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Abstract

This paper deals with two fractional Crank—Nicolson—Galerkin finite element schemes for
coupled time-fractional nonlinear diffusion system. The first scheme is iterative and is based
on Newton’s method, while the other one is a linearized scheme. Existence-uniqueness results
of the fully discrete solution for both schemes are discussed. In addition, a priori bounds
and a priori error estimates are derived for proposed schemes using a new discrete fractional
Gronwall-type inequality. Both the schemes yield O (Ar?) accuracy in time and hence, supe-
rior to O(Ar>~%) accurate L1 scheme existing in the literature. Moreover, three different
numerical examples are provided to illustrate the theoretical estimates .

Keywords Time-fractional diffusion system - Fractional Crank—Nicolson method - Error
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1 Introduction

Time-fractional parabolic partial differential equations (TFPDEs) model many real-world
problems like anomalous diffusion in the transport process, entropy, hydrology, and single-
molecular protein dynamics (Dumitru et al. 2012; Hajipour et al. 2019; Jin et al. 2018; Kou
2008). In this paper, we consider the following coupled time-fractional nonlinear diffusion
system with unknowns u and v.
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Find (u, v) = (u(x, 1), v(x,1)), x € 2 and ¢t > 0, such that

“D¥u — Au= Fi(u,v) in £2x(0,T], (1a)
D% — Av = F(u,v) in 2 x(0,T], (1b)
u(x,t) =v(x,t) =0 on 982 x (0,T], (1c¢)
u(x,00=0, v(x,00=0 in £, (1d)

where £2 is a bounded domain in R? (d = 1,2,3) with smooth boundary 952, T is a
positive constant, and Fj(u, v), F>(u, v) are forcing terms. The following hypotheses are
made throughout the paper on forcing terms Fy, F.

Hl:F :R?> > Ris Lipschitz continuous with |F; (u1, vi) — F;(u2, v2)| < L,-(|u1 —
ur| + vy — v2|) foruy, vi,up, v e R,and L; > 0,i =1, 2.

H2: F; € C3(R?) fori =1, 2.

Here, CDf‘ga denotes the o’" order (0 < a < 1) Caputo fractional derivative of the
function ¢(¢) and it is defined as: (Kilbas et al. 2006):

1 ' 9
CD%(t) = (l_a)/o(z—s)*“ (gis)ds

where I'(-) denotes the Gamma function.
The following relation can be utilized to express Caputo fractional derivatives in terms of
Riemann—Liouville fractional derivatives: (Kilbas et al. 2006)

“Dp(1) = KDY (p(1) — 9(0)), @)

where the Riemann-Liouville fractional derivative ® D¥¢ is defined as:

R na o
Dio(1) := I a) I / (t —s)%p(s)ds.
Note that when ¢(0) = 0, Caputo and Riemann-Liouville fractional derivatives coincide.
Therefore, based on the relation (2), we can also express (la)—(1d) in terms of Riemann—
Liouville fractional derivative.

The above coupled time-fractional nonlinear diffusion system (1a)—(1d) can be considered
as an extension of the scalar time-fractional nonlinear diffusion equation studied by Jin et al.
(2018), Li et al. (2018),Liao et al. (2019), and Liao et al. (2018). Consequently, this problem
can be employed to describe several natural phenomena in engineering, biology, and physics
(Kilbas et al. 2006; Li et al. 2015; Podlubny 1999; West 2007).

There are various papers in the literature which focus on problems involving more than
one unknown function. Sun et al. (2017) and Li et al. (2018) solved the classical coupled
nonlinear Schrédinger system and space-fractional coupled nonlinear Schrédinger system,
respectively, with different numerical techniques. Recently, the nonlocal coupled parabolic
problem was studied by applying classical Crank—Nicolson method in temporal direction
and finite element method (FEM) in the spatial direction (Chaudhary 2018).

The fractional Crank—Nicolson method was first time developed by Dimitrov (2014) for
solving time-fractional diffusion equation. This method is popular for recovering O (Az?)
accuracy in time. Moreover, Gao et al. (2015) applied this method to address other time-
fractional diffusion equations. Furthermore, Wang et al. (2016) solved nonlinear fractional
cable equation using fractional Crank—Nicolson—Galerkin FEM. Later on, Jin et al. (2017)
analyzed this method and obtained O(Ar?) accuracy in time for subdiffusion equation in
case of both smooth and nonsmooth problem data.
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Li et al. (2018) solved nonlinear TFPDEs by L1-Galerkin FEM. Subsequently, Jin et al.
(2018) considered the same nonlinear problem and proved the existence-uniqueness and
regularity of solution at continuous as well as discrete levels. Moreover, they utilized the
L1 method and backward Euler convolution quadrature with FEM to solve the problem. In
these two works, error analysis is done in terms of newly developed fractional Gronwall-
type inequality. It is well known that, for a sufficiently smooth solution, the L1 scheme
is O(Ar?™%) accurate (Lin and Xu 2007) and backward Euler convolution quadrature
[Griinwald—Letnikov (GL) approximation] is O (At) accurate (Podlubny 1999). To recover
0(Ar?) accuracy, Kumar et al. (2018) have solved nonlinear TFPDEs using fractional Crank—
Nicolson—Galerkin FEM. Furthermore, for error analysis, they also established a new discrete
fractional Gronwall-type inequality for backward Euler convolution quadrature.

Motivated by the above-mentioned literature, we solve coupled time-fractional nonlinear
diffusion system by two different fully discrete schemes. The first scheme is based on New-
ton’s method (iterative) and the second scheme is a linearized scheme (noniterative). To the
best of our knowledge, this is the first attempt to consider Galerkin finite element schemes
with fractional Crank—Nicolson method for solving the coupled time-fractional diffusion
system. We study the well-posedness results for iterative and noniterative schemes in detail.
To obtain a priori bound and a priori error estimate for the iterative scheme, we use discrete
fractional Gronwall inequality developed by Kumar et al. (2018). Furthermore, we generalize
the discrete fractional Gronwall inequality (Kumar et al. 2018) to derive these estimates for
the linearized scheme. The generalized Gronwall inequality in this paper can be utilized in
the analysis of other linearized schemes based on backward Euler convolution quadrature.

The rest of the paper is organized as follows. Section 2 presents the fractional
Crank—Nicolson—Galerkin finite element scheme based on Newton’s method and discuss
its well-posedness results and an error estimate. In Sect. 3, we propose another lin-
earized Crank—Nicolson—Galerkin finite element scheme for solving the problem (1a)—(1d).
Existence-uniqueness results are studied, and a priori bound, convergence estimate are
derived in terms of new discrete fractional Gronwall inequality. Section 4 demonstrates the
performance of the given schemes through three numerical examples. Section 5 concludes
the paper.

Throughout the paper, C > 0 denotes a generic constant which can take different values
at different occurrences, but is independent of step size 4 and Az.

2 Fractional Crank-Nicolson-Galerkin finite element scheme based on
Newton’s method

Let 73, be a quasi-uniform shape regular triangulation of domain §2. In addition, let Xj be
the finite-dimensional subspace of HO1 (£2) consisting of continuous functions on closure £2
of £2 which are linear in each triangle 7; € 7; and vanish on 952, that is:

X, ={veC): V|7, is a linear polynomial ¥V 7 € 7, and vjp = 0}.

Let {P,-}f‘i | be the interior vertices of 7;, and ¢; (x) be the pyramid function in X, which
takes the value 1 at each interior vertex but vanishes at other vertices. Then, {¢; (x)}f‘i | form
a basis for the space Xj. Furthermore, assume that 0 = 79 < t; < ... <ty = T be a

given partition of time interval [0, 7] with step length At = % for some positive integer N.
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Based on the discussion in Gao et al. (2015), the following second-order approximation to
the Riemann—Liouville fractional derivative at point (¢, — "‘A’ £28) holds:

Rp% o(ty) = RDf:k%w(t)—i— 0 (ar?), 3)

where § D4, is the discrete fractional differential operator defined as

D%, ¢(t) = At~ Zw(“) (1), “

i=0

and the weights w;“) are given by wfa) = (=1 %&ZH) More details about appli-

cations of the approximation (3) can be found in Gao et al. (2015), Kumar et al. (2018), Liu
et al. (2018), and Wang et al. (2016).

Remark 1 The approximation (3) gives O (At?) convergence order under the following reg-
ularity assumption and certain compatibility conditions (Gao et al. 2015) on the function

@:
¢ € C’[0,T], and ¢(0) =0, ¢;(0) =0, ¢,(0) =0. (&)

In general, for smooth problem data, the exact solution of time-fractional partial differential
equations may be weakly singular near ¢+ = 0. Therefore, straightforward implementation
(without regularity assumption and compatibility conditions) of schemes based on approx-
imation (3) provides O(At) accuracy (Jin et al. 2017). In this work, we obtain O(Az?)
accuracy in time under the regularity assumption and compatibility conditions given in (5)
on the solution (u, v) of the problem (1a)—(1d).

With the above approximation (3) to the Riemann-Liouville fractional derivative in time
and standard Galerkin FEM in space, we present fully discrete fractional Crank—Nicolson—
Galerkin finite element scheme to approximate the solution (u(#,), v(t,)) of problem (la)—
(1d)by (U}, V;'),n =1,2,3, ..., N.For convenience, we set U;Z’a =(1-U;+3U, -1
and V;: Y= (1- %) Vi + %V; 71, then the fractional Crank—Nicolson finite element scheme
is used to seek U}/, V;' € Xy, such that

(®DS, UL, wh) + (VU Vwy) = (FLU,, Vi), wi),  Ywy € Xp,
(BD%, Vi wn) + (V" Vaop) = (F (U, Vi), p), Vo € Xp, (6)
Uy =0, v{ =0.

Observe that, for « = 1, scheme (6) recovers the classical Crank—Nicolson scheme for
the coupled diffusion system. Thus, fractional Crank—Nicolson scheme can be seen as an
extension of classical Crank—Nicolson scheme for TFPDEs.

The discrete fractional operator ¥ DY, can be employed to re-write scheme (6) as follows:

A= w U wi) + (VU Vwg) = (FL (U, Vi), wp) — Zw“” (U} w).
()
A wi (VI op) + (VV V) = (B (U, Vi), on) — Zw(‘” (Vi on).

The fully discrete formulation (6) (or (7)) provides us a system of nonlinear equations. There
are several iterative techniques to deal with the above system of nonlinear equations. In
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particular, we use Newton’s method to solve the system (6) (or (7)). With the help of M-
dimensional basis of X, {¢i}1<i<m, associated with nodes of 7;,, we can write solution
(U}, Vi) of (6) [or (7)] as

Uy = Zﬂ oi. Vh—Zwﬁn for B ¥ € ®

Define 8" = [B], BS, ..., Byl and p™ =[], v3', ..., v}l
Using the value of U;!, V}' from (8) into (7), we get the following nonlinear algebraic
equations:

Hi (", y")y=HuWU;,V;)=0, 1<i<M,

9
Hy(B", y") = Hy (U, Vi) =0, 1<i=<M, ®
where
Hi (U, Vi = At_awéa)(Uﬁ',fbi) + (VU Vi) — (FL (U, V"), ¢i)
n—1
Zw“") Uy, 1),
(10)

Hy (U, V') = At~%w “”(vh ¢i) + (VR Vi) — (B2 (UM, V), )

n—1

—Dé Z w(a) Vh ¢l
Utilizing Newton’s method in (9), the following matrix system is obtained for the correction
term:
B"| _[Al BL||[p"| | H
J|:y” “|Cl Dl||y"| | Hy|’ an

where H1 = [H]], H]z, ey H]M]/, Hz = [HQ], sz,..., HZM]/ and entries of A1 =
Al(MXM)! Bl = Bl(MXM)s Cl= CI(M><M), D1 = Dl(MxM) aregivenby thefollowing:

(Al = W = arwi g g0 + (1= 5 ) (Ver. V)
OF (Unoz noz)

-(1- §)<IT¢” #)
(Bl = W =-(1- z)(W@,@),
i = MECRYD (1 )PRUED,, 4)
(D) = W = A wi (@ 90 + (1= 5) (V6. Vi)

p
-(1- §)<8F2(U§% N, #i)

where 1 <i, I, p <M.
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The matrices A1 and D1 take the similar form as Galerkin matrix for the following semi-linear
elliptic equation:

<M, 'U) + k] (Vus VU) = k2<f(u)s l)), (12)

where ki, k; are positive constants. Therefore, A1 and D1 are sparse matrices. In addition,
itis not difficult to check that B1, C1 are sparse matrices too, and consequently, J is a sparse
matrix. Thus, for a given initial guess and an initial solution, we can solve the above matrix
system using the Sherman—Morrison Woodbury formula and block elimination algorithm
(Chaudhary 2018; Govaerts and Pryce 1990).

Now, in the following, we prove the existence-uniqueness of the fully discrete solution
(U}, V;"). The following proposition is required to prove the existence of solution (U;/, V;")
for the scheme (6) [or (7)].

Proposition 1 (Chaudhary 2018; Thomée 1984) Let H be a finite-dimensional Hilbert space
with scalar product (-, -) and norm | - |. Let S : H — H be a continuous map, such that

(S(w),v) >0 YveH with |v|]=p, p>0.

Then, there exists w € H, such that
S(w) =0 and |w| < p.

Theorem 1 Let U}?, Uk, ..., U;fl and V}?, |/ thfl are given. Then forall1 <n <
N, there exists a unique solution (U}, V') of the problem (6).

Proof We know X, is the finite-dimensional Hilbert space with scalar product (-, -). For
(X,Y) e X, x Xp, let
(X, Y), (X, V) x,xx, = (X, Y) + (X, Y).

Clearly, (Xh x Xp, (-, '>thXh) is the product Hilbert space.
From (7), we have
n—1

(U wn) + A (VU Vwn) — A FL U Vi), wn) + Y wi® (U] wy) =0,
=1
’ (13)

n—1

(Vi on) + A (V V" Vo) — A (FU S ViE), on) + Y wi® (V] aon) = 0.
j=1

Multiplying by (1 — %) in (13) to get

U wn) + (1= 3) A (VU V) = (1= 5 ) ARy (U V) i)

n—1
o . o —
+ (1 - E) Y wi (Ul wi) — 2 Low) =0,
—
J (14)

(V" op) + (1 - %) At(VV Y Vo) — (1 - %) At(F (U, V) on)

n—1
o i o _
+(1=3) Yl v on) = S wn) =0,
Jj=1
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Equations (13) and (14) are equivalent in the sense that the solution of (13) is the solution of
(14) and vice versa.
Define operator G : X; x X;, — Xj x X}, such that
GX, X5 = (G1(X], X5Y), Ga(X*, X5, (15)
where G : X x X; — Xjp and Go @ Xj, x Xj — X, are defined by the following:
(GrX, X3, wr) = (X wn) + (1 - %) A (VX" V)

- (1 2) At (Fr (XY, X509, wy)

n—1 (]6)
( ) w(a) Uh,wl
j=1
(Un 1 >
— S ),
and
(Ga (X, X5%)  wa) = (X3, wa) + (1 - %) A (VX V)
- (1 - %) A1 (Fy (X1, X2)  wn)
n=l (17
+(1- %) W', (V] w)
j=1
o _
- E(V; 1, wa).

Since G| and G, are continuous maps, therefore, G is also continuous. By choosing w; =
X% in Eq. (16), we get

(G (X]X3%) . XP) = (X X7 + (1= 5) A (VX VX

o
- (1 - E) At (Fy (X0 X)X

o (ot) n,o (18)
+(1- E)Z @ i x
j=1
Q-1 .
From the hypothesis H 1, we have
IE(XT X5 < LiIX eI+ 101X 1D + 1F0,0)], for i = 1,2,
which implies that
IF: (X7 X3 < a L+ IXTEN+1X%D, @ >0, i =1,2. 19)
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Using (19) and '™ < 0, 1 < j < nin (I8) to get
o
(G X5 X = 1X]I + (1= 5) A VX2

o
- 1—7) Ar%ar (1 + X" + [ XX
( > 1( X750+ 11X DX 20)

n—1

o
+ (1= 3) 22wl o X = Sop .
j=1

Since (1 — §)Ar*|VX]|| > 0, we write (20) as

o o
G xp, X = (1= (1- E)Az“al)uxg“’“n — (1=3)araa +1x5%

n—

ot w® -1 :
+(1—5)Z AT )P

j=1

In the similar manner, we get the following inequality for G:

o o
(Gax, X5 X5 = (1= (1 - E)At“@)llxg'all - (1-3)aran +1xren

n—
hd w® -1 :
+(1—5)Z 2= SV I,

j=1

Assume that if the following inequalities hold:

(1= (1= 9) ara ) ixpen— (1 5) artar (104 1x521)
n—1

o
+(1=3) X w i - S1wp > o.

j=1

(1= (1=3) ara) nx3=1 = (1= 5) Arax (1 +1X71)

n—1
o i o _
+(1=3) X w2 vl =1 =o.
j=1
then (G; (X%, X3'%), X["*) > Ofori =1, 2.

. o 1 n,o n,o
Now, choosing At* < T Dara) then 3 X, X, such that

R 1 )<(1—§)Af"“1(1—(1—§)

j)Ata (a1 + ap)

n
S w1+ S 1)

Jj=1

(1= (1= §)ara) (- ) T - 105 71) )

e (1 B (1 - g)lAt“(m +a2)) (<1 N %)At"‘@(l B (1 - %)
@ Springer f bMA
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n—1

> w1+ S 1)

j=1

_(1 -(1- %)Mm)((l - ‘;‘)Zl v - fnvh” 1||)>

which implies that (G; (X%, X™%), X!"*) > 0 for i = 1, 2. Therefore, with
1T X5 xyxx, = \/||X?’o{||2 + [IX5|1> = p, we have

(GXTY, X3, (X1, XY N x,xx, = (GuXTY, X5, XP9)
F{Ga(X P X5, XY > 0.

Hence, Proposition 1 guarantees the existence of fully discrete solution (U}, V}'").

Next, we prove the uniqueness of the solution (U,"*, V,"*) for problem (14). Let
U5, Vi) and (U}5", V;5%) be two solutions of problem (14). For simplicity, we denote
U = U;:ia, Vi = V:l’a, U2 th ,and V, = th Then, from (14), we obtain

(U1 = Un i) + (1= 5) AV (U1 = U, V) = (1= ) 417 ((F1 (U, Vi), )
— (Fi(U2, V), wn))
(Vi = Vo, on) + (1= S) A (V(V1 = Vo), Vo) = (1= S) ar*((Fa(Uy, V), wh(>21)
2 2
— (F(Uz, V2), 1)
Setting wy, = Uy — Uy =r, wp, = V1 — Vo = s in (21) and using hypothesis H 1, we obtain
1717 < (1= ) A Ly(lrll + sl (22)

Isi? < (1 - $) At LIl + lIsID s ]l- (23)
Adding (22) and (23), we get

(1-g)ar

2 2
+sl1* <
711~ + sl < 5

(GL1+ LI + (L1 +3L2)s1P).

Taking Ar® < 1 sufficiently small, such that (1 DA ax{(BL1+ L), (L +3L2)}) >
0, we get

1% + lls1* <
This completes the proof. O

2.1 Error analysis

Here, we derive a priori bound and a priori error estimate for the fully discrete scheme (6).
In this regard, we first recall some known results.

Lemma 1 (Kumar et al. 2018) Let {a", b"| n > 0} be nonnegative sequences and (1 and
2 be nonnegative constants. For a® =0 and

RDA,a <pid" + pad" 40", n>1, 24
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there exists a positive constant At*, such that, when At < Ar*,

o

t .
2<L max o' ) Eg2r(@putf), 1=n <N,

o 0<i<n

a n

IA

where Eq(2)=)_72, F(lzf]]a) is the Mittag—Leffler function and jn = pu1 + 2.

Lemma 2 (Kumar et al. 2018) For any sequence {ek},](\’:0 C X, the following inequality
holds:

o o 1
(*pget, (1~ 5) ek + ECH> >~ Rpe k|2, for 1<k <N. (25)
In the following theorem, we provide a priori bound for the fully discrete solution (Uj;, V}').
Theorem 2 Let (U}, V') be the solution of fully discrete scheme (6). Then, there exists a
positive constant At*, such that when At < At*, the solution (U}, V}') satisfies

1L+ IV < C, (26)
wheren = 1,2, ..., N and C is a positive constant independent of h and At.
Proof From (6), we have
(RD%, U, wi) + (VU V) = (FL (U, VP, wi), Ywy € X (27)

Setting wy, = U, in (27) to obtain

1

EDS,Ur, Ur*)y + VU 12 < ~(ILF1 U, VO + 108 12). (28)

(S}

Using (19) in (28) to get
(RDS, UL, UMY+ IVUP P < C(A+ MU+ 1V D2+ 100 12). (29)
For a, b > 0, using the fact (a + b)2 < 2(612 + b2) in (29), we have
(EDS,Ur, UMy < C(1L+ U+ 1V)1P). (30)
Using Lemma 2 in (30), we have
DGO < C(L4+ U1 + 1V, 1%). 31
Similarly, the estimate for V' is given by
RDSGAVEIZ < U+ 11V 1% + 107 )12). (32)
Adding (31) and (32) to get
RDSG AU +1Vi» < C(L+ 10712+ 1V 1)
o\2
=c(1+ (=3 AU + v 33)
o\2 _ _
+ (5 AU+ 1)

Using Lemma 1 in (33), one can find a positive constant Ar*, such that when At < Ar*,
then

IURIZ+1IVEI* < C,
U7+ IV < C.

This completes the proof. O
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Next, we derive the error estimate for the scheme (6). Direct comparison between u(x, t,) =
u"(x) and U}, v(x, t;) = v"(x) and V;' may not yield optimal convergence. Therefore, we
need to define Ritz projection R, : HO1 (£2) — X, which satisfies (Thomée 1984):

(Vw, Vop) = (VRyw, Vug), Yw € H}(2), vy € X (34)

We now mention the following approximation results for R, which is significant in the
derivation of a priori error estimate.

Theorem 3 (Rannacher and Scott 1982) There exists a positive constant C, independent of
h, such that

lw— Rywl; <Ch'w|;, Ywe H NH}, j=0,1i=1,2. (35)
Using an intermediate projection R;,, we can write the error as follows:

u"(x) - U} =u" = U = " — Rpu") + (Rpu" — U}Y) = py, + 67,
VI(x) — Vi =0t =V = (0" = Rpv") + (RpV" — V) = o), + 65,

In the following theorem, we give the detailed proof of a priori error estimate for the fully
discrete scheme (6).

Theorem 4 Let (u", v") be the solution of (1a)~(1d) and (U}, V}') be the solution of fully
discrete scheme (6). Then, there exists a positive constant At*, such that when At < At*,
the solution (U}, V) satisfies

lu" — URll + 0" = Vil < C(Ar* + h?), (36)
wheren = 1,2, ..., N and C is a positive constant independent of h and At.

Proof From (1a)—(1b), it is easy to see that the exact solution (u", v") satisfies the following
equations with truncation errors EY, Ej:

RDZIu” —Au"% = Fi (u"’a, Un’a) + ET, 37
RDZIU" — AT =F, (u"‘a, U"‘a) + Ef, (38)

where E and Ej are given by

—CE —
Ef = RDgGu" = D%, et By (w0 ) < R v,
2
- ¢
Ey = RD3v" — RDG, v+ B3 ,0"77) = By, v™).
2

Moreover

o

IETI < 17 DG u" — KDY, ul+ 1F1("" %, 0" ) = Fy ™, v"*)]],
: (39)

4

R R — _a
IES| < 1¥DGv" = DG, vl + IR0, 0" %) = B, ™).
-7

Using (3), hypothesis H 1, and simple application of Taylor expansion in (39), errors are
bounded by

IE| < C(Ar?), |E3| < C(Af?). (40)
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Furthermore, for any wy, € X}, the estimate for 6}, is given by
(®DS, 01, wa) + (VOY, Vwy) = (XD, Ry, wy) + (VRuu™®, Vwy,)
— (RDS, U, wy) — (VU Vwy).
Based on (34), (6), and (37), we get

(RDS, 07, wh) + (VO;*, Vwy) = (RDY (Rpu™ — u™), wy) + (V@™ — u"~7), VUil
+ (F ™, ") — Fy UM, V), wh) + (ET, wy).

Setting wy, = 67;% in (41) to get

1 1 1 _a
IRDS, ot 117 + Eue?,;“nz + S IV = 2

=3
Ly 2 Ly
o (™ = U+ ™ = Vi) + 261

1 1
+5||E?||2 + 5||01’,;“||2

R na pn n,a
("Dp 01, 01 ) =

=< <% + 1) ||49f’;l°‘||2 +2L,4 (||9f1;“||2 + ”pfi,a”z I ”951},101”2 i ||P§'i1a||2)
JF%HRD‘LP?;,II2 + %IIV(M”’“ —u" )2 + %IIE?II? (42)

Note that
1 D&l < 17 D%,pT, = *Dj_ punll +1%Df;_, punll = CA2+ 1), 43

and
1,
n—-% _  na oy o " 2

V@ =f —ur ) = (1-3) (5) ar /, AV (s)lds < €L
Using (40), (43), and (44) in (42), we get

RDSNORI% < (SLy +2) 101512 + 4L 0517 + C (AL + ). (45)
Similarly, we can obtain the estimate for 65,

RDS 63,17 < (SLa + 2) 16252 1% + 4L 1611 + C (A + h?). (46)

Adding (45) and (46) yields
R DS 107, 1+ 165,11%) < (SL1 4+ 4Ly +2)1107% 1
F@Ly + 5Ly + 2110517 + C (A2 + h?)*.
Next, we have
RS (16817 + 165, 1%) < s (167,117 + 1163, 1%)
n—1,2 n—1,2 2 h2 2 (47)
+ wa (N0 1+ 1105 12) + c (A + r?)
where
2
i =2(1-3) max{(SLi +4L2 +2), 4L1 +5L2 +2)].

2
g = %max {(5L1 4Ly +2), 4L; + 5L, +2)}.
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Using Lemma 1 in (47), one can find a positive constant A¢*, such that, when Ar < Ar*,
then
2
17517 + 165,17 < C (AP + h2)°,
163,11 + 163,11 < C(AF* + h?).

Now, an application of triangular inequality and Theorem 3 completes the proof of Theorem
4. o

3 Linearized Fractional Crank-Nicolson-Galerkin finite element scheme

A disadvantage of the scheme (6) is that it yields a nonlinear system of equations at each
time level. To solve such system of equations, we need an iterative method. Thus, to avoid
iterations at each time step, we propose a new linearized fractional Crank—Nicolson—Galerkin
finite element scheme in which the forcing terms F, F; are obtained by extrapolation from
W=, v and (U2, V). Precisely, we use U = (2 — $)U ' — (1 - HUp?
and V" = 2 -9V (1 - HU P forn =2,3,...,N.

Now the noniterative scheme is: to find U}/, V;' € Xj, such thatforall 1 <n < N:

(D%, UR wi) + (VU Vwg) = (FL (U, Vi), wp), - Ywy € X,

o (48)
(EDS, Vi wn) + (VV Vaon) = (Fa (U, V"), on), Yoo € Xn,

with

(BDS,UL, wi) + (VU V) = (FL(UP, VD) + F (U, VO — UP), wy)
+ (Fo (UL, VOV = VO, wh), Yy € Xp,
(RD%, V! wn) + (VV*, Vo) = (P (U, V) + Fou (U, VUL = UR), wy) (49)
+ (P (UL, VYV, = VD), wn), Vo € Xy,
Uul=0, v{=0,

where Fiu(U;?v Vl?) = dFia(Z’v)|<u,u):(U,9,v,?) and Fiv(U;?’ V}?) = dﬂéﬁ’v)|(u,u):(u,?,v,?) for
i=1,2.

After using the value of the discrete fractional differential operator RDZ;» it can be
observed that the coefficient matrix (Galerkin matrix) corresponding to the linear system
(48) is positive definite. Therefore, the existence-uniqueness of the solution (U}, V}*) for the
above linearized scheme for n > 2 follows immediately. By the simple application of Propo-
sition 1, the existence-uniqueness of solution (U ,:, Vhl) for the system (49) can be obtained
in a similar manner as the existence-uniqueness for the solution (U;}, V}') of the Scheme (6).

3.1 Error analysis

In this part, we provide a priori bound and convergence estimates for the new linearized
fractional Crank—Nicolson—Galerkin finite element scheme (48)—(49). For this purpose, we
first need to generalize the fractional Gronwall-type inequality given in Lemma 1. We also
require the following results for the generalization of the fractional Gronwall-type inequality.
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Define g\ = Y ow, @ then g(a) (() and w(a) gl.(a) (“) forl <i < n,

1
where w( ) are defined in (4) Since weights w possess the followmg propertles

1

oo
w(()a) =1, —-1< wga) < wg)‘) <w® <. <0, Zwi(a) =0; (50)

therefore, .(i) > ¢@ fori > 1. Using the definition of g,(,a), we can re-write (4) as follows:
gl 1 gl g
n
D% 0t = A" (8 = 8 ) 9ltn-i) + A8 00, (51)

i=1

If ¢(0) = 0, then, from (51), we get
RD% () = A1 Z 2\ 8p(1), (52)

where §¢(t;) = ¢(t;)) —@(ti—))Vi=1,2,...,n

Lemma 3 (Kumar et al. 2018) Consider the sequence {¢,} given by

n

=1 ¢, = Z (g,(a) (a)) On—i, n>1. (53)

i=1

Then, {¢,} satisfies the following properties:

i) 0<¢n<l. Z«pntg“”— L 1<j<n, (54)
1 < n*
i) — i< =, 55
(ii) Fa;m S Fa¥e (55)
n—1 nka
. .(kfl)a 56
) e r T k= D) §¢ i =T +ka) (°6)
wherek =1,2,....
Lemma4 (Kumar et al. 2018) Consider the matrix
0 ¢1 ¢n—2 ¢n—l
0 0 ¢n—3 ¢n—2
W=2uAt* |+ © . : ; . (57)
0 0 0 o1
0 0 0 0

nxn
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Then, W satisfies the following properties:
G wl =0, I>n,
1
.. k k k k
(i) Whe < m[ﬂf(a)m,‘f) L QU (@)pty_ S, .o, R ()t T,
k=0,1,2,...,
l n—1
i)y Y Wre=>Y" Wre < [E,QI(@)ut!), Ea QI (@)pty ). ..., E«I (@)utf)]',
k=0 k=0
[ >n,

wheree =[1,1,..,1] € R".

Now, we state, with proof, the fractional Gronwall-type inequality which is relevant in the
analysis of linearized-type fully discrete schemes for TFPDEs.

Lemma5 Let {a"| n > —1} and {b"| n > 0} be nonnegative sequences with al=a"=0
and pn; (i =1, 2,3) be nonnegative constants. For
Rp%,a' < wia' + paa® + o',
and
RD“A,a" < pia" + p,za"fl + ,u3a"72 +b", n>2, (58)

there exists a positive constant At*, such that, when At < At*,

o

t .
at < z(i max b’)Ea(zr(a)mg), l<n<N, (59)

o 0<i<n

where E, (z):Z?OZO mlzf]]a) is the Mittag—Leffler function and . = juy + 52 + a(zl’fa).

Proof From the definition of discrete fractional differential operator (52), we re-write (58)
as

i
Y g sal < At (uia' + paa’ ! + pza’T?) + Arb (60)
j=1

Multiplying by ¢,,—; in (60), and taking sum for i from 1 to n to get

n i n n
Db g dal < MY GuoiGua +paa T+ pza’ ) + A% Y guib
i=1 j=1 i=1 i=1

(61)

Using properties (54) and (55) of sequence {¢,} from Lemma 3, we get

n i n n n
> o el = Y507 S il = Yl =,
i=1 j=1 j=1 i=j j=1

and

o

n n
i ; nAt)“ .t .
At? E ¢u_ib' < At* max b' E Gu_i < (nA1) max b' < 2 max b'.
—t 1<i<n 1 o 1<i<n o 0<i<n
1= 1=
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For convenience, set ¥, = % maxo<;<n bi. Also note that ¥, < W, forn > k > 1, then we
have

n—1 n n
a" < 2W, + 241" (m > u—id' +pa)y u-ia' !+ Z¢n,~a"—2> Lozl
i=1 i=2 i=3

(62)
of 1
when At < bR
Let V = [a",a" ), ..., a'l; then, we can write (62) in a vector form by
V< (Wi + paWa + u3Wa)V + 2, (63)
where
[0 o1 ¢2 -+ a2 Puo1]
0 0 ¢1 ¢n—3 ¢n—2
Wy=2A | 1 : :
0 0 0 - ¢ 033
o o0 o0 --- 0 b1
Lo o o - 0 0 1,
[0 ¢o 1 -+ Fu3 Pu2]
0 0 ¢O e ¢n74 ¢n73
Wo=2a | L et :
0O 0 0 - ¢ ®1
o o o ... 0 b0
Lo o o0 -- 0 0 | nxn
and
[0 0 ¢0 ce ¢n—4 ¢n—3 ]
0 0 0 T ¢n—5 ¢’n—4
YY)
0O 0 O 0 o)
oo o --- 0 0
L0 0 0 - 0 0 | axn
From the definition of {¢,}, one can easily obtain
¢nfk = 7¢n for k = 1, 2.
@ _ (@
(gk—l 8k )
Thus, we get
1
WoV < —WV and WV < ——W, V. (64)
o a(l — )

Using (64) in (63), we have

2
V< <m+&+L> WiV + 20,6 = WV +2We,
o

a(l — )
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where W is defined in (57) with u = 1 + &2 + a(zl“fa).
Furthermore

1
V < WV +2W,e < W(WV +2W,e) + 2W,e = W2V + 2, Z Wke

k=0
n—1
<. =WV 29, ) Whe
k=0
Using the Lemma 4, we obtain (59) and this completes the proof of Lemma 5. O

Theorem 5 Let (U, V}') be the solution of fully discrete scheme (48)—(49). Then, there exists
a positive constant At*, such that when At < At*, the solution (U;ll, V,;’) satisfies

U1+ 1Vl < C, (65)
wheren = 1,2, ..., N and C is a positive constant independent of h and At.

Proof First, we consider (49) which represents the case n = 1 of the linearized scheme.
Similar to the proof of Theorem 2, we have the following estimate for the solution (U 1 Vhl ):

DS UM+ 1P < c(U+ 11U + 1viHP). (66)

Using the same argument as above, we can further derive the following estimate for the
solution (U}, V) of the linearized scheme (48) which represents the case n > 2:

D% ORI+ 1V = € (14 AURIE + 1V + AU 12+ vt 1R)
67)
+ U+ V2P for 0= 2.

With an application of Lemma 5, there exists a positive constant Ar*, such that when Ar <
At*, then

IU+ IV <C for 1 <n<N.

This completes the proof. O

Theorem 6 Let (u",v") be the solution of (1a)-(1d) and (U, V}') be the solution of fully
discrete scheme (48)—(49) Then, there exists a positive constant At*, such that when At <
At*, the solution (Uy), V})) satisfies

lu" — Ul + 0" = Vil < C(Ar* + h?), (68)
wheren = 1,2, ..., N and C is a positive constant independent of h and At.

Proof First, we consider (49) which is the case for n = 1. From (1a)—(1b), we have

RDOA‘,ul —Au'"% = F (uo, vO) + Flu (uo, UO) (ul’“ - uo) + Fly (uo, UO) (vl’o‘ - vo) + E},
RD"A‘IU1 Y VTR S o (uo, vo) + Py, (uo, vo) (ul‘“ — uo) + Py, (uO, UO) (vl‘“ — vo) + Ezl,
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where errors E 11 and Ezl are given by

Ej = *Dju' — RD‘ZZF%M + R0 - (Fl (. 0%) + Fu, (u®,2°) (u“% - uo)

P (00 017F = 0) 11 (0 0) + P (0°) (15 =)
+ Fio (,09) (vl_% B vO) B (Fl(uo’ V) + Fru @ o) @™ —u?

+ Fry (10, 0°) (0" = 09) )

£ = *Dg0" = *0g vt B (w70 E) = (a0 4 P o)t E )

+ Fay (u%,0°) (”1_% - UO)) + F> (1%, 0°) + Fay (u°,0°) (u]_% - uo)
+ P (u0,00) (7% =) = (B2 (. 0) o (0) (= )
+ P, (uo’ UO) (Ul,a _ UO) )
Using (3), hypothesis H1, H2, and Taylor expansion in (69), errors are bounded by
IEL] < € (A%), E3) < C(Ar%).

Similar to the proof of Theorem 4, we can get the following estimate for Gllh, Gzlh:

R 1% 12 12 o\? * Aok 12 12
D 4 (101,117 + 11602, 117) = (1= =) B+4CH +4Cy™) IO, 17 + 185,17

At( 1h 2h ) ( 2) 0 0 1h 2h (70)
+C(A? + 1),

where C5 = max({| F14(0, 0)[, | F1,(0, 0)|*} and C5* = max{| F2, (0, 0)[*, | F2,(0, 0)[*}.
Next, for case n > 2, we have

Rpo .n n—% -n,a -n,a n
Dyu" — Au""2 = Fy(u™™, v"%) + EY,

Rps v — AV'™% = Fy@™®, ™) + E5,
where E and Ej are given by
Ef = fDju" = FDG, u+ P "3 V"I = Fy Gt o),
Ef = RDpg " — RDZ,ni%v + RW' 20T - B@, ).
Again, using (3), hypothesis H 1, and Taylor expansion to get
IET] < C(Ar), |IE3]| < C(Ar).

Similar to the proof of Theorem 4, we can obtain the following estimate for th, th for
n>2:

RS (167,117 4+ 165, 17) < 1 (167, 1% + 165, 11) + a1 1% + 165 1%

(71
- - 2
+ s (167, 217 + 163, 217 + € (A® + %),

where
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Table 1 LZ(Q) errors and
convergence rates in the spatial
direction for the scheme (6) for
Example 1

Table2 L2(£2) errors and
convergence rates in the spatial
direction for the scheme
(48)—(49) for Example 1

h IV — UVl 2o Rate Iy = VN2 Rate
a=04

2% 2.2408e—1 - 5.4973e—2 -

3 5857602 19356 1.4257e—2 1.9471
3 147722 1.9875  3.5702e—3 1.9976
35 3.7009%-3 1.9969  8.9301e—4 1.9993
a=0.6

2‘7 2.2345e—1 - 5.4518e—2 -

2% 5.8280e—2 1.9388  1.3943e—2 1.9672
3 146922 1.9880  3.4888¢—3 1.9988
2% 3.6806e—3 1.9970  8.7250e—4 1.9995
h Nul¥ — U,{"uLz(m Rate o — vhf\’an(m Rate
a=04

2% 2.2408e—1 - 5.4974e—2 -

3 5.8576e-2 1.9356  1.4258¢—2 1.9470
3 147722 1.9875  3.5709¢e—3 1.9974
2% 3.7010e—3 1.9969  8.9377c—4 1.9983
a=0.6

ZLZ 2.2345¢—1 - 5.4519e—2 -

3 5.8280e-2 1.9388  1.3944e—2 1.9671
3 146922 1.9880  3.4892¢—3 1.9986
z% 3.6806e—3 1.9970  8.7296e—4 1.9989

2
(1 :2(1 —%) max (L1 +2, Ly + 2},

j1s = max {2 (%)2 (L +2)+8 (2 - %)2 (L + Lo),

2(%)2(L2+2)+8<2— %)2@1 +Lz)],

u3=8(1—%)2(L1+L2).

Using Lemma 5 in (70) and (71), there exists a positive constant Ar*, such that when Ar <

At*, then

167,11+ 165,11 < C (A% + k).
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Table 3 LZ(Q) errors and

N N N N
convergence rates in the temporal At ™ = U, ”L2(9) Rate ™ =V, ”L2(9) Rate
direction for the scheme (6) for 04
Example 1 o="0
2% 2.8865¢—3 - 3.2781e—3 -
2i4 7.2523e—4 1.9928  8.2436e—4 1.9915
2% 1.8186e—4 1.9956  2.0679¢—4 1.9951
2‘7 4.5623e—5 1.9950  5.1814e—5 1.9968
a=0.6
2‘7 4.6949e—3 - 3.5901e—3 -
2L4 1.1795¢—3 1.9930  8.9945¢—4 1.9969
2% 2.9569¢—4 1.9960  2.2520e—4 1.9978
2% 7.4116e—5 1.9962  5.6369¢e—5 1.9982
Table4 L2(£2) errors and N N N N
convergence rates in the temporal At ™ = U, ”LZ(Q) Rate ™ =V ”LZ(Q) Rate
direction for the scheme —04
(48)—(49) for Example 1 o="0
2‘7 1.2402e—2 - 1.1390e—2 -
2i4 3.8418e—3 1.6907  3.5514e—3 1.6813
2% 1.0544¢—3 1.8654  9.8720e—4 1.8469
z‘fé 2.7358e—4 1.9463  2.5770e—4 1.9377
a=0.6
2% 1.0290e—2 - 9.1076¢—3 -
2L4 3.0423¢—3 1.7581  2.6875¢—3 1.7608
2% 8.1249¢—4 1.9047  7.2287e—4 1.8945
2% 2.0806e—4 1.9653  1.8564e—4 1.9612

Now, an application of triangular inequality and Theorem 3 completes the proof of Theorem
6. O

4 Numerical examples

In this section, we test the computational efficiency and numerical accuracy of proposed
schemes (6) and (48)—(49) by three numerical examples to verify theoretical estimates. For
the one-dimensional problem, we consider the spatial domain £2 = (0, 1) and for the two-
dimensional problem, we take £2 = (0, 1) x (0, 1). In Newton’s method, tolerance is taken
to be € = 10~7. The errors and convergence rates are calculated in L2(£2) norm at final time
level T for different values of «. All numerical experiments are performed on a Windows
10, 64-bit operating system with 8 GB RAM and Intel(R) Core 3.41 GHz processor using
the software MATLAB.
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Table 5 LZ(Q) errors and
convergence rates in the spatial
direction for the scheme (6) for
Example 2

Table 6 L2(S2) errors and
convergence rates in the spatial
direction for the scheme
(48)—(49) for Example 2

Table7 L2(£2) errors and
convergence rates in the temporal
direction for the scheme (6) for
Example 2

he N 0N Rae Iy = VN2 Rate
a=04

2% 3.1307e—1 - 9.7201e—2 -

2% 1.0164e—1 1.6230  2.6594e—2 1.8699
2i4 2.7265e—2 1.8983  6.8114e—3 1.9651
2% 6.9405e—3 1.9740  1.7137e—3 1.9908
a=0.6

2‘7 3.1232e—1 - 9.5789¢—2 -

2% 1.0125e—1 1.6250  2.6103e—2 1.8756
2%‘ 2.7146e—2 1.8992  6.6779e—3 1.9668
2% 6.9090e—3 19742  1.6797e—3 1.9912
h Nu — U}L\’an(m Rate o — vhi\’an(m Rate
a =04

2‘7 3.1307e—1 - 9.7201e—2 -

2% 1.0164e—1 1.6230  2.6594e—2 1.8699
2%‘ 2.7266e—2 1.8983  6.8117e—3 1.9650
2% 6.9406e—3 1.9739  1.7140e—3 1.9906
a =0.6

2% 3.1232e—1 - 9.5790e—2 -

2% 1.0125e—1 1.6250  2.6103e—2 1.8756
2i4 2.7146e—2 1.8992  6.6781e—3 1.9667
2% 6.9091e—3 19742 1.6799e—3 1.9910
At uN UVl 2p)  Rate W =Vl 2 Rate
a =04

2% 1.4112e—2 - 2.5400e—2 -

2% 3.6367e—3 1.9562  6.7323e—3 1.9156
2% 9.3715e—4 1.9563  1.7332e—3 1.9577
2% 2.5236e—4 1.8928  4.4323e—4 1.9673
a=0.6

2% 1.8858e—2 - 3.4166e—2 -

2% 4.8083e—3 1.9716  8.9212e—3 1.9373
2%‘ 1.2285¢—3 1.9686  2.2774e—3 1.9699
2% 3.2488e—4 1.9190  5.7864e—4 1.9766
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Table8 L2-errors and
convergence rates in the temporal
direction for the scheme
(48)—(49) for Example 2

Table 9 L2(S2) errors and
convergence rates in the spatial
direction for the scheme (6) for
Example 3

@ Springer f bMA

At N UVl 2 o) Rate Iy = VN2 Rate
a=04

2% 1.7874e—2 - 3.7925¢—2 -

3 5.3592le-3 16764  1.0541e—2 1.8472
3 1.5752-3 1.8279  2.7610e—3 1.9327
35 427134 1.8828  7.1008e—4 1.9592
a=0.6

2‘7 2.1312e—2 - 4.5540e—2 -

3 6.1078e-3 1.8029  1.2297e—2 1.8888
3 1.6509%-3 1.8874  3.1794e—3 1.9515
2% 4.4112e—4 1.9040  8.1174e—4 1.9697
he N —UN 2 Rae Y = VNl 20 Rate
a=0.1

2‘7 3.0593¢—3 - 1.8285¢—3 -

2% 7.7740e—4 1.9765  4.6513e—4 1.9750
3 1.9516e—4 1.9940  1.1680e—4 1.9936
2% 4.8842¢—5 1.9985  2.9233¢—5 1.9984
a=04

2% 2.4792e—3 - 2.2441e-3 -

3 6.3010c—4 19762 5.7072e—4 1.9753
3 1.5819c—4 1.9939  1.4330e—4 1.9937
2% 3.9590e—5 1.9984  3.5866e—5 1.9984
a=0.6

ZLZ 2.1524e—3 - 2.5673e—3 -

3 5471de—4 1.9760  6.5291e—4 1.9753
3 1.3737e—4 1.9939  1.6394e—4 1.9937
Zis 3.4380e—5 1.9984  4.1030e—5 1.9984
a=09

2% 1.7368¢—3 - 3.1343e—3 -

3 44154e—4 19758  7.9713e—4 1.9753
5 1.1086e—4 1.9938  2.0015¢—4 1.9937
L 2.7746e—5 1.9984  5.0093e—5 1.9984
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Table 10 LZ(Q) errors and

N _ N
convergence rates in the spatial llu Up ”LZ(Q) Rate

Iy = VN2 Rate

direction for the scheme

(48)~(49) for Example 3 a=0.1
2% 3.0593e—3 -
2% 7.7740e—4 1.9765
2i4 1.9516e—4 1.9940
2% 4.8843¢—5 1.9985
a=04
2‘7 2.4792¢—3 -
2% 6.3010e—4 1.9762
2%‘ 1.5819¢e—4 1.9939
2% 3.9591e—5 1.9984
a=0.6
;%2 2.1524¢—3 -
2% 5.4714e—4 1.9760
2i4 1.3737e—4 1.9939
ZLS 3.4380e—5 1.9984
a =09
2% 1.7368¢—3 -
2% 4.4154e—4 1.9758
2i4 1.1086e—4 1.9938
ZLS 2.7746e—5 1.9984

1.8285e—3 -

4.6513e—4 1.9750
1.1680e—4 1.9936
2.9233e-5 1.9984
2.2441e-3 -

5.7072e—4 1.9753
1.4330e—4 1.9937
3.5866e—5 1.9984
2.5673e—3 -

6.5291e—4 1.9753
1.6394e—4 1.9937
4.1030e—5 1.9984
3.1343e—-3 -

7.9713e—4 1.9753
2.0015e—4 1.9937
5.0093e—5 1.9984

Example 1 Consider the following one-dimensional problem:

82
CDfu— S =R, v+ fi, xe2, 1€O1],
0x
c 3%v
Dtav—ﬁ =F2(M,U)+f2, X EQ, IG(O, 1], (72)

ulx,t)=v(x,t) =0, xe€d2, te(,1],

ulx,0)=vx,0 =0, xe8,
where

Fi(u,v) =5+u4—|—v5,
Fr(u,v) = 10 + u’ + v*.

Source terms f1, f> are calculated using the exact solution (u#, v) which is given by

u(x,t) = 7% sin(2wx), vix,t) = 3" %sin(wx),

where x € [0, 1].
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Table 11 LZ(Q) errors and

convergence rates in the temporal At ' — Uf]tv ”L2(9) Rate Y - Vi{v ”L2(9) Rate
direction for the scheme (6) for
Example 3 a=0.1
5% 7.6624e—5 - 7.4644e—5 -
5% 1.9562e—5 1.9697  1.9346e—5 1.9480
5% 4.9419¢e—6 1.9849  4.9224e—6 1.9742
5% 1.2424e—6 1.9919  1.2422e—6 1.9868
a=04
5% 2.5498e—4 - 2.5525¢—4 -
5% 6.4926e—5 19735  6.5174e—5 1.9696
5% 1.6378¢—5 1.9870  1.6462¢—5 1.9851
5% 4.1133e—6 1.9934  4.1370e—6 1.9925
a=0.6
5% 3.2563¢—4 - 3.3518¢c—4 -
5% 8.2622¢—5 19786  8.4875e—5 1.9815
;5 2.0803e—5 1.9898  2.135le—5 1.9910
5% 5.2192¢—6 1.9949  5.3546e—6 1.9955
a =09
5% 3.5811e—4 - 3.9331c—4 -
5% 9.0119e—5 1.9905  9.8606e—5 1.9960
5% 2.2590e—5 1.9962  2.4685¢—5 1.9980
5% 5.6544e—6 1.9982  6.1760e—6 1.9989

In this example, we first validate the accuracy of schemes (6) and (48)—(49) in the spatial
direction. We take At = 102 sufficiently small temporal step size with different values of
h. Next, we confirm the accuracy of schemes (6) and (48)—(49) in the temporal direction. We
take 7 = 2 x 10~* sufficiently small spatial step size with different values of At.

L2(£2) errors and convergence rates for schemes (6) and (48)—(49) in the spatial direction
are given in Tables 1 and 2, respectively. Similarly, L2(£2) errors and convergence rates
corresponding to schemes (6) and (48)—(49) in the temporal direction are given in Tables 3
and 4, respectively. It can be seen that, for « = 0.4, 0.6, these estimated convergence rates
are tending to limit close to 2 for both schemes, which is in accordance with theoretically
derived convergence orders.

Example 2 Consider the following two-dimensional problem:

“Dlu— Au=Fiu,v)+ fi, xeR, te(1],

DY — Av=Fu,v)+ fr, xe, te1],
ulx,t) =v(x,t) =0, xed2, te,1],
ulx,0)=vx,0 =0, xef,
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Table 12 LZ(Q) errors and

convergence rates in temporal At ' — U}I[V ”L2(9) Rate Y - Vi{v ”L2(9) Rate
direction for the scheme
(48)~(49) for Example 3 a=0.1
2i4 4.1420e—4 - 1.0455¢e—4 -
2% 1.1113e—4 1.8981  2.7829¢—5 1.9096
2% 2.8711e—5 1.9525  7.1562e—6 1.9593
2i7 7.2921e—6 19772 1.8130e—6 1.9808
a=04
2i4 5.2127¢—4 - 2.7551c—4 -
2% 1.3765¢e—4 19210  7.0967e—5 1.9569
2‘? 3.5313¢—5 1.9627  1.7989%e—5 1.9800
2% 8.9395¢—6 1.9819  4.5275¢—6 1.9904
a=0.6
2i4 54281e—4 - 3.5016c—4 -
2% 1.4205¢—4 1.9340  8.9135e—5 1.9740
2% 3.6287¢—5 1.9689  2.2471e—5 1.9879
2% 9.1672¢—6 1.9849  5.6407e—6 1.9941
a =09
2L4 5.025le—4 - 4.0224e—4 -
ZLS 1.2962¢—4 1.9549  1.0104e—4 1.9931
2% 3.2876¢—5 19792 2.5316e—5 1.9969
2% 8.2763e—6 1.9900  6.3361e—6 1.9984

where
Fi(u,v) =sin(u) + v2,
F>(u, v) = u® + sin(v),
and source terms f1, f> are calculated using the exact solution (u, v) which is given by
u(x,t) = 3 sin(2wxy) sin(2wxn), v(x,t) = 4 sin(rrx1) sin(;wrxp),
where x = (x1, xp) € [0, 1] x [0, 1].

Again for this problem, we first validate the accuracy of schemes (6) and (48)—(49) in
the spatial direction. We take Az = 1073 sufficiently small temporal step size with different
values of h. Next, we confirm the accuracy of schemes (6) and (48)—(49) in the temporal
direction. We take h = % sufficiently small spatial step size with different values of At.

In addition, L2(£2) errors and convergence rates for schemes (6) and (48)—(49) in the
spatial direction are given in Tables 5 and 6, respectively. Similarly, L?(£2) errors and con-
vergence rates corresponding to schemes (6) and (48)—(49) in the temporal direction are
given in Tables 7 and 8, respectively. It can be seen that, for « = 0.4, 0.6, these estimated
convergence rates are tending to limit close to 2 for both schemes, which is in accordance
with theoretically derived convergence orders.
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Table 13 LZ(Q) errors and

convergence rates in the temporal At ' — Uf]tv ”L2(9) Rate Y - Vi{v ”L2(9) Rate
direction for the scheme (75) with
L1 approximation for Example 3 a=0.1
3r  1.6446e-5 - 1.3432¢—5 -
2% 5.0554e—6 1.7019  4.2228e—6 1.6695
2% 1.5129¢—6 1.7405 1.2824e—6 1.7194
2% 4.4417e—-17 1.7682  3.8039e—7 1.7533
a=04
3 1.5728e—4 - 1.4003e—4 -
2% 5.6423e—5 1.4790  5.0508e—5 1.4712
2]—6 1.9700e—5 1.5181 1.7694e—5 1.5133
2% 6.7618e—6 1.5427  6.0860e—6 1.5397
a=0.6
2i4 4.1744e—4 - 3.9243¢—4 -
35 1685le—4 13087  1.5766c—4 1.3156
2% 6.6338e—5 1.3450  6.1887e—5 1.3491
2% 2.5735e—5 1.3661  2.3966e—5 1.3687
a=09
3 1.4023e-3 - 1.4787e—3 -
2% 6.8025e—4 1.0437  7.1079e—4 1.0569
2% 3.2403e—4 1.0699 3.3679¢—4 1.0776
2% 1.5285e—4 1.0840  1.5840e—4 1.0883
Example 3 Consider the following one-dimensional problem:
9%u
“Dou — 3= Fi(u,v) + fi, xe8, t€(0,0.5],
8%v
Dy — o = P+ fr, xeR, te(0,05], (74)

ux,t) =v(x,t) =0, xe€df2, te(0,0.5],
ux,0)=v(x,0 =0, xes2,

where

Fi(u,v) = u? + sin(u) + vz,
F(u,v) = u? + cos(v) + v2.

Source terms f, f2 are calculated using the exact solution (u, v) which is given by

ulx,t) = 3% (1

—x)e", vix, 1) = %% (1

—x)e’,

X

where x € [0, 1]. In this example, we first verify the spatial accuracy of schemes (6) and
(48)—(49) by refining the spatial step size h for fixed At = 2 x 10~%. Next, we validate the

@ Springer f bMA



Galerkin finite element schemes with fractional Crank-Nicolson... Page270f29 123

Table 14 LZ(Q) errors and

convergence rates in the temporal At ' — Uf]tv ”L2(9) Rate Y - Vi{v ”L2(9) Rate
direction for the scheme (75) with
GL approximation for Example 3 a=0.1
3 8.0003-5 - 534125 -
2% 4.0527e—5 0.9812  2.7199e—5 0.9736
2% 2.0395e—5 0.9907  1.3723e—5 0.9869
2% 1.0230e—5 0.9954  6.8925¢—6 0.9935
a=04
35 4.3880c—4 - 3.7659e—4 -
2% 2.2381e—4 0.9713 1.9249e—4 0.9682
2]—6 1.1302e—4 0.9857  9.7304e—5 0.9842
2% 5.6790e—5 0.9929  4.8918e—5 0.9922
a=0.6
3 8.1120e—4 - 7.8307e—4 -
2% 4.153%e—4 0.9656  4.0048e—4 0.9674
2% 2.1018e—4 0.9828  2.0251e—4 0.9838
2% 1.0572e—4 0.9914 1.0182e—4 0.9919
a=09
3 1642403 - 1.7778e—3 -
2% 8.4458e—4 0.9595  9.0962e—4 0.9668
2% 4.2827e—4 0.9797  4.6009¢e—4 0.9834
2% 2.1565e—4 0.9898  2.3137e—4 0.9917

temporal accuracy of schemes (6) and (48)—(49) by refining the temporal step size At for
fixedh =2 x 1074,

We report L2(£2) errors and convergence rates for schemes (6) and (48)—(49) in the spatial
direction in Tables 9 and 10, respectively. Similarly, L2(§2) errors and convergence rates
corresponding to schemes (6) and (48)—(49) in the temporal direction are given in Tables 11
and 12, respectively. We note that, for « = 0.1, 0.4, 0.6, 0.9, these estimated convergence
rates are in accordance with theoretically derived convergence orders.

To compare our numerical results with the other methods in the literature, we pro-
pose another fully discrete Galerkin finite element scheme in a unified way. The scheme
is used to approximate the solution u(z,), v(t,) by U;, V' € Xp, such that for each
n=12,3,..., N, we have

(EDYUE, wy) + (VUL Vwy) = (Fi(U!, Vi), wy), Ywy € X,
(EDY VI, wp) + (VV, Vaop) = (U], VI, op), Yoy € Xp, (75)
Ul =0, V{=0,

where the discrete operator X DS denotes either L1 approximation (Lin and Xu 2007) or GL
approximation (Podlubny 1999).
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The comparison of the scheme (6) with the L 1-Galerkin finite element scheme and the GL-
Galerkin finite element scheme is illustrated for Example 3. The validation of the accuracy
of the scheme (75) is done by selecting the same At and 4 as in Example 3. Due to the same
convergence order in the spatial direction, we only include the numerical results in temporal
direction for the scheme (75) with L1 approximation and GL approximation in Tables 13 and
14, respectively. Theoretically, the L1 approximation has O (Ar>~) accuracy (Lin and Xu
2007), while GL approximation is O (At) accurate (Podlubny 1999). Tables 13 and 14 report
that the temporal convergence rates are in accordance with theoretical convergence order. We
conclude that the Galerkin finite element scheme (6) with fractional Crank—Nicolson method
provides O (At? 4 h?) accuracy, whereas the scheme (75) with L1 and GL approximation is
O (A2~ +h?) and O (Ar+h?) accurate, respectively. Thus, the schemes based on fractional
Crank—Nicolson method have superior convergence in the temporal direction as compared
to the L1 method as well as GL approximation.

5 Conclusions

In this study, two new fully discrete schemes for solving coupled time-fractional nonlinear
diffusion system are proposed. Well-posedness results are discussed at discrete level for both
schemes. We established discrete fractional Gronwall-type inequality for GL approximation
to the Riemann-Liouville fractional derivative which is useful in the analysis of linearized
schemes for TFPDEs. Furthermore, convergence estimates in L2(£2) norm for proposed
schemes are derived. Numerical results are provided in support of our theoretical estimates,
thus providing O (A2 4+ h?) accuracy. In addition, the proposed fractional Crank—Nicolson
method is compared with some existing methods in the literature.
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