K

)
, (5.34)

where C is a constant independent of p but dependent on ω and h only through the product
ωh as an increasing function, and may depend on the shape of the elements K ∈ Th, r , λ, μ

and ρ.

Now we get the error estimates for our method, as in the proof of Theorems 5.3 and 5.4.

Theorem 5.5 Let q ≥ 2, 2 < r + 1 ≤ min{m+1
2 , q + 1}. Assume that c0 ≤ hω ≤ C0,

f ∈ Hr−1(�) and u ∈ Hr+1(div;�)
⋂

Hr+1(curl;�) (r ∈ N). Then

|||u(2) − u(2)
h |||Fh , |||u − uh |||Fh

≤ C

(
ω−2hr−

1
2

(
log(p)

p

)r− 1
2 + (

h

q
)r−

1
2

)
F(u, f, r + 1), (5.35)

and

||u − uh ||0,� ≤ C

(
ω− 1

2 hr−
1
2

(
log(p)

p

)r− 1
2 + ω

3
2 (
h

q
)r−

1
2

)
F(u, f, r + 1). (5.36)

Remark 5.2 Wemention that all theoretical results are dependent on the assumptionωh ≥ c0.
Thus, they do not provide orders of asymptotic convergence with respect to h when the
meshwidth h becomes much smaller. The h−convergence orders described herein are under
the restriction of such assumption h ≥ c0/ω.

Remark 5.3 The error estimates given in Theorems 5.3, 5.4 and 5.5 are obtained only for
the case of the number of S−wave basis functions p0 equaling the number of P−wave
basis functions p1. Indeed, as already mentioned in Huttunen et al. (2004), to obtain the best
accuracy, the ratio of the number of S− and P−wave basis functions p0/p1 should be about
the ratio of S− and P−wavenumbers κS/κP. Furthermore, we can derive the corresponding
error estimates by proceeding as in Theorems 5.3, 5.4 and 5.5.

Remark 5.4 The error estimates given in Theorems 5.3, 5.4 and 5.5 are also established for
the homogeneous elastic wave equations, where error estimates of the local spectral element
approximations are eliminated.
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6 Numerical experiments

We simply choose constant parameters (α = β = δ = 1/2) to solve time-harmonic elastic
wave problems (2.1), (2.2) in two-dimensional and three-dimensional homogeneous media,
and we report some numerical results to verify the validity of the theoretical results.

A uniform triangulation Th is employed for the domain � for the examples as follows:
� is divided into small rectangles or cubes of equal meshwidth, where h is the length of the
longest edge of the elements. We choose the number p of basis functions on all elements
{�k} to be p = 2m + 1 for two-dimensional case and p = (m + 1)2 for three-dimensional
case, where m is a variable positive integer.

To measure the accuracy of the numerical solution uh , we introduce the following relative
numerical error:

err. = ||u − uh ||L2(�)

||u||L2(�)

(6.1)

for the exact solution u ∈ (L2(�))d .

6.1 Rayleigh waves

Since discretization of the PWDG method in this study uses P− and S−plane waves only,
it is vital to investigate whether the method can resolve surface waves that are not explicitly
contained in the basis for the PWDG. To do this we study Rayleigh waves in the square
domain � = [0, 1]2. The exact expression for the Rayleigh wave speed CR is somewhat
complicated; therefore, we use the approximation value from Auld (1973) given by

CR = 0.87 + 1.12ν

1 + ν
CS.

We denote the Rayleigh wavenumber by κR = ω/CR .

The x and y components of the displacement field u = (ux , uy)
T can bewritten as follows

(see Auld 1973 for details):
⎧
⎨

⎩
ux = αS{e−αS y − 2κ2R

κ2R+α2
S
e−αP y}eiκRx

uy = iκR{e−αS y − 2αPαS
κ2R+α2

S
e−αP y}eiκRx , (6.2)

where

αP =
√

κ2
R − κ2

P and αS =
√

κ2
R − κ2

S

Elastic properties of the medium occupying the domain � are taken to be those of steel
(E = 200× 109, ν = 0.3, and ρ = 7800). Hence, S− and P− wave speeds are CP = 5875
and CS = 3140, respectively. This gives a ratio CP/CS = κS/κP = 1.87. Single-frequency
examples for this first model problem are computed with f = 2z × 104 (z ∈ N), which
corresponds to ω = 4π z × 104 and κP = 21.4z. These parameters are not motivated by any
particular application, but the ratio CP/CS is typical for a wide range of solid materials.

Table 1 and Fig. 1 show the errors of the numerical solutions in Fh-norm and relative L2-
norm with respect to p, where the direct method is employed to solve the discrete system.
A fairly coarse mesh h = 1

4 when κP = 21.4 is used. We choose the number p of basis
functions from p = 17 to p = 27.
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Table 1 Errors of the approximations with respect to p

p 17 19 21 23 25 27

|||u − uh |||Fh
7.98e−3 6.93e−3 4.31e−3 2.21e−3 1.20e−3 5.86e−4

Err. 3.38e−1 2.21e−1 1.19e−1 5.30e−2 2.46e−2 1.27e−2

10−0.9 10−0.8
10−4

10−3

10−2

10−1

||| u− uh|||F
h

 vs log(p)/p

log(p)/p

|||
 u

−  
u h|||

F h

PWDG
slope =10.7

10−0.9 10−0.8
10−3

10−2

10−1

100
err. vs log(p)/p

log(p)/p

er
r.

PWDG
slope =13.4

Fig. 1 Left: |||u − uh |||Fh
vs log(p)/p. Right: err. vs log(p)/p

Table 2 Errors of the approximations with respect to h when κP = 21.4 and p = 15

h 1
4

1
6

1
8

1
10

1
12

1
14

|||u − uh |||Fh
8.80e−3 4.70e−3 1.50e−3 4.89e−4 1.90e−4 8.13e−5

err. 4.79e−1 1.14e−1 2.17e−2 5.40e−3 1.70e−3 6.08e−4

Figure 1 shows the plot of |||u − uh |||Fh and err. with respect to log(p)
p , respectively.

It highlights two different regimes for increasing p: (i) a preasymptotic region with slow
convergence, (ii) a region of faster convergence with a linear plot which verifies the validity
of the theoretical results in Theorem 5.5. As stated in Remark 3.14 (see Hiptmair et al. 2011),
the convergence order of the approximations with respect to p turns out to be exponential
since the analytical solution of the problem can be extended analytically outside the domain.

Table 2 and Fig. 2 show the errors of the numerical solutions in Fh-norm and relative
L2-norm with respect to h.

We can see from Fig. 2 that it displays a linear plot which verifies the validity of the
theoretical results in Theorem 5.5. Particularly, due to the best approximation error adopted
in the proof of the theoretical estimates, the convergence order of the approximations with
respect to h is not exponential but algebraic.

6.2 Wave propagation

For the second example, we study elastic wave propagation through a cube � = [0, 1]3. The
exact solution of the problems is a plane wave consisting both P− and S− waves:

uinc = aexp(iκPa · x) + bexp(iκSa · x) + cexp(iκSa · x). (6.3)

123



A Trefftz-discontinuous Galerkin method… Page 23 of 29 137

10−2 10−1 100
10−5

10−4

10−3

10−2

h

|||
u−

u h|||
F h

|||u−uh|||F
h

 vs h

PWDG
slope = 5.02

10−2 10−1 100
10−4

10−3

10−2

10−1

100

h

er
r.

err. vs h

PWDG
slope = 6.23

Fig. 2 Left : h−convergence in Fh -norm in logarithmic scale. Right: h−convergence in relative L2−norm
in logarithmic scale

Table 3 Errors of the approximations with respect to p

p 16 25 36 49 64

|||u − uh |||Fh
1.02e+1 1.93 3.40e−1 6.46e−2 1.04e−2

err. 2.99e−2 3.67e−3 4.77e−4 7.39e−5 1.17e−05

θ 3.93e−1 2.13e−1 2.05e−1 2.70e−1 2.17e−1

The directions a,b and c are chosen so that a · b = 0 and c = b× a. This example is chosen
because it provides a very simple problem to verify the validity of the theoretical results in
Theorems 5.3, 5.4 and test the accuracy of the elastic PWDG for wave propagation.

Thematerial properties of the medium and the frequency of the wave field f = 0.5z×104

(z ∈ N) are the same as those in the first test problem. The direction of the wave in all cases
is a = ( 1.0√

3
, 1.0√

3
, 1.0√

3
)T . This choice does not coincide with any of the directions of the plane

wave basis functions dl . We define the distance θ between the exact solution direction a and
the closest plane wave propagation direction by

θ = min
1≤l≤p

||a − dl ||2.

The coupling parameter σ is given by (2.5).
Table 3 and Fig. 3 show the errors of numerical solution uh in theFh-norm and the relative

L2−norm with respect to m. A fairly coarse mesh h = 1
4 when κP = 5.35 is used.

Similar to the first test, Fig. 3 also highlights that the convergence order of the approxi-
mations generated by the PWDG method with respect to m turns out to be exponential.

Table 4 shows the errors of numerical solution uh in the Fh-norm and the relative
L2−norm. The results listed in Table 4 indicate that the approximations generated by the
plane wave methods possess high accuracy when the mesh size h decreases.

Figure 4 shows the plots of h-convergence orders of the Fh-norm errors and the rela-
tive L2-norm errors, respectively. The plots highlight regions of high-order convergence for
decreasing h for the PWDG method.
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100.5 100.6 100.7 100.8
10−2

10−1

100

101

102

||| u− uh|||F
h

 vs m

m

|||
 u

− 
u h|||

F h

PWDG
slope =−10.0

100.5 100.6 100.7 100.8
10−5

10−4

10−3

10−2

10−1
err. vs m

m

er
r.

PWDG
slope =−10.0

Fig. 3 Left: |||u − uh |||Fh
vs m. Right: err. vs m

Table 4 Errors of the approximations with respect to h when κP = 5.35 and p = 16

h 1
3

1
4

1
5

1
6

1
7

1
8

|||u − uh |||Fh
1.78e+1 1.02e+1 6.36 4.28 3.04 2.25

err. 8.49e−2 2.99e−2 1.36e−2 7.18e−3 4.21e−3 2.64e−3

10−0.9 10−0.8 10−0.7
100

101

102

h

|||
u−

u h|||
F h

|||u−uh|||F
h

 vs h

PWDG
slope = 2.17

10−0.9 10−0.8 10−0.7
10−3

10−2

10−1

h

er
r.

err. vs h

PWDG
slope = 3.50

Fig. 4 Left : h−convergence in Fh -norm in logarithmic scale. Right: h−convergence in relative L2−norm
in logarithmic scale

6.3 The two-dimensional nonhomogeneous problem

To illustrate the effectiveness of the proposed approach for general nonhomogeneous prob-
lems, we consider the nonhomogeneous elastic equations whose analytical solution is given
by

uex = (x cosy,−y sinx)t . (6.4)

In this example, the source term f does not vanish over the entire computational domain
[0, 1]2. The material properties of the medium are chosen as follow. E = 200 × 10, ν =
0.3, ρ = 78, f = 2z and ω = 4π z (z ∈ N).
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Table 5 Errors of the approximations with respect to h when ω = 16π and q = 3, p = 9

h 1
4

1
6

1
8

1
10

1
12

|||u − uh |||Fh
3.25 6.83e−1 1.40e−1 4.80e−2 2.41e−2

err. 4.60e−2 5.50e−3 1.20e−3 2.44e−4 1.03e−4

10−2 10−1 100
10−2

10−1

100

101

h

|||
u−

u h|||
F h

|||u−uh|||F
h

 vs h

PWDG
slope = 5.51

10−2 10−1 100
10−4

10−3

10−2

10−1

h

er
r.

err. vs h

PWDG
slope = 5.29

Fig. 5 Left : h−convergence in relative Fh−norm in logarithmic scale. Right: h−convergence in relative
L2−norm in logarithmic scale

Table 6 Errors of approximations
with respect to p
(ω = 16π, h = 1/8)

m 2 3 4 5

q = 2 1.93e−2 2.23e−2 2.38e−2 2.39e−2

q = 3 1.40e−2 2.70e−3 7.35e−4 7.75e−4

Table 5 and Fig. 5 show the errors of numerical solution uh in theFh-norm and the relative
L2−norm when h decreases.

Figure 5 highlights regions of high-order convergence for decreasing h for the PWDG–
LSFE.

We can also fix the mesh size h, but increase both p and q . The resulting relative L2 errors
of the approximations generated by the PWDG–LSFE method are listed in Table 6.

It can be seen from the above Table that the errors in L2 relative norm decrease when q
increases for the cases of m = 2, 3, 4, 5, which verifies the validity of the theoretical results
given in Theorem 5.5. Moreover, the optimal value of m is m = 2 (rep. 4) when q = 2 (rep.
q = 3).

Besides, the errors in L2 relative norm almost stagnate for increasing p. This behavior
is not a surprise: as stated in Hu and Yuan (2018), the L2 errors of uh should be mainly
determined by ||u(1) − u(1)

h ||0,� and may decrease slowly when p increases but q is fixed

(unless q also increases), since ||u(1) − u(1)
h ||0,� depends on q , instead of p.

Table 7 and Fig. 6 show the the relative L2-norm errors of the approximations with large
wave numbers generated by the PWDG–LSFE.

Table 7 and Fig. 6 indicate that the approximations generated by the PWDG–LSFE have
high accuracy when ω increases for the case of the fixed value ωh = 2π .
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Table 7 Errors of approximations for the case of ωh = 2π, p = 9, q = 3

ω 4π 12π 20π 28π 36π 44π 52π

err. 3.40e−3 1.00e−3 6.42e−4 2.80e−3 5.60e−4 6.74e−4 8.79e-4

Fig. 6 Err. vs ω
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Table 8 Errors of the approximations with respect to h when ω = 10π, q = 3 and p = 16

h 1
3

1
4

1
5

1
6

1
7

1
8

err. 1.28e−1 2.28e−2 6.18e−3 2.11e−3 8.49e−4 3.86e−4

6.4 The three-dimensional nonhomogeneous problem

In this section, we consider the nonhomogeneous elastic equations whose analytical solution
is given by

uex = (xz cosy,−z siny, xy)t . (6.5)

The frequency of the wave field f and ω are chosen as follows. f = z and ω = 2π z (z ∈ N).
The other material properties of the medium are the same as those in the third test problem.

Table 8 and Fig. 7 show the relative L2-norm errors of the approximations when h
decreases.

Figure 7 highlights regions of high-order convergence for decreasing h for the PWDG–
LSFE.

We can also fix the mesh size h, but increase both p and q . The resulting relative L2 errors
of the approximations generated by the PWDG– method are listed in Table 9.

It can be seen from the above Table that the errors in L2 relative norm decrease when q
increases for the cases of m = 2, 3, 4, 5, which verifies the validity of the theoretical results
given in Theorem 5.4. Moreover, the optimal value of m is m = 3 (rep. 4) when q = 2 (rep.
q = 3).

Table 10 shows the the relative L2-norm errors of the approximations with large wave
numbers generated by the PWDG–LSFE.

Table 10 and Fig. 8 indicate that the approximations generated by the PWDG–LSFE have
high accuracy when ω increases for the case of the fixed value ωh = π .
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Fig. 7 h−convergence in relative
L2−norm in logarithmic scale
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Table 9 Errors of approximations
with respect to p
(ω = 10π, h = 1/4)

m 2 3 4 5

q = 2 6.09e−2 6.34e−2 7.08e−2 7.23e−2

q = 3 7.90e−2 2.28e−2 1.52e−2 1.57e−2

Table 10 Errors of
approximations for the case of
ωh = π, p = 16, q = 2

ω 2π 4π 6π 8π 10π

err. 1.35e−2 1.08e−2 8.27e−3 2.06e−3 1.18e−3

Fig. 8 Err. vs ω
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7 Conclusion

In this paper, combined with local spectral element method, we have extended the PWDG
method to discretize the time-harmonic elastic wave propagation problems, and derived error
estimates of the numerical solutions in two and three dimensions. Numerical results verify
the validity of the theoretical results, and show that the approximate solutions possess high
accuracy.
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