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Abstract
The spectral normof an even-order tensor is defined and investigated.An equivalence between
the spectral norm of tensors and matrices is given. Using derived representations of some
tensor expressions involving the Moore–Penrose inverse, we investigate the perturbation
theory for the Moore–Penrose inverse of tensor via Einstein product. The classical results
derived by Stewart (SIAM Rev 19:634–662, 1977) and Wedin (BIT 13:217–232, 1973)
for the matrix case are extended to even-order tensors. An implementation in the Matlab
programming language is developed and used in deriving appropriate numerical examples.
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1 Introduction

For a positive integer N , let I1, . . . , IN be positive integers. An order N tensor A =
(Ai1i2...iN )1≤i j≤I j , ( j = 1, . . . , N ) is a multidimensional array with I = I1I2 · · · IN entries,
where I1, . . . , IN are positive integers. LetCI1×···×IN (resp.RI1×···×IN ) be the set of the order
N tensors of dimension I1 × · · · × IN over complex numbers C (resp. real numbers R).

The conjugate transposeof a tensorA = (Ai1...iM j1... jN ) ∈ C
I1×···×IM×J1×···×JN is denoted

byA∗ and elementwise defined as (A∗) j1... jN i1...iM = (A)i1...iM j1... jN ∈ C
J1×···×JN×I1×···×IM ,

where the overline means the conjugate operator. When the tensors are defined over R, the
tensor AT satisfying (AT) j1... jN i1...iM = (A)i1...iM j1... jN ∈ C

J1×···×JN×I1×···×IM is called the
transpose of A.

The Einstein product of tensors is defined in Einstein (2007) by the operation ∗N via

(A ∗N B)i1...iN j1... jM =
∑

k1...kN

Ai1...iN k1...kNBk1...kN j1..., jM , (1.1)

where A ∈ C
I1×···×IN×K1×···×KN , B ∈ C

K1×···×KN×J1×···×JM and A ∗N B ∈
C
I1×···×IN×J1×···×JM . The associative law of this tensor product holds. In the above formula,

when B ∈ C
K1×···×KN , then

(A ∗N B)i1i2...iN =
∑

k1,...,kN

Ai1...iN k1...kNBk1...kN ,

where A ∗N B ∈ C
I1×···×IN . When A ∈ C

I1×···×IN and B is a vector b = (bi ) ∈ C
IN , the

product is defined by operation ×N via

(A ×N B)i1i2...iN−1 =
∑

iN

Ai1...iN biN ,

where A ×N B ∈ C
I1×···×IN−1 .

Definition 1.1 (Sun et al. 2016) Let A ∈ C
I1×···×IN×K1×···×KN . The tensor X ∈

C
K1×···×KN×I1×···×IN which satisfies

(1T ) A ∗N X ∗N A = A; (2T ) X ∗N A ∗N X = X ;
(3T ) (A ∗N X )∗ = A ∗N X ; (4T ) (X ∗N A)∗ = X ∗N A

is called the Moore–Penrose inverse ofA, abbreviated by M-P inverse, denoted byA†. If the
equation (i) of the above equations (1T )–(4T ) holds, then X is called an (i)-inverse of A,
denoted by A(i).

For a tensor A ∈ C
I1×···×IN×I1×···×IN , if there exists a tensor X , such that A ∗N X =

X ∗N A = I, then X is called the inverse of A, denoted by A−1. Clearly, if A is invertible,
then A† = A−1.

The Moore–Penrose inverse of matrices and linear operators plays an important role in
theoretical study and numerical analysis in many areas, such as the singular matrix problems,
ill-posed problems, optimization problems, total least-squares problem (Xie et al. 2019;
Zheng et al. 2017), and statistical problems (Ben-Israel and Greville 2003; Cvetkovic-Illic
and Wei 2017; Wang et al. 2018; Wei 2014). As a continuation of these results, operations
with tensors have become increasingly prevalent in recent years (Che andWei 2019; Che et al.
2019; Ding andWei 2016; Harrison and Joseph 2016; Medellin et al. 2016; Qi and Luo 2017;
Wei and Ding 2016). Brazell et al. (2013) introduced the notion of ordinary tensor inverse.
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Sun et al. (2014, 2016) prove the existence and uniqueness of the Moore–Penrose inverse
and {i, j, k}-inverses of even-order tensors with the Einstein product. Panigrahy and Mishra
(2018) and Sun et al. (2014, 2016) defined the Moore–Penrose inverse and {i}-inverses
(i = 1, 2, 3, 4) of even-order tensors with the Einstein product. In addition, the general
solutions of some multilinear systems were given in terms of defined generalized inverses.
A few further characterizations of different generalized inverses of tensors in conjunction
with the new method to compute the Moore–Penrose inverse of tensors were considered
in Behera and Mishra (2017). The weighted Moore–Penrose inverse in tensor spaces was
introduced in Ji and Wei (2017). In addition, a characterization of the least-squares solutions
to a multilinear system as well as the relationship between the weighted minimum-norm
least-squares solution of a multilinear system and the weighted Moore–Penrose inverse of
its coefficient tensor were considered in Ji and Wei (2017). Sun et al. (2018) defined {i}-
inverses for i = 1, 2, 5 and the group inverse of tensors, assuming a general tensor product.
Panigrahy et al. (2018) proved some additional properties of the Moore–Penrose inverse of
tensors via the Einstein product and also derived a few necessary and sufficient conditions
for the reverse-order law for the Moore–Penrose inverse of tensors. Several new sufficient
conditions which ensure the reverse-order law of the weighted Moore–Penrose inverse for
even-order square tensors were presented in Panigrahy and Mishra (2019). Recently, Ji and
Wei (2018) investigated the Drazin inverse of even-order tensors with Einstein product. Liang
and Zheng (2018) defined an iterative algorithm for solving Sylvester tensor equation based
on the Einstein product.

Using another definition of the tensor product, some basic properties for order 2 left
(right) inverse and product of tensorswere given inBu et al. (2014). The generalized inverse of
tensors was established in Jin et al. (2017) using tensor equations and the t-product of tensors.
The definition of generalized tensor function via the tensor singular value decomposition
based on the t-product was introduced in Miao et al. (2019). In addition, the least-squares
solutions of tensor equations as well as an algorithm for generating the Moore–Penrose
inverse of a tensor were proposed in Jin et al. (2017), Shi et al. (2013).

On the other hand, the additive and multiplicative perturbation models have been inves-
tigated frequently during the past decades. For more details, the reader is referred to the
references (Cai et al. 2011; Liu et al. 2008; Meng and Zheng 2010; Stewart 1977; Wedin
1973; Wei and Ling 2010; Wei 1999). The classical results derived by Stewart (1977) and
Wedin (1973) have been improved inLi et al. (2013),Xu et al. (2010b). The acute perturbation
of the group inverse was investigated in Wei (2017). Some results related to the perturbation
of the oblique projectors which include the weighted pseudoinverse were presented in Xu
et al. (2008, 2010a). Some optimal perturbation bounds of the weighted Moore–Penrose
inverse under the weighted unitary invariant norms, the weighted Q-norms and the weighted
F-norms were obtained in Xu et al. (2011). A sharp estimation for the perturbation bounds
of weighted Moore–Penrose inverse was considered in Ma (2018). Meyer (1980) presented
a perturbation formula with application to Markov chains. The authors extended the formula
to the Drazin inverse AD. Two finite-time convergent Zhang neural network models for time-
varying complex matrix Drazin inverse have been presented in Qiao et al. (2018). An explicit
formula for perturbations of an outer inverse under certain conditions was given in Zhang
and Wei (2008). The perturbation analysis for the nearest {1}, {1, i}, and {1, 2, i}-inverses
with respect to the multiplicative perturbation model was considered in Meng et al. (2017).

In addition, the perturbation theory for the tensor eigenvalue and singular value problems
of tensors has been investigated recently. The perturbation bounds of the tensor eigenvalue
and singular value problems of even-order tensors were considered in Che et al. (2016).
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The explicit estimation of the backward error for the largest eigenvalue of an irreducible
nonnegative tensor was given in Li and Ng (2014).

Our intention in the present paper is to extend the results concerning the perturbation of
the Moore–Penrose inverse from the complex matrix space to more general results in the
tensor space. According to this goal, our intention is to extend the classical results derived
in Stewart (1977) and Wedin (1973) for the matrix case to even-order tensors.

The null spaces and the ranges of tensors were introduced in Ji and Wei (2017).

Definition 1.2 (Ji and Wei 2017) For A ∈ C
I1×···×IN×K1×···×KN , the range R(A) and the

null space N (A) of A are defined by

R(A) = {Y ∈ C
I1×···×IN : Y = A ∗N X , X ∈ C

K1×···×KN }
N (A) = {X ∈ C

K1×···×KN : A ∗N X = O},
where O is an appropriate zero tensor.

Definition 1.3 (Orthogonal Projection) The orthogonal projection onto a subspace R(A) is
denoted by PA and defined as

PA = A ∗N A†

Clearly, PA is the Hermitian and idempotent, and R(PA) = R(A). Similarly

RA = A† ∗N A

is the projection onto R(A∗).

Definition 1.4 (Complement of projection) The projection onto R(A)⊥ will be denoted by

P⊥
A ≡ I − PA.

Likewise

R⊥
A ≡ I − RA.

will denote the projection onto R(A∗)⊥.

Main contributions of the manuscript can be summarized as follows.

(1) The spectral norm of a tensor is defined and investigated.
(2) Useful representations of A ∗N A† and I − A ∗N A† are derived.
(3) The perturbation theory for theMoore–Penrose inverse of even-order tensors via Einstein

product is considered using derived representations of some tensor expressions involving
the Moore–Penrose inverse. Therefore, derived results represent the first contribution to
the perturbation of the Moore–Penrose inverse of tensors.

The rest of this paper is organized as follows. The spectral tensor norm is defined and
investigated in Sect. 2. Useful representations of A ∗N A† and I − A ∗N A† are derived
in Sect. 3. Section 4 generalizes some results from the matrix theory to the perturbation
theory for the Moore–Penrose inverse of even-order tensor via Einstein product. Numerical
examples are presented in Sect. 5.
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2 Spectral norm of tensors

To simplify presentation, we use the additional notation

I(N ) = I1 × · · · × IN , I = {I1, . . . , IN },
where I1, . . . , IN are positive integers. Then, the tensorA ∈ C

I1×···×IM×K1×···×KN is denoted
shortly byA ∈ C

I(M)×K(N ). The identity tensor I of the order I(N )× I(N ) tensor is defined
as in Brazell et al. (2013) by

Ii1...iN j1... jN =
N∏

k=1

δik jk ,

where

δi j =
{
1, i = j,
0, i �= j

denotes the Kronecker delta operator.
The Frobenius inner product of two tensors A,B ∈ C

I(N ) is defined as

(A,B) =
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

Ai1i2...iNBi1i2...iN .

If (A,B) = 0, then A is orthogonal to B. The Frobenius norm of A is defined by ‖A‖F =√
(A,A).

A complex (real) tensor of order m dimension n is defined by A = (Ai1...im ), Ai1...im ∈
C(R), where i j = 1, . . . , n for each j = 1, . . . ,m. If x = (x1, . . . , xn)T is an n-dimensional
vector, then xm = x ⊗ x ⊗ · · · ⊗ x is considered as an mth order n-dimensional rank-one
tensor with entries (xm)i1,...,im = xi1 . . . xim , where “⊗” is the Kronecker product of vectors.
Then

Axm =
n∑

i1,i2,...,im=1

Ai1i2...im xi1i2...im

is the tensor product ofA and xm . A tensor–vectormultiplication of a tensorA = (ai1,...,im ) ∈
C
n×···×n of order m dimension n and an n-dimensional vector x = (x1, x2, . . . , xn)T is an

n-dimensional vector Axm−1, whose i th component is equal to

(Axm−1)i =
n∑

i2,...,im=1

ai2...im xi2...im .

The eigenvalue of a tensor was introduced in Qi (2005). A complex number λ is called an
eigenvalue of A and x is an eigenvector of A associated with λ if the equation

(Axm−1)i = λx [m−1], x[m−1] =
(
xm−1
1 , xm−1

2 , . . . , xm−1
n

)
,

is satisfied.
Recently, Liang et al. (2019) proposed a new definition of the eigenvalue of an even-order

square tensor. LetA ∈ C
I1×···×IN×I1×···×IN be given. If a nonzero tensorX ∈ C

I1×···×IN and
a complex number λ satisfy

A ∗N X = λX , (2.1)
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then λ is an eigenvalue of the tensor A and X the eigentensor with respect to λ.
In addition, we found the following definition of the tensor spectral norm from Li (2016).

Definition 2.1 (Li 2016) For a given tensor T ∈ R
I1×I2×···×IN , the spectral norm of T ,

denoted by ‖T ‖σ , is defined as

‖T ‖σ := max
{
〈T , x1 ⊗ x2 ⊗ · · · ⊗ xN 〉 : xk ∈ R

Ik , ‖xk‖F = 1, k = 1, . . . , N
}

,

where ‖x‖F denotes the Frobenius norm of the vector x and x1 ⊗ · · · ⊗ xN means the outer
product of vectors: (x1 ⊗ · · · ⊗ xN )i1,...,iN = (x1)i1 · · · (xN )iN .

Essentially, ‖T ‖σ is the maximal value of the Frobenius inner product between T and the
rank-one tensor x1 ⊗ · · · ⊗ xN whose Frobenius norm is one.

Let the eigenvalues of a complex even-order square tensor are defined as in (2.1). By
λmin(K) and λmax(K), we denote the smallest and largest eigenvalue of a tensor K, respec-
tively. Similarly, μ1(K) stands for the largest singular value of a tensor K.

Lemma 2.1 Let A ∈ C
I(N )×K(N ). Then, the spectral norm of A can be defined as

‖A‖2 = √
λmax (A∗ ∗N A) = μ1(A), (2.2)

where λmax (A∗ ∗N A) denotes the largest eigenvalue of A∗ ∗N A and μ1(A) is the largest
singular value of A.

Proof It is necessary to verify that the definition (2.2) satisfies properties of a norm function.
(1) Clearly, ‖A‖2 ≥ 0, and ‖A‖2 = 0 if and only if A = 0,
(2) The second property of ‖A‖2 can be verified using

‖kA‖2 = √
λmax ((kA)∗ ∗N (kA))

=
√
k2 λmax (A∗ ∗N A)

= |k| μ1(A)

= |k| ‖A‖2.
(3) Since

μ1(A + B) ≤ μ1(A) + μ1(B),

immediately from the definition of the spectral norm it follows that

‖A + B‖2 ≤ ‖A‖2 + ‖B‖2.
Therefore, (2.2) is a valid definition of the matrix norm. ��

Our intention is to determine the spectral norm of a tensor explicitly using the approach
based on the matricization or unfolding. Matricization is the transformation that transforms
a tensor into a matrix. Let I1, . . . , IM ,K1, . . . ,KN be positive integers. Assume that I,K

are positive integers defined by

I = I1I2 · · · IM , K = K1K2 · · ·KN . (2.3)

Denote by Mat(A) the matrix obtained after the matricization

Mat : CI(M)×K(N ) �→ C
I×K,
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which transforms a tensor A ∈ C
I(M)×K(N ) into the matrix A ∈ C

I×K. An arbitrary tensor
A can be unfolded into an appropriate matrix A in different ways.

It is known that the spectral norm of the tensor is bounded by the spectral norm of the
matricized tensor, i.e., ‖Mat(A)‖σ ≥ ‖A‖σ (see, for example, Li 2016).

One approach in the matricization, denoted by ψ : CI(M)×K(N ) �→ C
I×K was proposed

in Liang and Zheng (2018, Definition 2.4) (see also Brazell et al. 2013). The matricization
ψ is defined by

ψ(Ai1,...,iM ,k1,...,kN ) = Aivec(i,I),ivec(k,K),

where i = (i1, . . . , iM )T and

ivec(i, I) = i1 +
M∑

j=2

(i j − 1)
j−1∏

s=1

Is .

To define an effective procedure for the tensor matricization, we use the reshaping oper-
ation denoted as rsh, which was introduced in Panigrahy et al. (2018). Later, we define the
spectral norm of a tensor bymeans of the spectral norm of the reshaped tensor. This operation
can be implemented by means of the standard Matlab function reshape.

Definition 2.2 (Panigrahy et al. 2018) Let I1, . . . IM ,K1, . . .KN be given integers. Assume
that I,K are the integers defined (2.3). The reshaping operation

rsh : CI(M)×K(N ) �→ C
I×K,

transforms a tensor A ∈ C
I(M)×K(N ) into the matrix A ∈ C

I×K using the Matlab function
reshape as follows:

rsh (A) = A = reshape(A, I,K), A ∈ C
I(M)×K(N ), A ∈ C

I×K.

The inverse reshaping is the mapping defined by

rsh−1 : CI×K �→ C
I(M)×K(N ),

rsh−1(A) = A = reshape(A, I1, . . . , IM ,K1, . . . ,KN ), A ∈ C
I×K, A ∈ C

I(M)×K(N ).

The following result from Panigrahy et al. (2018) will be useful.

Lemma 2.2 (Panigrahy et al. 2018) Let A ∈ C
I1×···×IN×K1×···×KN and B ∈

C
K1×···×KN×L1×···×LN be given tensors, integers I,K are computed as in (2.3) and L =

L1L2 · · ·LN . Then
rsh (A ∗N B) = rsh (A) rsh (B) = AB, (2.4)

where A = rsh (A) ∈ C
I×K, B = rsh (B) ∈ C

K×L.

Applying the inverse reshaping operator rsh−1() on both sides in (2.4), it can be concluded
that rsh−1(AB) = rsh−1(A) ∗N rsh−1(B) = A ∗N B.

Now, our intention is to approximate the tensor norm ‖A‖2 by an effective computational
procedure. For this purpose, we propose Algorithm 1 for computing rsh−1(A) in terms of
the Singular Value Decomposition (SVD) of A. Since eigenvalues in Liang et al. (2019) are
defined for even-order square tensors, our further investigationwill be restricted to even-order
tensors.
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Algorithm 1 Computation of rsh−1(A)

Require: Even integer N , integers I1, . . . , IN , K1, . . . ,KN positive integers I and K satisfying (2.3), and
A ∈ C

I×K.
1: Compute Singular Value Decomposition (SVD) of A in the form:

[U , D, V ] = SV D(A) = UDV ∗,

where U ∈ C
I×I and V ∈ C

K×K are unitary matrices and D ∈ C
I×K is diagonal with singular values

of A on the main diagonal.
2: Perform the reshaping operations

rsh−1(U ) = U ∈ C
I(N )×I(N ), rsh−1(V ∗) = V∗ ∈ C

K(N )×K(N ), rsh−1(D) = D ∈ C
I(N )×I(N ).

3: Compute the output

A = U ∗N D ∗N V∗ ∈ C
I(N )×K(N ).

In Lemma 2.3, we show that the tensor A in Algorithm 1 is defined well.

Lemma 2.3 The tensor A in Algorithm 1 is defined well.

Proof Under the assumptions of Algorithm 1, an application of Lemma 2.2 gives

rsh (A) = rsh
(
U ∗N D ∗N V∗)

= rsh (U) rsh (D) rsh
(
V∗)

= UDV ∗

= A,

which confirms A = rsh−1(A). ��
As a consequence of Algorithm 1, Lemma 2.4 shows that the spectral norm is invariant

with respect to the function rsh.

Lemma 2.4 LetA ∈ C
I1×···×IN×K1×···×KN be a given tensor and integers I,K are computed

as in (2.3). Then
‖A‖2 = ‖rsh−1 (A) ‖2 = ‖A‖2, (2.5)

where A ∈ C
I×K.

Proof According to Algorithm 1, the tensor A ∈ C
I1×···×IN×K1×···×KN possesses the same

singular values as the matrix A ∈ C
I×K. ��

Example 2.1 Let A = rand(2, 2, 2, 2) is defined by

A(:, :, 1, 1) =
[
0.8147 0.1270
0.9058 0.9134

]
, A(:, :, 2, 1) =

[
0.6324 0.2785
0.0975 0.5469

]
,

A(:, :, 1, 2) =
[
0.9575 0.1576
0.9649 0.9706

]
, A(:, :, 2, 2) =

[
0.9572 0.8003
0.4854 0.1419

]
,

then

A = rsh−1(A) = reshape(A, 4, 4) =

⎡

⎢⎢⎣

0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 0.9649 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.5469 0.9706 0.1419

⎤

⎥⎥⎦ .
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Simple verification shows that ‖A‖2 = ‖A‖2 = 2.6201.

Various definitions of the tensor rank can be found in the relevant literature. For more
details see Brazell et al. (2013), and Comon et al. (2009). An alternative definition of the
tensor rank was introduced in Panigrahy et al. (2018).

Definition 2.3 (Panigrahy et al. 2018) Let A ∈ C
I(N )×K(N ) and A = reshape (A, I,K) =

rsh(A) ∈ C
I×K are defined as in Algorithm 1. Then, the tensor rank of A is denoted by

rshrank(A) and defined by rshrank(A) = rank(A).

3 Preliminary results

For a ∈ C, let a† = a−1, if a �= 0 and a† = 0, if a = 0. Following this notation, the tensor
D ∈ C

I1×···×IN×I1×···×IN is called diagonal if all its entries are zero except Di1...iN i1...iN , that
is

Di1···iN j1... jN =
{
0, (i1, . . . , iN ) �= ( j1, . . . , jN ),

Di1···iN i1...iN , (i1, . . . , iN ) = ( j1, . . . , jN ),
(3.1)

whereDi1...iN i1...iN is a complex number. Particularly, a diagonal tensor becomes a unit tensor
in this case Di1···iN j1... jN = δi1 j1 · · · δiN jN , where

δlk =
{
1, l = k,

0, l = k

is the Kronecker delta, then D is a unit tensor, denoted by I. It follows from Definition 1.1
that the Moore–Penrose inverse D† ∈ C

I1×···×IN×I1×···×IN of the diagonal tensor defined in
(3.1) is equal to

(D†) j1... jN i1...iN =
{

1
Di1 ...iN j1 ... jN

, Di1...iN j1... jN �= 0,

0, Di1...iN j1... jN = 0.
.

It is easy to see that ifD is a diagonal tensor, thenD∗N D† andD† ∗N D are diagonal tensors,
whose diagonal entries are 1 or 0.

The tensor A ∈ C
I1×···×IN×I1×···×IN is orthogonal if A ∗N A∗ = A∗ ∗N A = I.

The computation of the Moore–Penrose inverse of a tensor was proposed in Brazell et al.
(2013), Sun et al. (2016). This method is restated in Lemma 3.1.

Lemma 3.1 (Brazell et al. 2013; Sun et al. 2016) For a tensorA ∈ C
I(N )×K(N ), the singular

value decomposition (SVD) of A has the form:

A = U ∗N D ∗N V∗, (3.2)

where U ∈ C
I(N )×I(N ) and V ∈ C

K(N )×K(N ) are orthogonal tensors, D ∈ C
I(N )×K(N ) is a

diagonal tensor satisfying

Di1···iN k1...kN =
{
0, (i1, . . . , iN ) �= (k1, . . . , kN ),

μi1...iN , (i1, . . . , iN ) = (k1, . . . , kN ),

wherein μi1...iN are the singular values of A. Then

A† = V ∗N D† ∗N U∗, (3.3)
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where

(D†)k1...kN i1...iN =
{
0, (i1 . . . iN ) �= (k1 . . . kN ),(
μi1...iN

)†
, (i1 . . . iN ) = (k1 . . . kN ),

and

(
μi1...iN

)† =
{
0, μi1...iN = 0,(
μi1...iN

)−1
, μi1...iN �= 0.

An effective algorithm for computing the Moore–Penrose inverse of a tensor in the form
(3.3) was presented in Algorithm 1 fromHuang et al. (2018). To compute theMoore–Penrose
inverse bymeans of (3.3), it is necessary to compute the transpose of a tensor. For this purpose,
we developed the following Algorithm 2.

Algorithm 2 Computation of the tensor transpose AT

Require: Tensor A ∈ C
I1×···×IN×K1×···×KN , where N is a positive integer, integers I1, . . . , IN ,

K1, . . . ,KN integers I and K satisfying (2.3).
1: Compute A = rsh (A) ∈ C

I×K.
2: Compute the matrix transpose AT of A.
3: Perform the reshaping operation and compute the output

AT = rsh−1(AT) ∈ C
K1×···×KN×I1×···×IN .

Example 3.1 This example is aimed to verification of Algorithm 2. Consider A =
rand(2, 2, 2, 2) equal to

A(:, :, 1, 1) =
[
0.8147 0.1270
0.9058 0.9134

]
; A(:, :, 2, 1) =

[
0.6324 0.2785
0.0975 0.5469

]
;

A(:, :, 1, 2) =
[
0.9575 0.1576
0.9649 0.9706

]
; A(:, :, 2, 2) =

[
0.9572 0.8003
0.4854 0.1419

]
.

Then, A = rsh (A, 4, 4) is equal to

A =

⎡

⎢⎢⎣

0.8147 0.6324 0.9575 0.9572
0.9058 0.0975 0.9649 0.4854
0.1270 0.2785 0.1576 0.8003
0.9134 0.5469 0.9706 0.1419

⎤

⎥⎥⎦ .

Furthermore, the results of Algorithm 2 is equal toA = reshape(AT, 2, 2, 2, 2), which gives

AT(:, :, 1, 1) =
[
0.8147 0.9575
0.6324 0.9572

]
; AT(:, :, 2, 1) =

[
0.9058 0.9649
0.0975 0.4854

]
;

AT(:, :, 1, 2) =
[
0.1270 0.1576
0.2785 0.8003

]
; AT(:, :, 2, 2) =

[
0.9134 0.9706
0.5469 0.1419

]
.

(3.4)
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On the other hand, a direct calculation gives

a1111 = 0.8147 = AT
1111; a2111 = 0.9058 = AT

1121;
a1211 = 0.1270 = AT

1112; a2211 = 0.9134 = AT
1122;

a1121 = 0.6324 = AT
2111; a2121 = 0.0975 = AT

2121;
a1221 = 0.2785 = AT

2112; a2221 = 0.5469 = AT
2122;

a1112 = 0.9575 = AT
1211; a2112 = 0.9649 = AT

1221;
a1212 = 0.1576 = AT

1212; a2212 = 0.9706 = AT
1222;

a1122 = 0.9572 = AT
2211; a2122 = 0.4854 = AT

2221;
a1222 = 0.8003 = AT

2212; a2222 = 0.1419 = AT
2222.

Therefore, the result of direct calculation coincides with (3.4).

Lemma 3.2 Let A ∈ C
I(N )×K(N ) be a given tensor, let μi1,··· ,iN be the singular values of A

and νi1,··· ,iL be the nonzero singular values of A. Then

‖A‖2 = μ1(A); ‖A†‖2 = 1

νmin(A)
,

where νmin(A) denotes the smallest nonzero singular value of A.

Proof The identity ‖A‖2 = μ1(A) follows from Lemma 2.1. Since νi1,...,iL are nonzero

singular values of A defined in (3.2), it follows from (3.3) that
(
νi1,··· ,iL

)−1
> 0 are the

nonzero singular values of A†. Accordingly, ‖A†‖2 = μ1(A†) = 1
νmin(A)

. ��

A useful representation for A ∗N A† is derived in Lemma 3.3.

Lemma 3.3 Let A ∈ C
I(N )×K(N ) be an arbitrary tensor and the positive integers I,K are

defined in (2.3). Then

A ∗N A† = UA ∗N rsh−1
([

IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

])
∗N U∗

A. (3.5)

Proof We follow Algorithm 1 from Huang et al. (2018) to define A† and B†. According to
Step 1, it is necessary to reshape A ∈ C

I(N )×K(N ) into a matrix A ∈ C
I×K, where I,K are

defined in (2.3). This transformation is denoted by rsh(A) = A. Step 2 assumes the Singular
Value Decomposition (SVD) of A of the form [UA, DA, VA] = SV D(A), which implies
A = UADAV ∗

A , whereUA ∈ C
I×I and VA ∈ C

K×K are unitary and the matrix DA ∈ C
I×K

is of the diagonal form:

DA =
[

�A OIR×(K−IR)

O(I−IR)×IR O(I−IR)×(K−IR)

]
,

where

�A ∈ C
IR×IR , IR = rshrank(A)

is diagonal with singular values of A on the main diagonal and

OIR×(K−IR ) ∈ C
IR×(K−IR ), O(I−IR )×IR ∈ C

(I−IR )×IR , O(I−IR )×(K−IR ) ∈ C
(I−IR )×(K−IR )
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are appropriate zero blocks. According to Step 3, we perform the reshaping operations:

rsh(UA) = UA ∈ C
I(N )×I(N ), rsh(V ∗

A) = V∗
A ∈ C

K(N )×K(N ), rsh(DA) = DA ∈ C
I(N )×K(N ).

Then, compute

D†
A =

[
�−1

A OIR×(I−IR)

O(K−IR)×IR O(K−IR)×(I−IR)

]
∈ C

K×I

and

D†
A = rsh−1(D†

A) ∈ C
K(N )×I(N ).

According to Step 4 of Algorithm 1 from Huang et al. (2018)

A† = VA ∗N D†
A ∗N U∗

A.

Now, the tensor A possesses the representation:

A = UA ∗N DA ∗N V∗
A.

Later, one can verify

DA ∗N D†
A = rsh−1

([
IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

])
∈ C

I(N )×I(N ),

where IIR×IR is the identity IR × IR matrix. Consequently, A ∗N A† possesses the repre-
sentation (3.5). ��

The result of Proposition 3.1 will be useful.

Proposition 3.1 (Meng and Zheng 2010) Let W ∈ C
n×n be a unitary matrix with the block

form:

W =
[
W11 W12

W21 W22

]
, W11 ∈ C

r×r ,W22 ∈ C
(n−r)×(n−r), 1 ≤ r < n.

Then, ‖W12‖ = ‖W21‖ for any unitarily invariant norm.

4 Main results

For the sake of convenience, we assume that the following condition holds

A, E ∈ C
I(N )×K(N ), B = A + E, rshrank(A) = rshrank(B) = r

� = ‖A†‖2‖E‖2 < 1.
(4.1)

Lemma 4.1 If the Condition (4.1) is satisfied, then

‖B†‖2 ≤ ‖A†‖2
1 − � (4.2)

Proof According to the Lemma 3.2, we get

‖B†‖2 = 1

νmin(A + E)
,
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so
1

‖B†‖2 = νmin(A + E) ≥ νmin(A) − νmin(E) ≥ νmin(A) − μ1(E)

≥ νmin(A) − ‖E‖2
= 1

‖A†‖2 − ‖E‖2.
Then

‖B†‖2 ≤ ‖A†‖2
1 − ‖A†‖2‖E‖2 = ‖A†‖2

1 − � ,

which completes the proof. ��
Next, we give the decomposition of B† − A†.

Theorem 4.1 Let A, E ∈ C
I(N )×K(N ) and B = A + E . Then

B† − A† = −B† ∗N E ∗N A† + B† ∗N (B†)∗ ∗N E∗ ∗N P⊥
A − R⊥

B ∗N E∗ ∗N (A†)∗ ∗N A†.

Proof After some verifications, one can obtain

B† − A† = −B† ∗N E ∗N A† + (B† − A†) + B† ∗N (B − A) ∗N A†

= −B† ∗N E ∗N A† + B† ∗N (I − A ∗N A†) − (I − B† ∗N B) ∗N A†.

According to the properties (3T ) and (1T ) from Definition 1.1, it follows that

A∗ ∗N (I − A ∗N A†) = A∗ − A∗ ∗N (A ∗N A†)∗ = A∗ − (
A ∗N A† ∗N A

)∗ = O,

where O ∈ C
K(N )×I(N ) is an appropriate zero tensor. Consequently

B† ∗N (I − A ∗N A†) = B† ∗N B ∗N B† ∗N (I − A ∗N A†)

= B† ∗N (B ∗N B†)∗ ∗N (I − A ∗N A†)

= B† ∗N (B†)∗∗N (A + E)∗ ∗N (I − A ∗N A†)

= B† ∗N (B†)∗ ∗N E∗ ∗N (I − A ∗N A†).

Analogously, we arrive to

(I − B† ∗N B) ∗N B∗ = O,

which further implies

(I − B† ∗N B) ∗N A† = −(I − B† ∗N B) ∗N E∗ ∗N (A†)∗ ∗N A∗.

The conclusion can be obtained. ��
Lemma 4.2 If O �= P ∈ C

K(N )×K(N ), and P2 = P = P∗, then

‖P‖2 = 1.

Proof Since

‖P‖22 = ‖P∗ ∗N P‖2 = ‖P2‖2 = ‖P‖2,
it follows that

‖P‖2(‖P‖2 − 1) = 0.

Therefore, ‖P‖2 = 1 in the case P �= O. ��
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Theorem 4.2 Let A, E ∈ C
I(N )×K(N ),B = A + E . If the Condition (4.1) is satisfied, then

‖B† − A†‖2
‖A†‖2 ≤

(
1 + 1

1 − � + 1

(1 − �)2

)
� . (4.3)

Proof Since (I − A ∗N A†)2 = (I − A ∗N A†) = (I − A ∗N A†)∗ and (I − B† ∗N B)2 =
(I − B† ∗N B) = (I − B† ∗N B)∗, by Lemma 4.2

‖I − A ∗N A†‖2 = 1, ‖I − B† ∗N B‖2 = 1,

and from Theorem 4.1

‖B† − A†‖2 ≤ (‖A†‖2‖B†‖2 + ‖B†‖22 + ‖A†‖22)‖E‖2.
An application of Lemma 4.1 initiates

‖B† − A†‖2 ≤
(

‖A†‖22
1 − � + ‖A†‖22

(1 − �)2
+ ‖A†‖22

)
‖E‖2.

Furthermore, the inequality (4.3) can be verified taking into account � = ‖A†‖2‖E‖2. ��
Theorem 4.3 If A, E ∈ C

I(N )×K(N ),B = A + E , and rshrank(A) = rshrank(B), then

‖B ∗N B† ∗N (I − A ∗N A†)‖2 = ‖A ∗N A† ∗N (I − B ∗N B†)‖2, (4.4)

where I is the identity I(N ) × I(N ) tensor.

Proof According to Lemma 3.3, it follows that

A ∗N A† = UA ∗N rsh−1
([

IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

])
∗N U∗

A.

Furthermore, using Lemma 2.2 and

I = rsh−1 (II×I) ∈ C
I(N )×I(N ),

it follows that

I − A∗NA† = UA ∗N

(
I − rsh−1

([
IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

]))
∗N U∗

A

= UA ∗N rsh−1
([

OIR×IR OIR×(I−IR)

O(I−IR)×IR I(I−IR)×(I−IR)

])
∗N U∗

A.

Similarly, in view of rshrank(B) = rshrank(A), it follows rank(B) = rank(A), where
rsh(A) = A and rsh(B) = B. The SVD of B is given by [UB , DB , VB ] = SV D(B). Now,
consider the reshaping operations

rsh(UB) = UB ∈ C
I(N )×I(N ), rsh(V ∗

B) = V∗
B ∈ C

K(N )×K(N ),

rsh(DB) = rsh−1
([

�B OIR×(K−IR)

O(I−IR)×IR O(I−IR)×(K−IR)

])
= DB ∈ C

I(N )×I(N ),

where

�B ∈ C
IR×IR , IR = rank(A)
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is diagonal with singular values of B on the main diagonal. This causes

B = UB ∗N DB ∗N V∗
B , B∗NB†

= UB ∗N rsh−1
([

IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

])
∗N U∗

B ,

and further

I − B∗NB† = UB ∗N

(
I − rsh−1

([
IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

]))
∗N U∗

B

= UB ∗N rsh−1
([

OIR×IR OIR×(I−IR)

O(I−IR)×IR I(I−IR)×(I−IR)

])
∗N U∗

B .

Now, observe the tensor products U∗
A ∗N UB and U∗

B ∗N UA. They are also unitary and equal
to

U∗
A ∗N UB = rsh

(
U∗

AUB
) = rsh

([
W11 W12

W21 W22

])

U∗
B ∗N UA = rsh

(
U∗

BUA
) = rsh

([
W ∗

11 W ∗
21

W ∗
12 W ∗

22

])
,

where

W11 ∈ C
IR×IR ,W12 ∈ C

IR×(I−IR),W21 ∈ C
(I−IR)×IR ,W22 ∈ C

(I−IR)×(I−IR),

In addition, it can be verified that ‖·‖2 is a unitary invariant tensor norm (Govaerts and Pryce
1989), which implies in conjunction with Lemma 2.2:
‖B ∗N B† ∗N (I − A ∗N A†)‖2

=
∥∥∥∥rsh

−1
([

IIR×IR OIR×(I−IR )

O(I−IR )×IR O(I−IR )×(I−IR )

] [
W11 W12

W21 W22

] [
OIR×IR OIR×(I−IR )

O(I−IR )×IR I(I−IR )×(I−IR )

])∥∥∥∥
2
.

An application of Lemma 2.4 further implies

‖B ∗N B† ∗N (I − A ∗N A†)‖2
=

∥∥∥∥

[
IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

] [
W11 W12

W21 W22

] [
OIR×IR OIR×(I−IR)

O(I−IR)×IR I(I−IR)×(I−IR)

]∥∥∥∥
2

=
∥∥∥∥

[
O W12

O O

]∥∥∥∥
2
.

Finally, using the result from Govaerts and Pryce (1989), it follows that

‖B ∗N B† ∗N (I − A ∗N A†)‖2 = ‖W12‖2 .

On the other hand, in dual case, it follows that

‖A ∗N A† ∗N (I − B ∗N B†)‖2
=

∥∥∥∥

[
IIR×IR OIR×(I−IR)

O(I−IR)×IR O(I−IR)×(I−IR)

] [
W ∗

11 W ∗
21

W ∗
12 W ∗

22

] [
OIR×IR OIR×(I−IR)

O(I−IR)×IR I(I−IR)×(I−IR)

]∥∥∥∥
2

=
∥∥∥∥

[
O W ∗

21
O O

]∥∥∥∥
2

= ∥∥W ∗
21

∥∥
2 .

The proof can be completed by verifying μ1 (W12) = μ1
(
W∗

21

)
. Indeed, according to

Proposition 3.1, it follows that ‖W12‖2 = ‖W21‖2. The proof can be completed using the
result ‖W21‖2 = ‖W ∗

21‖2 from Govaerts and Pryce (1989). ��
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Corollary 4.1 If A, E ∈ C
I(N )×K(N ), B = A + E , and rshrank(A) = rshrank(B), let

G = B† ∗N (I − A ∗N A†),

then
‖G‖2 ≤ ‖E‖2‖A†‖2‖B†‖2. (4.5)

Proof Clearly, G = B† ∗N B ∗N B† ∗N (I − A ∗N A†). Then

‖G‖2 ≤ ‖B†‖2‖B ∗N B† ∗N (I − A ∗N A†)‖2,
since

B∗ ∗N (I − B ∗N B†) = O,

(I − B ∗N B†)2 = (I − B ∗N B†) = (I − B ∗N B†)∗.

Therefore, ‖I − B ∗N B†‖2 = 1, applying Theorem 4.3, one can obtain

‖B ∗N B† ∗N (I − A ∗N A†)‖2 = ‖A ∗N A† ∗N (I − B ∗N B†)‖2
= ‖(A ∗N A†)∗ ∗N (I − B ∗N B†)‖2
= ‖(A†)∗ ∗N E∗ ∗N (I − B ∗N B†)‖2
≤ ‖(A†)∗ ∗N E∗‖2 = ‖E ∗N A†‖2
≤ ‖E‖2‖A†‖2.

Thus, the statement can be obtained. ��
Theorem 4.4 Let A, E ∈ C

I(N )×K(N ),B = A + E and I,K are defined as in (2.3). If the
Condition (4.1) is satisfied, then

‖B† − A†‖2
‖A†‖2 ≤ k

�
1 − � , (4.6)

where � = ‖A†‖2‖E‖2 and the parameter k is defined as follows:

(1) if rshrank(A) < min(I,K), then k = 1+√
5

2 ;

(2) if rshrank(A) = min(I,K), then k = √
2;

(3) if rshrank(A) = I = K, then k = 1.

Proof Let

F = −B† ∗N E ∗N A†, G = B† ∗N (I − A ∗N A†), H = −(I − B† ∗N B) ∗N A†.

By the Lemma 4.1, we can get

‖F‖2 ≤ �
1 − �‖A†‖2,

‖G‖2 ≤ �
1 − �‖A†‖2,

‖H‖2 ≤ �‖A†‖2,
where � = ‖A†‖2‖E‖2 = ‖(A†)∗‖2‖E∗‖2. Let

α = �
1 − � ,
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then

‖F‖2, ‖G‖2, ‖H‖2 ≤ α‖A†‖2.
(1) Let X ∈ C

I1×···×IN×K1×···×KN , ‖X‖2 = 1, and X = X1 + X2, where

X1 = A ∗N A† ∗N X , X2 = (I − A ∗N A†) ∗N X .

Clearly, X1 and X2 are orthogonal; hence,

1 = ‖X‖22 = ‖X1‖22 + ‖X2‖22.
Therefore, there must be an angle ϕ which makes

cosϕ = ‖X1‖2, sin ϕ = ‖X2‖2.
Then

(B† − A†) ∗N X
= −B† ∗N E ∗N A† ∗N A ∗N A† ∗N X + B† ∗N (I − A ∗N A†) ∗N (I − A ∗N A†) ∗N X

− (I − B† ∗N B) ∗N A† ∗N A ∗N A† ∗N X =
F ∗N X1 + G ∗N X2 + H ∗N X1 ≡ Y1 + Y2 + Y3,

where Y1 = F ∗N X1, Y2 = G ∗N X2, Y3 = H ∗N X1.
Since

(I − B† ∗N B) ∗N B∗ = O.

It is easy to verify that Y3 is orthogonal to Y1 and Y2; therefore

‖(B† − A†) ∗N X‖22 ≤ ‖Y1 + Y2‖22 + ‖Y3‖22
≤ α2‖A†‖22[(‖X1‖2 + ‖X2‖2)2 + ‖X1‖22]
= α2‖A†‖22[(cosϕ + sin ϕ)2 + cos2 ϕ]
= α2‖A†‖22(3 + 2 sin 2ϕ + cos 2ϕ)/2

≤
(
3 + √

5

2

)
α2‖A†‖22.

Therefore

‖B† − A†‖2 = max‖X‖2=1
‖(B† − A†) ∗N X‖2 ≤ 1 + √

5

2
α‖A†‖2.

(2) If rshrank(A) = rshrank(B) = K < I, owing to

B† = (B∗ ∗N B)−1B∗,

then (I − B† ∗N B) = O; therefore, H = O,Y3 = O. If rank(A) = rank(B) = I < K,
owing to

A† = A∗ ∗N (A ∗N A∗)−1,

then (I − A ∗N A†) = O, so G = O,Y2 = O. When one of Y2 or Y3 is the zero tensor

‖(B† − A†) ∗N X‖22 ≤ 2α2‖A†‖22.
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Hence

‖B† − A†‖2 = max‖X‖2=1
‖(B† − A†) ∗N X‖2 ≤ √

2α‖A†‖2.

(3) In the case rshrank(A) = rshrank(B) = I = K, according to (2), we know G = H = O,
so the conclusion is established. ��

Next, we introduce the condition number of the Moore–Penrose inverse for tensor A:

K2(A) = ‖A‖2‖A†‖2.

Theorem 4.5 If the Condition (4.1) is satisfied, then

‖B† − A†‖2
‖A†‖2 ≤ kK2(A)

‖E‖2‖A‖2
1 − K2(A)

‖E‖2‖A‖2
.

Proof The statement can be verified using Theorem 4.4 and the definition of K2(A). ��

Theorem 4.5 shows that the perturbation E of A has little influence on A† when the con-
dition numberK2(A) is small, and when the condition numberK2(A) is large, the influence
of E on the disturbance to A† may be larger.

5 Examples

Example 5.1 This example is aimed to the verification of the inequality (4.2). Let the tensor
A = 103 ∗ rand(2, 2, 2, 2) be defined by

A(:, :, 1, 1) =
[
950.9152 400.0797
722.3485 831.8713

]
, A(:, :, 2, 1) =

[
134.3383 84.2471
60.4668 163.8983

]
,

A(:, :, 1, 2) =
[
324.2199 11.6810
301.7268 539.9051

]
, A(:, :, 2, 2) =

[
95.3727 631.1412
146.5149 859.3204

]
,

and let E = 10−1 ∗ rand(2, 2, 2, 2) be defined by

E(:, :, 1, 1) =
[
0.0974 0.0997
0.0571 0.0554

]
, E(:, :, 2, 1) =

[
0.0515 0.0430
0.0331 0.0492

]
,

E(:, :, 1, 2) =
[
0.0071 0.0065
0.0888 0.0436

]
, E(:, :, 2, 2) =

[
0.0827 0.0613
0.0395 0.0819

]
.

Then, B = A + E is defined by

B(:, :, 1, 1) =
[
951.0126 400.1794
722.4056 831.9267

]
, B(:, :, 2, 1) =

[
134.3899 84.2901
60.4998 163.9475

]
,

B(:, :, 1, 2) =
[
324.2270 11.6875
301.8156 539.9487

]
, B(:, :, 2, 2) =

[
95.4554 631.2026
146.5543 859.4023

]
.
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It holds, rshrank(A) = rshrank(B) = 4. In addition, an application of Huang et al. (2018,
Algorithm 1) gives the Moore–Penrose inverse of A:

A†(:, :, 1, 1) =
[−0.000384784660649 −0.001099286197235
0.013955577455799 −0.001598581983579

]
,

A†(:, :, 2, 1) =
[
0.002737547517780 0.000508206301570

−0.021392949244820 0.001110875409922

]
,

A†(:, :, 1, 2) =
[
0.001227173049100 −0.003076391592687

−0.002071095392062 0.001139922248389

]
,

A†(:, :, 2, 2) =
[−0.001325364668035 0.002294859505387
0.003619787791101 0.000314492021375

]

and the following Moore–Penrose inverse of B:

B†(:, :, 1, 1) =
[−0.000385255308227 −0.001098543826394
0.013953167583606 −0.001598698848909

]
,

B†(:, :, 2, 1) =
[
0.002738190383336 0.000507663916870

−0.021390844989888 0.001111108748350

]
,

B†(:, :, 1, 2) =
[
0.001227624787307 −0.003075755111089

−0.002076686203945 0.001140238650466

]
,

B†(:, :, 2, 2) =
[−0.001325803821792 0.002294485476614
0.003623245688721 0.000314224257971

]
.

In view of (2.5), it is easy to check that the tensor norms are equal to ‖A†‖2 =
0.026095036211067, ‖E‖2 = 0.235145716909881 and � = ‖A†‖2‖E‖2 =
0.006136135997641 < 1. Therefore, Condition (4.1) is satisfied. Then, ‖B†‖2 =
0.026093083833995 and ‖A†‖2

1−� = 0.026256147502919. Hence, the inequality (4.2) in
Lemma 4.1 is verified.

Example 5.2 The tensors in Example 5.1 are invertible. Example 5.2 is aimed to the verifi-
cation of the inequality (4.2) in singular tensor case. To this end, let A, E ∈ R

(2×2)×(2×2)

with

A(:, :, 1, 1) = 102 ·
[
0.985940927109977 1.682512984915278
1.420272484319284 1.962489222569553

]
, A(:, :, 2, 1) =

[
0 0
0 0

]
,

A(:, :, 1, 2) = 102 ·
[
8.929224052859770 5.557379427193866
7.032232245562910 1.844336677576532

]
, A(:, :, 2, 2) =

[
0 0
0 0

]
,

and

E(:, :, 1, 1) =
[
0.055778896675488 0.016620356290215
0.031342898993659 0.062249725927990

]
, E(:, :, 2, 1) =

[
0 0
0 0

]
,

E(:, :, 1, 2) =
[
0.007399476957694 0.040238833269616
0.068409606696201 0.098283520139395

]
, E(:, :, 2, 2) =

[
0 0
0 0

]
.

Then, the tensor B = A + E is defined by

B(:, :, 1, 1) = 102 ·
[
0.986498716076732 1.682679188478180
1.420585913309220 1.963111719828833

]
, B(:, :, 2, 1) =

[
0 0
0 0

]
,

B(:, :, 1, 2) = 102 ·
[
8.929298047629347 5.557781815526563
7.032916341629872 1.845319512777926

]
, B(:, :, 2, 2) =

[
0 0
0 0

]
.
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It holds, rshrank(A) = rshrank(B) = 2. In addition, an application of Huan et al. (2018,
Algorithm 1) gives the following Moore–Penrose inverse of A:

A†(:, :, 1, 1) =
[−0.002139621590719 0.000961949275511

0 0

]
,

A†(:, :, 2, 1) = 10−3 ·
[
0.154116174683625 0.400242571625946

0 0

]
,

A†(:, :, 1, 2) =
[
0.001721913469812 0.000005405961529

0 0

]
,

A†(:, :, 2, 2) =
[
0.004582706318709 −0.000777570778470

0 0

]
.

Similarly

B†(:, :, 1, 1) =
[−0.002139080520305 0.000961905529252

0 0

]
,

B†(:, :, 2, 1) = 10−3 ·
[
0.153469746601847 0.400351263240931

0 0

]
,

B†(:, :, 1, 2) =
[
0.001720928456951 0.000005485433595

0 0

]
,

B†(:, :, 2, 2) =
[
0.004582730894265 −0.000777786686340

0 0

]
.

Following (2.5), it is easy to check ‖A†‖2 = 0.005446932213520,
‖E‖2 = 0.149158220173799 and � = ‖A†‖2‖E‖2 = 8.124547143759799 · 10−4 < 1.

Therefore, Condition (4.1) is satisfied. Then, ‖B†‖2 = 0.005446449437497 and ‖A†‖2
1−� =

0.005451361197625, which confirms the inequality (4.2) in Lemma 4.1.

Example 5.3 This example is a continuation of Example 5.1 to verify the inequality (4.3)
proved in Theorem 4.2. Therefore, for the tensorsA and E defined in Example 5.1, we have

‖B† − A†‖2
‖A†‖2 = 2.834195478378557 · 10−4

and
(
1 + 1

1 − � + 1

(1 − �)2

)
� = 0.018295682536782.

Hence, inequality (4.3) of Theorem 4.2 is valid.

Example 5.4 This example is a continuation of Example 5.2 to verify the inequality (4.3)
proved in Theorem 4.2. Therefore, for the tensorsA and E defined in Example 5.2, we have

‖B† − A†‖2
‖A†‖2 = 2.394253885112045 · 10−4

and
(
1 + 1

1 − � + 1

(1 − �)2

)
� = 0.002435384431426.

Hence, inequality (4.3) of Theorem 4.2 is confirmed.
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Example 5.5 We shall use again the settings of Example 5.2 to verify the validity of equality
(4.4).

After appropriate calculations, one can verify
(
B ∗N B† ∗N (I − A ∗N A†)

)
(:, :, 1, 1) = 10−4

·
[−0.489468003874380 0.346424530042466
0.006594102139740 0.970661633334091

]
,

(
B ∗N B† ∗N (I − A ∗N A†)

)
(:, :, 2, 1) = 10−4

·
[
0.441733836613403 −0.163043151723344
0.084143275517548 −0.629731697791430

]
,

(
B ∗N B† ∗N (I − A ∗N A†)

)
(:, :, 1, 2) = 10−3

·
[
0.035216688972592 −0.046360736953049

−0.013384105875716 −0.105126013940471

]
,

(
B ∗N B† ∗N (I − A ∗N A†)

)
(:, :, 2, 2) = 10−4

[−0.375707154131807 0.341422001841479
0.050538644491456 0.869372625158238

]
.

In addition
(
A ∗N A† ∗N (I − B ∗N B†)

)
(:, :, 1, 1) = 10−4

·
[
0.489668212727348 −0.346613307126986

−0.006685674852000 −0.970692034327758

]
,

(
A ∗N A† ∗N (I − B ∗N B†)

)
(:, :, 2, 1) = 10−4

·
[
0.441825409325317 0.163138141635252

−0.084077978807235 0.629669045010689

]
,

(
A ∗N A† ∗N (I − B ∗N B†)

)
(:, :, 1, 2) = 10−3

·
[−0.035235566680988 0.046380141446686
0.013393604866949 0.105126135280298

]
,

(
A ∗N A† ∗N (I − B ∗N B†)

)
(:, :, 2, 2) = 10−4

[
0.375676753138765 −0.341420788443209

−0.050601297272405 −0.868951121121841

]
.

Hence

‖B ∗N B† ∗N (I − A ∗N A†)‖2 = ‖ (
A ∗N A† ∗N (I − B ∗N B†)

) ‖2
= 2.0813844590544 · 10−4.

Example 5.6 This example is a continuation of Example 5.2 with the aim to verify the validity
of inequality (4.5). It is possible to compute

‖G‖2 = ‖B† ∗N (I − A ∗N A†)‖2 = 1.132716947645736 · 10−6.

In addition, ‖E‖2‖A†‖2‖B†‖2 = 4.424993522104842 ·10−6. Therefore, the inequality (4.5)
is verified.

Example 5.7 In this example, we verify cases (1)–(3) of Theorem 4.4.
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Case (1) The tensors A, E and B are reused from Example 5.2. It can be verified that
rshrank(A) = 2 < 4 = min(I,K). From example 5.4, we have

‖B† − A†‖2
‖A†‖2 = 2.394253885112045 · 10−4

and since � = ‖A†‖2‖E‖2 = 8.124547143759799 · 10−4 (see Example 5.2), it follows

1 + √
5

2
· �
1 − � = 0.001315648246801.

Hence, inequality (4.6) of Theorem 4.4 is valid.
Case (2)We consider the tensorsA, E and B from Example 5.1. It is clear that rshrank(A) =
4 = min(I,K). From Example 5.3, we have

‖B† − A†‖2
‖A†‖2 = 2.834195478378557 · 10−4,

and since � = ‖A†‖2‖E‖2 = 0.006136135997641 (see Example 5.1), we have

√
2 · �

1 − � = 0.008731383706299.

Hence, inequality (4.6) of Theorem 4.4 is valid.
Case (3) We consider the tensors A, E and B from Example 5.1. Then, rshrank(A) = 4 =
I = K. As in the previous case [Case (2)], we have

‖B† − A†‖2
‖A†‖2 = 2.834195478378557 · 10−4,

and

1 · �
1 − � = 0.006174020627866.

Hence, inequality (4.6) of Theorem 4.4 is valid.

6 Concluding remarks

The aim of this paper is to generalize some results about the perturbation theory of the matrix
pseudoinverse to tensors. For this purpose, we derive several useful representations and intro-
duce some notions. The spectral norm of even-order tensors is defined by a computationally
effective definition and investigated. In addition, useful representations of A ∗N A† and
I−A∗N A† are derived. As a result, we explore the perturbation bounds for Moore–Penrose
inverse of tensor via Einstein product. Unlike to so far exploited approaches which were
developed only in the tensor or in the matrix case, our approach assumes an exact transition
from one to another space. In this way, it is possible to extend many of known results from
the matrix case into the multiarray case. The results derived in current research extend the
classical results in the matrix case, derived by Stewart (1977) and Wedin (1973). It is shown
that the influence of the perturbation in the tensors depends on exactly defined condition
number. Illustrative numerical examples also confirm derived theoretical results.

Recently, Ji andWei (2017, 2018) investigated the weightedMoore–Penrose inverses and
the Drazin inverse of even-order tensors with Einstein product. It is natural to investigate
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possible extensions of derived results to the perturbation bounds for the weighted Moore–
Penrose inverses and the Drazin inverse of tensors via Einstein product.
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