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Abstract
In this paper, we prove that linear and nonlinear equationswith the Caputo–Fabrizio operators
can be represented as systems of differential equations with derivatives of integer orders. The
order of these equations is not more than one with respect to the integer part of the highest
order of the Caputo–Fabrizio operators. We state that the Caputo–Fabrizio operators with
exponential kernel cannot describe nonlocality and memory (temporal nonlocality) in pro-
cesses and systems. Using the principle of nonlocality for fractional derivatives of noninteger
orders (“No nonlocality. No fractional derivative”), we can state that the Caputo–Fabrizio
operators cannot be considered as a fractional derivative. A general physical and economic
interpretation (meaning) of the Caputo–Fabrizio operator is proposed. We state that physi-
cal and economic meaning of the Caputo–Fabrizio operators is continuously (exponentially)
distributed lags.

Keywords Fractional derivative · Nonlocality · Memory · Caputo–Fabrizio operator ·
Distributed lag

Mathematics Subject Classification 26A33 · 34A08

1 Introduction

Theory of derivatives and integrals of noninteger (fractional) orders has a long history ofmore
than 300 years (Samko et al. 1993). The first appearance of derivative of noninteger order
is found in a letter written to G.F.A. de l’Hopital by G.W. Leibniz in 1695 (see (Leibniz an
de l’Hospital 1853) and (Leibniz an de l’Hospital 2005, p. 510)). The existence of operators
and some applications have been given by J. Liouville.
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Equations with fractional derivatives of noninteger orders are a powerful tool for describ-
ing processes and systems with spatial nonlocality and memory. There are many different
types of fractional derivatives that have been proposed by well-known mathematicians such
as Liouville, Riemann, Letnikov, Sonine, Weyl, Riesz, Hadamard, Marchaud, and others
(Samko et al. 1993; Kiryakova 1994; Podlubny 1998; Kilbas et al. 2006). Recently, some
papers began to propose various differential operators, which the authors called fractional
derivatives. In the paper (Tarasov 2018), we suggest a principle of nonlocality for fractional
derivatives of noninteger orders, which states that if the differential equation with considered
(tested) fractional operator can be represented by differential equations with a finite number
of integer order derivatives, then this operator cannot be considered as a derivative of nonin-
teger order. One such operator is the Caputo–Fabrizio operator (Caputo and Fabrizio 2015,
2016; Losada and Nieto 2015; Hristov 2018; Ortigueira and Tenreiro Machado 2018). In
paper (Tarasov 2018), we consider only simple example of the equation with the Caputo—
Fabrizio operator. A possibility of representing linear and nonlinear differential equations
with the Caputo–Fabrizio operators by differential equations of integer orders is not discussed
in (Tarasov 2018).

In the present paper,we prove that linear and nonlinear equationswith theCaputo–Fabrizio
operators can be represented as a system of differential equations with derivatives of integer
orders. We prove that these operators cannot be used to described memory and nonlocality,
but the Caputo–Fabrizio operator can be used for modeling processes and systems with the
continuously (exponentially) distributed lags.

2 Definition of Caputo–Fabrizio operator

The Caputo–Fabrizio operator has been suggested as a fractional derivative with nonsingular
(exponential) kernel in (Caputo and Fabrizio 2015, 2016) and thenwere considered in various
works. The Caputo–Fabrizio operator D(α)

CF of the noninteger order α ∈ (0, 1) is defined (see
equation 2.2 of (Caputo and Fabrizio 2015 p. 74)) by the equation:

(
D(α)
CF X

)
(t) � 1

1 − α
·

t∫

t0

exp

{
− α

1 − α
· (t − τ )

}
· X (1)(τ )dτ , (1)

where X (1)(τ ) � dX (τ )/dτ is the standard derivative of first order with respect to τ . For n >

1, the Caputo–Fabrizio operator of the order α + n ∈ (n, n + 1) is defined (see, equation 2.8
of (Caputo and Fabrizio 2015 p. 76)) by the expression:

(
D(α+n)
CF X

)
(t) �

(
D(α)
CF X

(n)
)
(t) � 1

1 − α
·

t∫

t0

exp

{
− α

1 − α
· (t − τ)

}
· X (n+1)(τ )dτ , (2)

where α ∈ (0, 1) and X (n)(τ ) � dn X (τ )/dτ n are the standard derivatives of integer order
n ∈ N with respect to τ . Using Eq. (2), the Caputo–Fabrizio operator of the order α ∈
(n, n + 1) can be represented as follows:

(
D(α)
CF X

)
(t) � 1

n − α + 1
·

t∫

t0

exp

{
− α − n

n − α + 1
· (t − τ)

}
· X (n+1)(τ )dτ , (3)

where α − n � {α} and n � [α]. We can see that the Caputo–Fabrizio operators are integro-
differential operators.
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The Caputo–Fabrizio operators (3) of order α ∈ (n, n + 1) with t0 � 0 can be represented
in the form:

(
D(α)
CF X

)
(t) � (

K ∗ X (n+1))(t), (4)

where K ∗ X (n) is the Laplace convolution of the derivative X (n)(t) and the exponential
kernel:

K (t) � 1

n − α + 1
· exp

{
− α − n

n − α + 1
· t

}
. (5)

The Laplace convolution of two functions X(t) and Y (t) is defined for t ∈ R+ by the
equation:

(X ∗ Y )(t) �
t∫

0

X(τ ) · Y (t − τ )dτ , (6)

where the commutative property (X ∗ Y )(t) � (Y ∗ X)(t) holds.

3 Equation with Caputo–Fabrizio operators as differential equations
of integer orders

Let us consider the nonhomogeneous linear integro-differential equation with the Caputo—
Fabrizio operators (3) and constant coefficients in the form:

m∑
k�1

Ak

(
D(αk )
CF X

)
(t) + A0X(t) � f (t), (7)

where t > t0 � 0; m ∈ N; 0 < α1 < · s < αm < ∞; A0, A1, . . . , Am ∈ R; A0 �� 0 and
involving the Caputo–Fabrizio operators D(αk )

0 X (k � 1, . . . ,m) given by (3), where t0 � 0,
αk � {αk} + nk ∈ (nk, nk + 1), and nk � [αk].

Theorem 1 The integro-differential Eq. (7) with the Caputo–Fabrizio operators (7) of orders
αk ∈ (nk, nk + 1) can be represented as the system of differential equation with derivatives
of integer orders nk + 1 that has the form:

⎧⎪⎪⎨
⎪⎪⎩

m∑
j�1

A j
A0

· Y (nk+1)
j + (1 − {αk})Y (1)

k (t) + {αk} · Yk(t) � 1
A0

· f (nk+1)(t),

X(t) � 1
A0

· f (t) −
m∑

k�1

Ak
A0

· Yk(t),
(8)

where k � 1, . . . ,m, nk � [αk], and {αk} � αk − nk .

Proof The Laplace transform L of a function X(t) of a real variable t ∈ (0,∞) is defined
by the equation:

(LX)(s) �
∞∫

0

X(t) · exp{−s · t}dt . (9)
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The integral (9) convergences for Re(s) > sinf , where sinf is abscissa of convergence.
Using equation 4.1.20 of Bateman (1954 p. 131) that describes the property of the Laplace
convolution (6) in the form

(L(X ∗ Y ))(s) � (LX)(s) · (LY )(s), (10)

we get the Laplace transform L of the Caputo–Fabrizio operators (4) as follows:(
LD(α)

CF X
)
(s) �

(
L

(
K ∗ X (n+1)

))
(s) � (LK )(s) ·

(
LX (n+1)

)
(s), (11)

where n � [α]. Then, we can use equation 4.5.1. (Bateman 1954 p. 143) in the form:

(12)

(LK ) (s) � 1

n − α + 1
·
(
L exp

{
− α − n

n − α + 1
· t

})

� 1

n − α + 1
·
(
s +

α − n

n − α + 1

)−1

� 1

s · (n − α + 1) + (α − n)
,

and equation 4.1.8. (Bateman 1954 p. 129) or equation 1.4.9 of (Kilbas et al. 2006 p. 19) in
the form:

(
LX (n+1)

)
(s) � sn+1 · (LX)(s) −

n∑
j�0

sn− j X ( j)(0), (13)

where X ( j)(0) are the standard derivatives of integer order j ∈ N at t � 0, and

Re(s) > − α − n

n − α + 1
. (14)

Using (11), (12), and (13), the Laplace transform L of
(
Dαk
CFX

)
(t) with αk ∈ (nk, nk + 1)

and nk � [αk] is given by the following:

(LDαk
CF X

)
(s) � 1

s · (1 − {αk}) + {αk} ·
⎛
⎝snk+1 · (LX)(s) −

nk∑
j�0

snk− j X ( j)(0)

⎞
⎠, (15)

where {αk} � αk − nk and k � 1, . . . ,m. Equation (15) allows us to write the Laplace
transform L of Eq. (7) in the form:

m∑
k�1

Ak

s · (1 − {αk}) + {αk} ·
⎛
⎝snk+1 · (LX)(s) −

nk∑
j�0

snk− j X ( j)(0)

⎞
⎠

+A0 · (LX)(s) � (L f )(s). (16)

Using Eq. (13), we can rewrite Eq. (16) in the form:
m∑

k�1

Ak

s · (1 − {αk}) + {αk} ·
(
LX (nk+1)

)
(s) + A0 · (LX)(s) � (L f )(s), (17)

where nk ∈ N for k � 1, . . . ,m.

Let us define the auxiliary variables Yk(t) (k � 1, . . . ,m), such that Yk(0) � 0 and

(LYk)(s) � 1

s · (1 − {αk}) + {αk} ·
(
LX (nk+1)

)
(s). (18)

Equation (18) can be rewritten in the form:

(s · (1 − {αk}) + {αk}) · (LYk)(s) �
(
LX (nk+1)

)
(s). (19)
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Using the relation(
L

(
a · Y (1)

k + bYk
))

(s) � (a · s + b) · (LYk)(s) − a · Yk(0) (20)

in the form

(21)

(1 − {αk}) ·
(
LY (1)

k

)
(s) + {αk} · (LYk) (s) � (s · (1 − {αk}) + {αk})

· (LYk) (s) − (1 − {αk}) · Yk (0) ,
we can state that condition (19) is a Laplace transform of the equation:

(1 − {αk})Y (1)
k (t) + {αk} · Yk(t) + (1 − {αk}) · Yk(0) · δ(t) � X (nk+1)(t). (22)

Using the assumption Yk(0) � 0, we have Eq. (22) in the form:

(1 − {αk})Y (1)
k (t) + {αk} · Yk(t) � X (nk+1)(t), (23)

where k � 1, . . . ,m. Equation (23) can be considered as a definition of the suggested new
variables Yk(t). Using (18), we can consider Eq. (17) as the Laplace transform of equation:

m∑
k�1

Ak · Yk(t) + A0 · X(t) � f (t).

As a result, we obtain the system of the differential equations:
⎧
⎨
⎩

(1 − {αk})Y (1)
k (t) + {αk} · Yk(t) � X (nk+1)(t),

m∑
k�1

Ak · Yk(t) + A0 · X(t) � f (t).
(24)

If A0 �� 0, then the last equation of system (24) can be written in the form:

X(t) � 1

A0
· f (t) −

m∑
j�1

A j

A0
· Y j (t). (25)

Substitution of expression (25) into Eq. (23) gives the following:

(1 − {αk})Y (1)
k (t) + {αk} · Yk(t) � 1

A0
· f (nk+1)(t) −

m∑
j�1

A j

A0
· Y (nk+1)

j . (26)

Equation (26) can be rewritten in the form:
m∑
j�1

A j

A0
· Y (nk+1)

j + (1 − {αk})Y (1)
k (t) + {αk} · Yk(t) � f (nk+1)(t), (27)

where k � 1, . . . ,m. This is a system of m differential equations of the integer order nm +1,
where nm � [αm]. The required function X(t) is defined as the sum:

X(t) � 1

A0
· f (t) −

m∑
k�1

Ak

A0
· Yk(t). (28)

As a result, we get a system of (m + 1) equations for (m + 1) unknown variables:
⎧⎪⎪⎨
⎪⎪⎩

m∑
j�1

A j
A0

· Y (nk+1)
j + (1 − {αk})Y (1)

k (t) + {αk} · Yk(t) � 1
A0

· f (nk+1)(t),

X(t) � 1
A0

· f (t) −
m∑

k�1

Ak
A0

· Yk(t).
(29)
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This is the end of proof. Q.E.D.

Remark Theorem 1 does not use the assumption of vanishing the auxiliary variables Y j (t)
at the initial instant of time t0 � 0. It should be note that Eq. (7) and system (8) of equations
are solution equivalent if the auxiliary variable Y j (t) satisfies the initial condition Y j (0) � 0
for all j � 1, . . .m.

Note that system (8) can be used to obtain solution of Eq. (7) for the case Y j (0) �� 0. It can
be realized using the conditions Y j (0) � 0 only in the Laplace transform of the first-order

derivatives Y (1)
j (t), i.e., when we use

(
LY (1)

j

)
(s) � s

(LY j
)
(s) instead of

(
LY (1)

j

)
(s) � s(LY j

)
(s) − Y j (0). In other words if we consider the Laplace transform of the first equation

of (24) with Yk(0) � 0 in the form:

(1 − {αk})s(LYk)(s) + {αk}(LYk)(s) � (L(
X (nk+1)

))
(s)

without using these conditions Yk(0) � 0 in the second equation of the system, i.e., without
the assumption:

m∑
k�1

AkYk(0) + A0X(0) � f (0),

In this case, we get solution of system (8) that coincides with solution of Eq. (7).
To illustrate this remark, we can consider Eq. (7) with m � 1, nk � 0 and F(t) � 0,

which has the form:

A1

(
D(α)
CF X

)
(t) + A0X(t) � 0.

This can be represented as the system:{
A1Y (t) + A0X(t) � 0,
(λ/{α})X (1)(t) � Y (1)(t) + λY (t),

where λ � {α}/(1 − {α}). The Laplace transform of the second equation of the system has
the form:

(λ/{α})(s(LX)(s) − X(0)) � s(LY )(s) − Y (0) + λ(LY )(s).

Using Y (0) � 0 in this equation, when the condition A0X(t) � A1Y (t) for t � 0 is not
assumed in the first equation (i.e., X(0) �� 0 in general), we get the following:{

A1Y (t) + A0X(t) � 0, (t > 0)
(λ/{α})(s(LX)(s) − X(0)) � s(LY )(s) − Y (0) + λ(LY )(s).

Using the Laplace transform of the first equation A1(LY )(s) + A0(LX)(s) � 0, and
substituting (LY )(s) � −(A0/A1)(LX)(s) into second equation of the system, we get the
following:

(λ/{α})(s(LX)(s) − X(0)) � −s(A0/A1)(LX)(s) − λ(A0/A1)(LX)(s).

This equation can be rewritten in the form:

A1
λ/{α}
s + λ

(s(LX)(s) − X(0)) + A0(LX)(s) � 0,

which is equivalent to the Laplace transform of Eq. (7) with m � 1, nk � 0 and F(t) � 0.
To generalize Theorem1 to nonlinear equations, it is necessary to construct a proofwithout

using the Laplace transform. It should be noted that Theorem 1 can be proved without using
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the Laplace transform. To prove the theorem for nonlinear equations, we separately prove
the following auxiliary theorem.

Theorem 2 The integro-differential equation

Y (t) �
(
D(α)
CF X

)
(t), (30)

with the Caputo–Fabrizio operator (3) can be represented as the differential equation with
derivatives of integer orders n + 1 that has the form:

X (n+1)(t) � (1 − {α}) · Y (1)(t) + {α} · Y (t), (31)

where {α} � α − n and n � [α].

Proof Equation (3), which defines the Caputo–Fabrizio operator of the order α ∈ (n, n + 1)
can rewritten in the form:

(
D(α)
CF X

)
(t) � 1

1 − {α} · exp
{
− {α}
1 − {α} · t

} t∫

t0

exp

{ {α}
1 − {α} · τ

}
· X (n+1)(τ )dτ , (32)

where {α} � α − n and [α] � n. Let us define the variable Z(t), such that

Z (1)(τ ) � exp

{ {α}
1 − {α} · τ

}
· X (n+1)(τ ). (33)

Using the relation
t∫

t0

Z (1)(τ )dτ � Z(t) − Z(t0), (34)

substitution of (33) into Eq. (32) gives the following:
(
D(α)
CF X

)
(t) � 1

1 − {α} · exp
{
− {α}
1 − {α} · t

}
(Z(t) − Z(t0)). (35)

Let us define the auxiliary variable Y (t), such that

Y (t) � 1

1 − {α} · exp
{
− {α}
1 − {α} · t

}
(Z(t) − Z(t0)). (36)

Substitution of (36) into (35) gives
(
D(α)
CF X

)
(t) � Y (t). Differentiation of Eq. (36) gives

the following:

(37)

Y (1) (t) � − {α}
(1 − {α})2 · exp

{
− {α}
1 − {α} · t

}
(Z (t) − Z (t0))

+
1

1 − {α} · exp
{
− {α}
1 − {α} · t

}
Z (1) (t) .

Using Eqs. (33) and (36), expression (37) takes the form:

Y (1)(t) � − {α}
1 − {α}Y (t) +

1

1 − {α} · X (n+1)(t). (38)

Equation (38) can be written in the form (39).
This is the end of proof. Q.E.D.
The Theorem 2 allows us to formulate the following theorem for nonlinear integro-

differential equations with the Caputo–Fabrizio operators.
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Theorem 3 The nonlinear integro-differential equation

N
[
X(t),

(
D(αk )
CF X

)
(t), k � 1, . . .m

]
� 0, (39)

with the Caputo–Fabrizio operators (3) can be represented as the system of the differential
equation with derivatives of integer orders nk + 1 that has the form:

{
N [X(t), Yk(t), k � 1, . . .m] � 0
X (nk+1)(t) � (1 − {αk}) · Y (1)

k (t) + {αk} · Yk(t). (40)

where k � 1, . . .m, and {αk} � αk − nk, [αk] � nk .

Proof Let us defined the variables Zk(t), such that

Z (1)
k (τ ) � exp

{ {αk}
1 − {αk} · τ

}
· X (n+1)(τ ), (41)

and the auxiliary variables Yk(t), such that

Yk(t) � 1

1 − {αk} · exp
{
− {αk}
1 − {αk} · t

}
(Zk(t) − Zk(t0)), (42)

where k � 1, . . .m. Using the Theorem 2, differentiation of Eq. (42) gives the following:

Y (1)
k (t) � − {αk}

1 − {αk}Yk(t) +
1

1 − {αk} · X (nk+1)(t). (43)

As a result, Eq. (39) can be written in the form (40), since
(
D(αk )
CF X

)
(t) � Yk(t).

This is the end of proof. Q.E.D.
A remarkable feature of the system (40) is that all differential equations of integer orders

are linear. Note that if the variable X(t) can be expressed from an algebraic equation, then we
can obtain a system of differential equations for auxiliary variables. In this case, the differ-
ential equations can be nonlinear in general. For the linear equations with Caputo–Fabrizio
operators, the variable X(t) can be expressed from an algebraic equation, and we can get
system, in which differential equations contain only auxiliary variables (see Theorem 1).
Note that, in Theorems 2 and 3, we did not use the assumptions of Theorem 1 about the
linearity of the equation with Caputo–Fabrizio operators, vanishing the auxiliary variables
Y (1)
k (t) at the initial instant of time t0, and the equality to zero of the initial time moment

t0. However, the solutions of the unknown equation and the resulting system of the equation
will coincide if the auxiliary variables at the starting point are equal to zero (see Remark to
Theorem 1).

As a result, we proved that equations with the Caputo–Fabrizio operators cannot be used
to describe nonlocality and memory, since these can be represented by the differential equa-
tions with derivatives of integer orders only, which are determined by the properties of the
differentiable function only in an infinitesimal neighborhood of the considered point.

We should note that the representation of integro-differential equations with the Caputo—
Fabrizio operators of noninteger orders in the form of the standard differential equations of
integer orders is also considered in (Al-Salti et al. 2015; Karimov and Pirnafasov 2017).
In paper (Ortigueira and Tenreiro 2018), it was shown that the Caputo–Fabrizio operator
implements an integer order high-pass filter and that this operator is neither fractional, nor a
derivative.

Using the principle of nonlocality (Tarasov 2018) for fractional derivatives of noninteger
orders, we can state that the Caputo–Fabrizio operators cannot be considered as fractional
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derivatives of noninteger orders, since differential equations with these operators can be
represented by the differential equations with derivatives of integer orders only.

An important property of fractional derivatives of noninteger orders, which is related with
nonlocality and memory, is their representation in the form of an infinite series of derivatives
of integer orders (for example, see Lemma 15.3 of Samko et al. (1993 p. 278) and Tarasov
(2016, 2017)). It is important to emphasize here that fractional operators cannot be represented
as a finite sum in the general case. The possibility of representing in the form of an infinite
sum is not a sufficient condition for operators to describe nonlocality and memory. The fact
that an operator cannot be specified as a finite sum of derivatives of integer orders in general
is the characteristic property of fractional derivatives of noninteger orders (Tarasov 2018)
together with a violation of the standard Leibniz and chain rules (Tarasov 2013, 2016).

4 Examples of representation by differential equations of integer
orders

Let us give some examples of the application of Theorems 1 and 2, such that the linear
and nonlinear equations with the Caputo–Fabrizio operators are represented by differential
equations with standard derivatives of integer orders only.

Example 1 Let us consider the linear integro-differential equation:
(
D(α)
CF X

)
(t) + A0 · X(t) � f (t), (44)

where n < α < n + 1, n � [α]. For A0 � − λ and 0 < α < 1, Eq. (44) takes the form of
Eq. (9) of Losada and Nieto (2015 p. 89). Using Theorem 3, Eq. (44) can be represented as
the system of the differential equation with derivatives of integer orders n + 1 that has the
form:

⎧
⎨
⎩
Y (t) + A0 · X(t) � f (t),

X (n+1)(t) � (1 − {α}) · Y (1)(t) + {α} · Y (t).
(45)

Expressing the variable X(t) from the first equation of the system, and substituting into
the second equation, we obtain the system:

⎧
⎨
⎩

1
A0

· Y (n+1) + (1 − {α}) · Y (1)(t) + {α} · Y (t) � 1
A0

· f (n+1)(t),

X(t) � 1
A0

· f (t) − 1
A0

· Y (t).
(46)

We have obtained the system, which directly follows from Theorem 1. For 0 < α < 1,
system (46) takes the form:

⎧⎨
⎩

(
1 − α + A−1

0

)
· Y (1)(t) + α · Y (t) � 1

A0
· f (1)(t),

X(t) � A−1
0 · f (t) − A−1

0 · Y (t).
(47)

For the case A0 � k/m, f (t) � g � const, and X(t) � v(t), we get the system for the
problem that is considered in Losada and Nieto (2015 p. 91) in the form:

⎧
⎨
⎩

(
1 − α + m · k−1

) · Y (1)(t) + α · Y (t) � 0,

v(t) � m · g · k−1 − m · k−1 · Y (t).
(48)
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Expressing the auxiliary variable Y (t) from the second equation of the system, and sub-
stituting into the first equation, we obtain the differential equation:

(
1 − α + m · k−1) · v(1)(t) + α · v(t) − α · m · g · k−1 � 0, (49)

which is the differential equation of the first order.

Example 2 Let us consider the linear integro-differential equation:

A2

(
D(α2)
CF X

)
(t) + A1

(
D(α1)
CF X

)
(t) + A0X(t) � f (t). (50)

For the parameters α2 � {α2} � 0.7, α1 � {α1} � 0.3, n2 � n1 � 0, A2 � 3, A1 � 2,
A0 � 1, f (t) � 5 sin(2t), Eq. (50) has the form:

3 ·
(
D(0.7)
CF X

)
(t) + 2 ·

(
D(0.3)
CF X

)
(t) + X(t) � 5 · sin(2t). (51)

Using Theorem 1, Eq. (50) can be represented as the system of the differential equation
with derivatives of integer orders nk + 1 that has the form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

A2
A0

· Y (n1+1)
2 + A1

A0
· Y (n1+1)

1 + (1 − {α1})Y (1)
1 (t) + {α1} · Y1(t) � 1

A0
· f (n1+1)(t),

A2
A0

· Y (n2+1)
2 + A1

A0
· Y (n2+1)

1 + (1 − {α2})Y (1)
2 (t) + {α2} · Y2(t) � 1

A0
· f (n2+1)(t),

X(t) � 1
A0

· f (t) − A2
A0

· Y2(t) − A1
A0

· Y1(t).
.

(52)

For considered parameters, Eq. (51) can be represented as the system:⎧
⎪⎪⎨
⎪⎪⎩

3 · Y (1)
2 + 2.7 · Y (1)

1 + 0.3 · Y1(t) � 10 · cos(2t),
3.3 · Y (1)

2 + 2 · Y (1)
1 + 0.7 · Y2(t) � 10 · cos(2t),

X(t) � 5 sin(2t) − 3 · Y2(t) − 2 · Y1(t).
(53)

Let us consider the linear integro-differential Eq. (50) α2 � 1.2 instead of α2 � 0.7, i.e.,
{α2} � 0.2, {α1} � 0.3, n2 � 1, n1 � 0, A2 � 3, A1 � 2, A0 � 1, and f (t) � 5 sin(2t). In
this case, we have the equation:

3 ·
(
D(1.2)
CF X

)
(t) + 2 ·

(
D(0.3)
CF X

)
(t) + X(t) � 5 · sin(2t). (54)

Using Theorem 1, Eq. (54) can be represented as the system of the differential equation
with derivatives of integer orders nk + 1 that has the form (52). For considered parameters,
Eq. (54) can be represented as the system:

⎧⎨
⎩
3 · Y (1)

2 + 2 · Y (1)
1 + 0.7 · Y (1)

1 (t) + 0.3 · Y1(t) � 10 · cos(2t),
3 · Y (2)

2 + 2 · Y (2)
1 + 0.8 · Y (1)

2 (t) + 0.2 · Y2(t) � −20 · sin(2t),
X(t) � 5 sin(2t) − 3 · Y2(t) − 2 · Y1(t).

(55)

Example 3 Let us consider the nonlinear integro-differential equation:(
D(0.2)
CF X

)
(t) � X2(t) − 3 · X(t) + 4. (56)

Using Theorem 3, Eq. (56) can be represented as the system of the differential equation
with derivatives of first order in the form:

{
Y (t) � X2(t) − 3 · X(t) + 4,
X (1)(t) � 0.2 · Y (t) + 0.8 · Y (1)(t).

(57)
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In this system (57), we can exclude the auxiliary variable Y (t), and we get the differential
equation:

(17 − 8 · X(t)) · X (1)(t) � X2(t) − 3 · X(t) + 4, (58)

which represents integro-differential Eq. (50) with the Caputo–Fabrizio operator (3).

Example 4 Let us consider the nonlinear integro-differential equation:

A ·
((

D(α)
CF X

)
(t)

)q
+ B ·

((
D(β)
CF X

)
(t)

)p � F(X(t), t), (59)

where α, β ∈ R+ and q, p ∈ N. Using Theorem 3, Eq. (59) can be represented as the system
of the differential equation with derivatives of integer orders in the form:

⎧
⎨
⎩

A · Yq(t) + B · Z p(t) � F(X(t), t),
X (n+1)(t) � (n − α + 1) · Y (1)(t) + (α − n) · Y (t),
X (m+1)(t) � (m − β + 1) · Z (1)(t) + (β − m) · Z(t),

(60)

where n � [α] and m � [β]. In the particular case of (59), the nonlinear equation

3 ·
((

D(1.2)
CF X

)
(t)

)3
+ 2 ·

(
D(0.3)
CF X

)
(t) � X3(t) − 3X(t) + 4, (61)

can be represented as the system:
⎧⎨
⎩
3 · Y 3(t) + 3 · Z(t) � X3(t) − 3X(t) + 4,
X (2)(t) � 0.8 · Y (1)(t) + 0.2 · Y (t),
X (1)(t) � 0.7 · Z (1)(t) + 0.3 · Z(t),

(62)

which contains standard derivatives of integer order.
For q � 1, A � 1, B � 0, and 0 < α < 1, Eq. (59) takes the form of nonlinear Eq. (11)

of Losada and Nieto (2015 p. 90). Let us consider Eq. (59) for the case q � 1, A � 1, B � 0,
and n < α < n + 1, i.e., the equation

(
D(α)
CF X

)
(t) � F(X(t), t). (63)

Using Theorem 3, Eq. (63) can be represented as the system of the differential equation
with derivatives of integer orders in the form:

{
Y (t) � F(X(t), t),
X (n+1)(t) � (n − α + 1) · Y (1)(t) + (α − n) · Y (t)

. (64)

Substituting the auxiliary variable Y (t) from the first equation of the system into the
second equation, we obtain the differential equation:

X (n+1)(t) − (n − α + 1) · F (1)
X (X(t), t) · X (1)(t) − (α − n) · F(X(t), t) � 0, (65)

where F (1)
X (X , t) is the partial derivative of the function F(X , t)with respect to a variable X .

Equation (64) with n � 0 is a special form of the Lienard equation often used in the theory
of oscillations and dynamical systems. For the case F(X , t) � λ · X2 and α � 1.2, Eq. (63)

has the form
(
D(1.2)
CF X

)
(t) � λ · X2(t) and it can be represented in the form:

X (2)(t) − 2 · (2 − α) · λ · X(t) · X (1)(t) − (α − 1) · λ · X2 � 0, (66)

which is the differential equation of the second order.
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Example 5 Let us consider the nonlinear integro-differential equation:

3 ·
((

D(0.7)
CF X

)
(t)

)3
+ 2 ·

(
D(0.3)
CF X

)
(t) + X(t) � 0, (67)

can be represented as the system:
⎧
⎨
⎩
3 · Y 3(t) + 2 · Z(t) + X(t) � 0
X (1)(t) � 0.3 · Y (1)(t) + 0.7 · Y (t)
X (1)(t) � 0.7 · Z (1)(t) + 0.3 · Z(t)

. (68)

Using the first equation of the system, in the second and third equations, it is possible to
exclude the dependence of these equations on the main variable:

⎧
⎨
⎩

X(t) � − 3 · Y 3(t) − 2 · Z(t)(
0.3 + 3 · Y 2(t)

) · Y (1)(t) + 0.7 · Y (t) + 2 · Z (1)(t) � 0
2.7 · Z (1)(t) + 0.3 · Z(t) + 3 · Y 2(t) · Y (1)(t) � 0

, (69)

which contains standard derivatives of integer order.
As a result, we demonstrated an application of proposed Theorem 1–3 for obtaining

representations of equationswith theCaputo–Fabrizio operators in the form of the differential
equations with derivatives of integer orders only. Since all these derivatives are determined
by the properties of the differentiable function only in an infinitesimal neighborhood of the
considered point, we can state that the Caputo–Fabrizio operators cannot be used to describe
nonlocality which is space and time.

5 Economic and physical interpretation of Caputo–Fabrizio operator

We proved that the Caputo–Fabrizio operator cannot describe the nonlocality in space and
memory (nonlocality in time). In this connection, two following questions arise. The first
question is about constructive criteria that will allow us to check the presence of memory in
the process and criteria that allow us to check whether the considered operator can describe
processes with memory. The second question is about the physical and economic meaning
of the Caputo–Fabrizio operator.

To develop a constructive criterion in addition to the general principle of nonlocality, we
proposed (Tarasov and Tarasova 2018) criteria for determining which types of operators can
describe memory (Tarasova and Tarasov 2018) that is more general than power-law memory.
The criteria of memory have been proposed in (Tarasov and Tarasova 2018) using Fourier
transforms. It can be reformulated using the Laplace transforms. As a result, one can come to
the conclusion that the Caputo–Fabrizio operators cannot describe the memory, because the
Laplace transformation of a kernel is not determined by noninteger powers of the variable s.

We can provide an answer to the question about the physical or economic meaning of
the Caputo–Fabrizio operators. An interpretation of these operators has been proposed in
(Ciancio and Flora 2017) within the framework of the signal theory. The paper (Caputo and
Fabrizio 2017) can also be regarded as one of the physical interpretations of the Caputo—
Fabrizio operators by the hysteresis. However, these are particular types of interpretation,
which point to individual (special) processes. It is important to understand what general type
of processes which these operators can describe.

We can give a general physical and economic interpretation (meaning) of the Caputo—
Fabrizio operator. It is possible to state that physical and economic meaning of the
Caputo–Fabrizio operator is the continuously (exponentially) distributed lags.
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In the simple form, the lag can be described by equation Y (t) � m · X(t − T ) with
a fixed-time delay of T > 0 periods (Allen 1960 p. 23). In a more general form, the lag
between input and output can be described as continuously distributed lag. The continuously
(exponentially) distributed lags are described in section 1.9 of Allen (1960 p. 23–29) and
section 5.8 of (Allen 1960 p. 166–170). This approach is often used to describe economic
processes with lag. The existence of the time delay (lag) is connected with the fact that the
processes take place with a finite speed, and the change of the economic factor (input) does
not lead to instant changes of indicator (output) that depends on it. Therefore, continuously
distributed lag cannot be considered as a dependence of the state of as process on its history,
i.e., it cannot be described as a memory. The lag cannot be considered as a nonlocality in
time, i.e., as a memory.

If we define the Caputo–Fabrizio operator of the order α ∈ (0, 1) in the form:

(
D(α)
CF X

)
(t) � M(α)

1 − α
·

t∫

t0

exp

{
− α

1 − α
· (t − τ)

}
· X (1)(τ )dτ (70)

with M(α) � α and t0 � −∞,, then we can write macroeconomic equation of with contin-
uously distributed time lag in the form:

Y (t) � v ·
(
D(α)
CF X

)
(t). (71)

Equation (71) describes the economic accelerator with the exponential lag (Allen 1960
p. 62–63), where v is a positive constant that indicating the power of the accelerator. This
distributed lag is characterized by the weighting function (Allen 1960 p. 26) in the form:

f (t) � K (t) � α

1 − α
exp

{
− α

1 − α
· t

}
. (72)

This function, which defines the kennel of the integro-differential operator (70), satisfies
the normalization condition (see Eq. (8) of (Allen 1960 p. 26)). The parameter

λ � α

1 − α
(73)

is called the speed of response (Allen 1960 p. 27). As an alternative parameter to the speed of
response for the exponential lag, we can consider the time-constant of this lag that is defined
as T � 1/λ. This time-constant is consistent with the term for the fixed-time delay. For
exponentially distributed lag, the parameter T is the length of the delay (Allen 1960 p. 27).

The exponential kernel (weighting function) is actively used in macroeconomic models
with distributed lag in the framework of the continuous and discrete time approaches (Allen
1960 p. 26). Inmacroeconomicmodels, the differential equations of exponentially distributed
lad are used instead of equations with integro-differential operators. For example, the eco-
nomic accelerator with the exponential lag (71) is usually considered (Allen 1960 p. 63) in
the form:

Y (1)(t) � −λ · (Y (t) − v · X(t)). (74)

Equation (74) is actively used for macroeconomic models with continuously distributed
lag. For example, the Phillips model of multiplier-accelerator that takes into account the
exponential lag is described in (Allen 1960 p. 72–74).

In macroeconomic models with the exponential lag, the representation by equivalent dif-
ferential equations of integer order is usually used instead of the integro-differential operator
(70). These equations are called the differential equations of the exponential lag (Allen 1960
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p. 27). It is caused by the fact that there are considerable difficulties in handling the integrals
in (70). It is known that, under certain conditions, equations with continuously distributed lag
are equivalent to differential equations with standard derivatives of integer orders. These dif-
ferential equations, as a rule, are easier to handle in comparison with the integro-differential
equations that describe the distributed lag.

The described interpretation of the operator (70) does not depend on whether we are
considering economic, physical, or other processes. Equation (71) describes continuously
distributed lag between input (action, external force, and exogenous variable) and output
(response and endogenous variable). The lag (delay) caused by the fact that the process has a
finite speed, and the changes of input do not lead to instant changes of output. From physics,
it is well known that the finite speed of the process does not mean that there is memory in
the process. Mathematically, this manifests itself in the possibility of describing a process by
equations containing only a finite number of derivatives of integer orders.

In physics, hysteresis is described as a lag between input and output. Hysteresis cannot be
considered as a dependence of the state of a system on its history, i.e., it cannot be described as
a memory. The application of the Caputo–Fabrizio operators to describe hysteresis has been
proposed in (Caputo and Fabrizio 2017). In fact, this paper gives a physical interpretation of
the Caputo–Fabrizio operator by hysteresis that is consistent with the proposed interpretation
(meaning) of the Caputo–Fabrizio operator by the continuously (exponentially) distributed
lags.

As a result, the Caputo–Fabrizio operators cannot be used to describe processes with
memory or spatial nonlocality, but it can be applied to describe processes with continuously
distributed lag, such as exponential lag. The Caputo–Fabrizio operators can be applied for
modeling processes with distributed lag in physics and economics. A general physical and
economic meaning of the Caputo–Fabrizio operator is the continuously (exponentially) dis-
tributed lags between input and output. The generalizations of the Caputo–Fabrizio operator
have been proposed in (Tarasov and Tarasova 2019) to describe different types of probability
distributions of delay time and power-law fading memory.

6 Conclusion

It was proved that the Caputo–Fabrizio operators cannot be use to describe processes with
memory or spatial nonlocality, since linear and nonlinear equations with these operators can
be represented as differential equations of integer orders. An interpretation of the Caputo—
Fabrizio operators has been proposed. It can be interpreted as operator of continuously
(exponentially) distributed lag between input and output. As a result, the Caputo–Fabrizio
operators can be applied for modeling processes with continuously distributed lag in physics
and economics, but it cannot be used to describe processes with memory. However, the
advantage of using equations with the Caputo–Fabrizio operators to describe processes with
distributed lag is questionable. The use of corresponding differential equations with deriva-
tives of integer orders has obvious advantages.
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