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Abstract
Since Pythagorean fuzzy set is a powerful tool as it relaxing the condition that the sum of
membership degrees is less than or equal to one with the square sum is less than or equal
to one. Also Choquet integral is a very useful way of measuring the expected utility of an
uncertain event. Therefore, in this paper we use the Choquet integral to develop Pythagorean
fuzzy aggregation operators, namely Pythagorean fuzzy Einstein Choquet integral averaging
operator and Pythagorean fuzzy Einstein Choquet integral geometric operator. The operators
not only consider the importance of the elements or their ordered positions, but also can reflect
the correlations among the elements or their ordered positions. It must be noted that several
existing operators are the special cases of the developed operators. Further the properties such
as boundedness, monotonicity and idempotency of the proposed operators have been studied
in detail. Furthermore based on the developed operators a multi-criteria group decision-
making method has been presented. Finally an illustrative example is presented to illustrate
the validity and effectiveness of the proposed method.

Keywords Pythagorean fuzzy set (PFS) · Pythagorean fuzzy Einstein Choquet integral
averaging (PFECIA) operator · Pythagorean fuzzy Einstein Choquet integral geometric
(PFECIG) · Multi-criteria group decision making (MCGDM) problem

Mathematics Subject Classification 03E72 · 68T37 · 90B50 · 03B52

1 Introduction

Due to high complexity of socioeconomics it is difficult to acquire sufficient and accurate
date for real-world decision making. To overcome this shortcoming fuzzy set introduced by
Zadeh (1965) is one of the most effective tools. After the appearance of fuzzy set many exten-
sions have been developed in both theoretical and practical fields. Among these extensions
Atanassov intuitionistic fuzzy set (AIFS) introduced by Atanasov (1986) is one of the most
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powerful tool to deal with vagueness and fuzziness. Xu and Yager (2006) developed some
intuitionistic fuzzy geometric operators to deal withMCDMproblems. Xu (2007) established
a series of aggregation operators to deal with MCGDM problems under IFS environment.

Since in some real world decision-making problems the decision makers (DMs) deals
with the situation of particular attributes where the sum of membership’s degrees is greater
than 1. Therefore, Yager (2013) generalized the notion of IFS by initiating the idea of
Pythagorean fuzzy set (PFS). In PFS, the square sum of its membership’s degrees is greater
than or equal to 1. To deal with multi-criteria decision-making (MCDM) problem a series
of aggregation operators has been proposed by Yager (2014) under Pythagorean fuzzy envi-
ronment. Using Einstein operation, a new generalization of Yager’s operators have been
developed byGarg (2016a, 2017a) and presented some newaggregation operators namely, the
Pythagorean fuzzy Einsteinweighted average (PFEWA) operator and Pythagorean fuzzy Ein-
stein ordered weighted average (PFEOWA) operator, Pythagorean fuzzy Einstein weighted
geometric (PFEWG) operator and Pythagorean fuzzy Einstein ordered weighted geomet-
ric (PFEOWG) operator for MCDM. Under the PFS environment Garg (2017b) developed
the concept of confidence Pythagorean fuzzy weighted and ordered weighted operators to
deal with MCDM problems. Garg (2018a) generalized the concept of PFEWG operator and
developed Pythagorean fuzzyEinsteinweighted interactive geometric (PFEWIG) operator by
adding a pair of hesitation between the membership degrees. Garg (2018b) introduced a new
decision-making model with probabilistic information and using the concept of immediate
probabilities has been developed to aggregate the information under the Pythagorean fuzzy
set environment. Khan et al. (2019a, b) presented Pythagorean fuzzy Prioritized aggregation
operators for MADM problems. Khan et al. (2019a) developed Pythagorean fuzzy Einstein
Prioritized aggregation operators.

Garg (2016c) initiated the notion of interval-valued Pythagorean fuzzy average (IVPFA)
operator and interval-valued Pythagorean fuzzy geometric (IVPFG) operator. Khan and
Abdullah (2018) developed interval-valued Pythagorean fuzzy Choquet integral averaging
(IVPFCIA) operator for MADM problems. Khan et al. (2018) established interval-valued
Pythagorean fuzzy Choquet integral geometric (IVPFCIG) operator. Garg (2018c) developed
interval-valuedPythagorean fuzzyweighted exponential averaging (IVPFWEA)operator and
the dual interval-valued Pythagorean fuzzy weighted exponential averaging (DIVPFWEA)
operator.

Sugeno (1974) presented fuzzy measure to model interaction phenomena between the
decision criteria (Kojadinovic 2002) and was utilized in numerous MCDM problems with
inter-dependent decision criteria (Grabisch 1995, 1997). Based on the above discussion,
we can see that in general the supposition of independence of criteria is too strong to be
fulfilled in many MCDM and MCGDM problems. The aggregation operators proposed by
Garg (2016a, 2017a) do not reflect the correlations and the importance between the elements
or their ordered positions.

All of the existing Pythagorean fuzzy aggregation operators only consider situationswhere
all the elements in PFS are independent, i.e., they only consider the addition of the impor-
tance of individual elements. However, in many real-world situations, the elements in PFS
are usually interactive; for instance, Grabisch (1997) and Torra (2003) gave the following
classical example: “Suppose we are to evaluate a set of students in relation to three subjects:
{chemistry, mathematics, literature}, we want to give more importance to science-related
subjects than to literature, but on the other hand we want to give some advantage to students
that are good both in literature and in any of the science-related subjects”. Therefore, we need
to find some new ways to deal with these situations in which the decision data in question
are correlative. The Choquet integral (1954) is a very useful way of measuring the expected
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utility of an uncertain event, and can be used to depict the interactions of the data under
consideration.

Motivated by the interaction properties of Choquet integral in this paper two new aggrega-
tion operators have been studied. For this to aggregate the PFNs, two new operators namely
Pythagorean fuzzy Einstein Choquet integral averaging (PFECIA) operator and Pythagorean
fuzzy Einstein Choquet integral geometric (PFECIG) operator have been developed. More-
over, a method on the basis of presented operators has been developed for solving MADM
problems. It also should be noted that most of the existing operators are the special cases of
the presented operators. The rest of the paper is forming as:

In Sect. 2 a brief review of some basic definitions and operation has been given. In
Sect. 3 based on Choquet integral and Einstein operational laws, Pythagorean fuzzy Einstein
Choquet integral averaging (PFECIA) operator and Pythagorean fuzzy Einstein Choquet
integral geometric (PFECIG) operator has been proposed. Then discuss some basic properties
such as idempotency, boundary andmonotonicity in detail. An algorithm forMCDMproblem
under PFS environment is given in Sect. 4. To show the viability and effectiveness of the
presented method numerical example is given in Sect. 5. Concluding remarks is in Sect. 6.

2 Preliminaries

Atanassov (1986) initiated the notion of intuitionistic fuzzy set (IFS) as a generalization of
fuzzy set initiated by Zadeh and is worth mentioned that IFS is a powerful tool to deal with
imprecision and vagueness. The IFS can be defined as follows:

Definition 1 (Atanasov 1986) Suppose Y � (y1, y2, . . . yn) is a fixed non-empty set, then an
IFS, I in Y can be defined as follows:

I � {(y, μI (yi ), υI (yi ))|y ∈ Y }, (1)

where μI (yi ) and υI (yi ) are mappings from Y to [0, 1], such that 0 � μI (yi ) � 1, 0 �
υI (yi ) � 1 and 0 � μI (yi ) + υI (yi ) � 1, for all y ∈ Y . Let πI (yi ) � 1 − μI (yi ) − υI (yi ),
then it is commonly said to be an intuitionistic fuzzy index of element yi ∈ Y to set I ,
representing the degree of indeterminacy yi to I . Also 0 � πI (yi ) � 1 for every yi ∈ Y .

Since IFS fulfills the situations that the sum of its membership’s degree is � 1. Though in
realworld decisionmaking (DM) theDMmaybedealwith the situationof particular attributes
such that the sum of membership’s degree is>1. Therefore, to overcome this situation Yager
(2013) initiated the concept of Pythagorean fuzzy set (PFS) which full fill the situations that
the square sum of its membership’s degree is � 1. It can be defined as follows:

Definition 2 (Yager 2013) Suppose Y � (y1, y2, . . . yn) is a fixed non-empty set. Then a PFS
B̄ in Y is a structure such as:

B̄ � {(yi , μB̄ (yi ), υB̄ (yi ))|yi ∈ Y }, (2)

where μB̄ (yi ) and υB̄(yi ) are mappings from Y to [0, 1], such that 0 � μB̄ (yi ) � 1, 0 �
υB̄(yi ) � 1 and also 0 � μ2

B̄
(yi ) + υ2

B̄
(yi ) � 1, for all yi ∈ Y , and they denote the

membership degree and nonmembership degree of element yi ∈ Y to set B̄, respectively.

Let πB̄ (yi ) �
√
1 − μ2

B̄
(yi ) − υ2

B̄
(yi ), then it is commonly said to be the Pythagorean fuzzy

index of element yi ∈ Y to set B̄, representing the degree of indeterminacy of yi to B̄.
Also 0 � πB̄(yi ) � 1 for every yi ∈ Y . Zhang and Xu (2014) called the pair (μB̄ , υB̄ ), a
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Pythagorean fuzzy number (PFN) indicated as β̄ with the conditions that 0 � μβ̄ (yi ) � 1,

0 � υβ̄ (yi ) � 1 and also 0 � μ2
β̄
(yi ) + υ2

β̄
(yi ) � 1, for all yi ∈ Y , throughout in this paper a

PFN is denoted by β̄ � (μβ̄, υβ̄ ).

Moreover Zhang and Xu (2014) defined some operational laws to aggregate the PFNs

Definition 3 (Zhang and Xu 2014) Suppose β̄ � (μβ̄, υβ̄ ), β̄1 � (μβ̄1
, υβ̄1

) and β̄2 �
(μβ̄2

, υβ̄2
) are three PFNs, and λ > 0, then their operations are defined as follows:

1.
β̄1 ∪ β̄2 � (max{μβ̄1

, μβ̄2
},min{υβ̄1

, υβ̄2
}), (3)

2. β̄1 ∩ β̄2 � (min{μβ̄1
, μβ̄2

},max{υβ̄1
, υβ̄2

}), (4)

3. β̄c � (υβ̄, μβ̄ ), (5)

4. β̄1 ⊕ β̄2 �
(√

μ2
β̄1

+ μ2
β̄2

− μ2
β̄1

μ2
β̄2

, υβ̄1
υβ̄2

)
, (6)

5. β̄1 ⊗ β̄2 �
(
μβ̄1

μβ̄2
,
√

υ2
β̄1

+ υ2
β̄2

− υβ̄1
υβ̄2

)
, (7)

6. λβ̄ �
(√

1 − (1 − μ2
β̄
)
λ
, υλ

β̄

)
, λ > 0, (8)

7. β̄λ �
(

μλ
β̄
,

√
1 − (1 − υ2

β̄
)
λ
)

, λ > 0. (9)

To compare two PFNs, Zhang and Xu (2014) presented the score function and accuracy
function and developed a total order relation for the comparison between PFNs as follows:

Definition 4 (Zhang andXu2014)Let β̄1 � (μβ̄1
, υβ̄1

) and β̄2 � (μβ̄2
, υβ̄2

) be the twoPFNs.

Then S(β̄1) � μ2
β̄1

− υ2
β̄1

and S(β̄2) � μ2
β̄2

− υ2
β̄2

are the scores of β̄1 and β̄2 respectively,

and H (β̄1) � μ2
β̄1

+ υ2
β̄1

, H (β̄2) � μ2
β̄2

+ υ2
β̄2

are the accuracy degrees of β̄1, β̄2 respectively.
Then we have

(a) If S(β̄1) < S(β̄2), then β̄1 is smaller than β̄2, denoted by β̄1 < β̄2,
(b) If S(β̄1) � S(β̄2), then β̄1 � β̄2.
(c) If H (β̄1) � H (β̄2), then β̄1 and β̄2 represent the same information, i.e., β̄1 � β̄2,
(d) If H (β̄1) < H (β̄2) then β̄1 is smaller than β̄2 denoted by β̄1 < β̄2,
(e) If H (β̄1) > H (β̄2) then β̄1 is greater than β̄2 denoted by β̄1 > β̄2.

Garg (2016a) initiated the Einstein operation for PFNs and analyze some desirable prop-
erties of these operations.

Definition 5 (Garg 2016a) Let β̄ �
(
μβ̄, υβ̄

)
, β̄1 �

(
μβ̄1

, υβ̄1

)
and β̄2 �

(
μβ̄2

, υβ̄2

)
be

the three PFNs, and λ > 0 be any real number. Then,

1.
β̄1⊕εβ̄2 �

⎛
⎜⎜⎝

√
μ2

β̄1
+ μ2

β̄2√
1 + μ2

β̄1
·εμ2

β̄2

,
υβ̄1

·ευβ̄2√
1 +

(
1 − υ2

β̄1

)
·ε
(
1 − υ2

β̄2

)

⎞
⎟⎟⎠, (10)

2.

β̄1 ⊗ε β̄2 �

⎛
⎜⎜⎝

μβ̄1
·ε μβ̄2√

1 +
(
1 − μ2

β̄1

)
·ε
(
1 − μ2

β̄2

) ,

√
υ2

β̄1
+ υ2

β̄2√
1 + υ2

β̄1
·ε υ2

β̄2

⎞
⎟⎟⎠, (11)
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3.

β̄∧ελ �

⎛
⎜⎜⎝

√
2
(
μ2

β̄

)λ

√(
2 − μ2

β̄

)λ

+
(
μ2

β̄

)λ
,

√(
1 + υ2

β̄

)λ −
(
1 − υ2

β̄

)λ

√(
1 + υ2

β̄

)λ

+
(
1 − υ2

β̄

)λ

⎞
⎟⎟⎠, λ > 0, (12)

4.

λ·εβ̄ �

⎛
⎜⎜⎝

√(
1 + μ2

β̄

)λ −
(
1 − μ2

β̄

)λ

√(
1 + μ2

β̄

)λ

+
(
1 − μ2

β̄

)λ
,

√
2
(
υ2

β̄

)λ

√(
2 − υ2

β̄

)δ

+
(
υ2

β̄

)λ

⎞
⎟⎟⎠, λ > 0. (13)

Definition 6 (Garg 2016a) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is the collection of
PFNs with �L , then a PFEWA operator is a mapping PFFWA : Ωn → Ω and

PFEWA(β̄1, β̄2, . . . , β̄n) � w1 ·ε β̄1 ⊕ε w2 ·ε β̄2 ⊕ε · · · ⊕ε wn ·ε β̄n

�

⎛
⎜⎜⎝

√
∏m

i�1

(
1+μ2

β̄i

)wi −∏m
i�1

(
1−μ2

β̄i

)wi

√
∏m

i�1

(
1+μ2

β̄i

)wi
+
∏m

i�1

(
1−μ2

β̄i

)wi
,

√
2
∏m

i�1

(
υ2

β̄i

)wi

√
∏m

i�1

(
2−υ2

β̄i

)wi
+
∏m

i�1

(
υ2

β̄i

)wi

⎞
⎟⎟⎠, (14)

where w � (w1, w2, . . . , wm)T is the weighted vector of β̄i (i � 1, 2, . . . ,m) such that wi ∈
[0, 1] and

∑m
i�1 wi � 1.

Definition 7 (Garg 2017a) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is the collection of
PFNs with �L , then an PFEWG operator is a mapping PFEWG : Ωn → Ω, and

PFEWG(β̄1, β̄2, . . . , β̄n) � β̄
∧εw1
1 ⊗ε β̄

∧εw2
2 ⊗ε · · · ⊗ε β̄∧εwn

n

�

⎛
⎜⎜⎝

√
2
∏m

i�1

(
μ2

β̄i

)wi

√
∏m

i�1

(
2−μ2

β̄i

)wi
+
∏m

i�1

(
μ2

β̄i

)wi
,

√
∏m

i�1

(
1+υ2

β̄i

)wi −∏m
i�1

(
1−υ2

β̄i

)wi

√
∏m

i�1

(
1+υ2

β̄i

)wi
+
∏m

i�1

(
1−υ2

β̄i

)wi

⎞
⎟⎟⎠, (15)

where w � (w1, w2, . . . , wm)T is the weighted vector of β̄i (i � 1, 2, . . . ,m) such that wi ∈
[0, 1] and

∑m
i�1 wi � 1.

2.1 Fuzzymeasure and Choquet integral

In this subsection some basic definitions such as fuzzymeasure, λ-fuzzymeasure and discrete
Choquet integral are given.

Definition 8 (Sugeno 1974) Let Y � {y1, y2, . . . , yn} be a fixed set and P(Y ) be the power
set of Y . Then a set function μ : P(Y ) → [0, 1] is said to be a fuzzy measure μ on Y if it
fulfills the following properties:

1. μ(φ) � 0, μ(Y ) � 1.

123



128 Page 6 of 35 M. S. A. Khan

2. If U , V ∈ P(Y ) and U ⊆ V then μ(U ) � μ(V ) .

“However, it is essential to add the conditions of continuity whenever Y is infinite, it is
sufficient to assume a finite fixed set in real exercise. μ({y1, y2, . . . , yn}) can be assumed
as the rating of subjective status of decision criteria set {y1, y2, . . . , yn}. Therefore, with
the discrete weights of criteria, weights of any arrangement of criteria can also be defined.
Intuitively, we could say the following of pair of criteria sets U , V ∈ P(X ), U ∩ V � φ: U
and V are assumed to be without interaction (or to be independent)” if

μ(U ∪ V ) � μ(U ) + μ(V ), (16)

μ is said to be an additive measureU andV show a positive synergetic interaction between
them (or are complementary) if

μ(U ∪ V ) > μ(U ) + μ(V ), (17)

μ is said to be a superadditive measure U and V show a negative synergetic interaction
between them (or are redundant or substitutive) if

μ(U ∪ V ) < μ(U ) + μ(V ), (18)

μ is said to be a sub-additive measure.
“Clearly it is hard to compute the fuzzy measure based on Definition (8). Thus, to confirm

a fuzzy measure in MCGDM problems, Sugeno (1974) developed a λ-fuzzy measure which
can be defined as:

μ(U ∪ V ) � μ(U ) + μ(V ) + λμ(U )μ(V ), (19)

λ ∈ [−1,∞),U ∩ V � φ. The parameter λ computes interaction among the criteria. In
Eq. (19), if λ � 0, λ-fuzzy measure reduces to only an additive measure. And for negative
and positive λ, the λ-fuzzy measure reduces to sub-additive and superadditive measures,
respectively. However, when all the elements in Y are independent”, then we get,

μ(U ) �
n∑

i�1

μ({yi}). (20)

If Y is a finite set, then ∪n
i�1{yi } � Y . The λ-fuzzy measure μ fulfills the following

Eq. (21)

μ(Y ) � μ
(∪n

i�1{yi }
) �

⎧
⎪⎪⎨
⎪⎪⎩

1
λ

(
n∏

i�1
[1 + λμ(yi )] − 1

)
if λ �� 0

n∑
i�1

μ(yi ) if λ � 0
, (21)

here yi ∩ y j � φ ∀i, j � 1, 2, . . . , n and i �� j . It should be noted that for a subset with a
single element yi , μ(yi ) is said to be a fuzzy density and can be indicated as μi � μ(yi ).

Particularly for each subset U ∈ P(Y ), we have

μ(U ) �

⎧
⎪⎪⎨
⎪⎪⎩

1
λ

(
n∏

i�1
[1 + λμ(yi )] − 1

)
if λ �� 0

n∑
i�1

μ(yi ) if λ � 0
, (22)
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On the basis of Eq. (2), λ can be uniquely computed from μ(Y ) � 1, which is equivalent
to solving

λ + 1 �
n∏

i�1

[1 + λμi ]. (23)

Definition 9 (Choquet 1954) Let μ be a fuzzy measure on Y and g a positive real-valued
function on Y . The discrete Choquet integral of g with respect to μ can be defined as:

Cμ(g) �
n∑

i�1

gσ (i)[μ(�σ (i)) − μ(�σ (i−1))] (24)

where σ (i) shows a permutation on Y such that gσ (1) � gσ (2) � · · · � gσ (n), �σ (i) �
{1, 2, . . . , i}, �σ (0) � φ .

Definition 10 (Peng and Yang 2016) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collec-
tion of PFNs and λ be a fuzzy measure on Y . Then a Pythagorean fuzzy Choquet integral
average (PFECIA) operator based on fuzzy measure is a mapping PFCIA : Ωm → Ω

such that

PFCIA
(
β̄1, β̄2, . . . , β̄m

) �
〈√√√√1 −

m∏
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ(i))−λ(�σ(i−1))
,

n∏
i�1

(
υβ̄σ(i)

)λ(�σ(i))−λ(�σ(i−1))
〉
, (25)

where {σ(1), σ (2), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) �
· · · � β̄σ (m) and �σ(k) � {

yσ (k)|i � k
}
for k � 1, and �σ (0) � φ.

Definition 11 (Peng and Yang 2016) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collec-
tion of PFNs and λ be a fuzzy measure on Y . Then a Pythagorean fuzzy Choquet integral
average (PFECIA) operator on fuzzy measure is a mapping PFCIG : Ωm → Ω such that

PFCIG
(
β̄1, β̄2, . . . , β̄m

) �
〈

m∏
i�1

(
μβ̄σ(i)

)λ(�σ(i))−λ(�σ(i−1))
,

√√√√1 −
m∏
i�1

(
1 − υ2

β̄σ (i)

)λ(�σ(i))−λ(�σ(i−1))
〉
, (26)

where {σ(1), σ (2), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) �
· · · � β̄σ (m) and �σ(k) � {

yσ (k)|i � k
}
for k � 1, and �σ (0) � φ.

3 Pythagorean fuzzy Einstein Choquet integral aggregation operator

In this section based on Choquet integral and Einstein operations in we develop Pythagorean
fuzzy Einstein Choquet integral average (PFECIA) Pythagorean fuzzy Einstein Choquet
integral geometric (PFECIG) operator.Wediscuss some properties of the developed operators
like idempotency, monotonicity and boundary detail.
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Definition 12 Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of PFNs and λ be a
fuzzy measure on Y . Then a Pythagorean fuzzy Einstein Choquet integral average (PFECIA)
operator based on fuzzy measure is a mapping PFECIA : Ωm → Ω such that

PFECIA
(
β̄1, β̄2, . . . , β̄m

) �
(

λ(�σ (1)) − λ(�σ (0)) ·ε β̄1 ⊕ε λ(�σ (2))−
λ(�σ (1)) ·ε β̄2 ⊕ε · · · ⊕ε λ(�σ (m)) − λ(�σ (m−1)) ·ε β̄m

)
,

(27)

where {σ(1), σ (2), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) �
· · · � β̄σ (m) and �σ(k) � {

yσ (k)|i � k
}
for k � 1, and �σ (0) � φ.

Theorem 1 Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of PFNs and λ be a
fuzzy measure on Y. Then,

PFECIA(β̄1, β̄2, . . . , β̄m ) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏m

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))−∏m
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏m

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
,

√
2
∏m

i�1

(
υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏m

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(28)

where {σ(1), σ (2), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) �
· · · � β̄σ (m) and �σ(k) � {

yσ (k)|i � k
}
for k � 1, and �σ (0) � φ.

Proof Equation (28) can be shown based on mathematical induction. First to show that
Eq. (28) holds for m � 2 we have,

λ(�σ (1)) − λ(�σ (0)) ·ε β̄1 �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
1+μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))−
(
1−μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

√(
1+μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

+

(
1−μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
,

√
2

(
υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

√(
2−υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

+

(
υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

λ(�σ (2)) − λ(�σ (1)) ·ε β̄2 �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
1+μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))−
(
1−μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

√(
1+μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

+

(
1−μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))
,

√
2

(
υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

√(
2−υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

+

(
υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
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Now from (28) we have,

PFECIA
(
β̄1, β̄2

) � λ(�σ (1)) − λ(�σ (0)) ·ε β̄1 ⊕ε λ(�σ (2)) − λ(�σ (1)) ·ε β̄2

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
1+μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))−
(
1−μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

√(
1+μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

+

(
1−μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
,

√
2

(
υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

√(
2−υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

+

(
υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
1+μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))−
(
1−μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

√(
1+μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

+

(
1−μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))
,

√
2

(
υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

√(
2−υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

+

(
υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
1+μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(
1+μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))−
(
1−μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(
1−μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

√(
1+μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(
1+μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

+

(
1−μ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(
1−μ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))
,

√
2

(
υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(

υ2
β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

√(
2−υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(
2−υ2

β̄σ (2)

)λ(�σ (2))−λ(�σ (1))

+

(
υ2

β̄σ (1)

)λ(�σ (1))−λ(�σ (0))
(

υ2
β̄σ (2)

)λ(�σ (1))−λ(�σ (0))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏2

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))−∏2
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

√
∏2

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏2

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))
,

√
2
∏2

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

√
∏2

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏2

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This shows that Eq. (28) satisfies for m � 2. Now suppose, Eq. (28) satisfies for m � k,
that is

PFECIA(β̄1, β̄2, . . . , β̄k ) �
(

λ(�σ (1)) − λ(�σ (0)) ·ε β̄1 ⊕ε λ(�σ (2))−
λ(�σ (1)) ·ε β̄2 ⊕ε · · · ⊕ε λ(�σ (k)) − λ(�σ (k−1)) ·ε β̄k

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏k

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))−∏k
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏k

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏k

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
,

√√√√2
∏k

i�1

(
υ2
β̄σ (i)

)λ(Ĉσ (i))−λ(Ĉσ (i−1))

√
∏k

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏k

i�1

(
υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Next we show that Eq. (28) satisfies for m � k + 1, by the Einstein operational laws of the
PFNs we have,

PFECIA
(
β̄1, β̄2, . . . , β̄k+1

)

�
(

λ(�σ (1)) − λ(�σ (0)) · ε β̄1 ⊕ε λ(�σ (2)) − λ(�σ (1)) · ε β̄2 ⊕ε · · · ⊕ε

λ(�σ (k)) − λ(�σ (k−1)) · ε β̄k ⊕ε λ(�σ (k+1)) − λ(�σ (k)) · ε β̄k+1

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏k

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )−∏k
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

√
∏k

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

+
∏k

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
,

√
2
∏k

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

√
∏k

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

+
∏k

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√(
1+μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )−
(
1−μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

√(
1+μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

+

(
1−μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )
,

√
2

(
υ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

√(
2−υ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

+

(
υ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏k

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(
1+μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )−∏k
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(
1−μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

√
∏k

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(
1+μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

+
∏k

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(
1−μ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )
,

√
2
∏k

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(

υ2
β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

√
∏k

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(
2−υ2

β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

+
∏k

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
(

υ2
β̄σ (k+1)

)λ(�σ (k+1) )−λ(�σ (k) )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏k+1

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )−∏k
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

√
∏k+1

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

+
∏k+1

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )
,

√
2
∏k+1

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

√
∏k+1

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

+
∏k+1

i�1

(
υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1) )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

That is Eq. (28) satisfies for m � k + 1. Thus, Eq. (28) satisfies ∀ m. This completes the
proof.

Lemma 1 (Xu 2000) Let β̄i > 0, wi > 0 (i � 1, 2, . . .m) and
∑m

i�1 wi � 1, then

m∏
i�1

(β̄i )
wi �

m∑
i�1

wi β̄i ,

where the equality holds if and only if β̄1 � β̄2 � · · · � β̄m .

Theorem 2 Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of PFNs. Then the

aggregated value using PFECIA operator is also a PFN , i.e., PFECIA
(
β̄1, β̄2, . . . , β̄m

) ∈
PFNs, where {σ(1), σ (2), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) �
β̄σ (2) � · · · � β̄σ (m) and �σ(k) � {

yσ (k)|i � k
}
for k � 1, and �σ (0) � φ.
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Proof As we know that β̄i � (μβ̄i
, υβ̄i

) ∈ PFNs,(i � 1, 2, . . . ,m), so by definition of PFNs

we have 0 � μβ̄i
� 1, 0 � υβ̄i

� 1 and μ2
β̄i
+ υ2

β̄i
� 1. Thus,

∏m
i�1

(
1 + μ2

β̄
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

−∏m
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

� 1 −
2
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

≤ 1 −
m∏
i�1

(1 − μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

. (29)

�

Also,

1 + μ2
β̄σ (i)

≥ 1 − μ2
β̄σ (i)

⇒
m∏
i�1

(1 + μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) −
m∏
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) ≥ 0

⇒
∏m

i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) −∏m
i�1

(
1 − μ2

β̄σ ( j)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
≥ 0

.

Hence, 0 ≤ μβ̄PFEPWA
≤ 1.

Similarly,

2
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

≤
m∏
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) ≤ 1

.

Also,

m∏
i�1

(
υβ̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) ≥ 0

⇔
2
∏m

i�1

(
υβ̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
≥ 0

Hence, 0 ≤ υβ̄PFEPWA
≤ 1.
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Furthermore,

μ2
β̄PFECIA

+ υ2
β̄PFECIA

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) −∏m
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+

2
∏m

i�1

(
υβ̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 1 −
2
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄σ ( j)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ ( j))−λ(�σ (i−1))

+
2
∏m

i�1

(
υβ̄σ (i)

)λ(�σ ( j))−λ(�σ (i−1))

∏m
i�1

(
1 + υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
≤ 1

.

Thus, PFECIA ∈ [0, 1]. Therefore, PFNs aggregated by PFECIA operator is again a PFN.

Theorem 3 Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of PFNs and λ be a
fuzzy measure on Y such that

∑m
i�1 λ(�σ (i)) − λ(�σ (i−1)) � 1. Then,

PFECIA
(
β̄1, β̄2, . . . , β̄m

)
� PFCIA

(
β̄1, β̄2, . . . , β̄m

)
, (30)

where {σ (1), σ (1), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) �
· · · � β̄σ (m) and �σ(k) � {yσ (k)|i � k} for k � 1, and �σ (0) � φ.

Proof Let PFECIA(β̄1, β̄2, . . . , β̄n) � (με

β̄
, υε

β̄
) � β̄ε and PFCIA(β̄1, β̄2, . . . , β̄n) �

(μβ̄, υβ̄ ) � β̄. As we know that√√√√
m∏
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+

m∏
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
m∑
i�1

λ(�σ (i)) − λ(�σ (i−1))
(
1 + μ2

β̄σ (i)

)
+

m∑
i�1

λ(�σ (i)) − λ(�σ (i−1))
(
1 − μ2

β̄σ (i)

)

� √
2

.

�
Thus from Eq. (29) we have√√√√√√

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) −∏m
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1 + μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√1 −
m∏
i�1

(
1 − μβ̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔ μ ≤ μβ̄

, (31)
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where the quality holds if and only if μ2
β̄i
(i � 1, 2, . . . ,m) are equal. Again as we know that

√√√√
m∏
i�1

(2 − υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1)) +
m∏
i�1

(υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
m∑
i�1

λ(�σ (i)) − λ(�σ (i−1))(2 − υ2
β̄σ (i)

) +
m∑
i�1

λ(�σ (i)) − λ(�σ (i−1))
(
υ2

β̄σ (i)

)
� √

2.

.

Thus,

√
2
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∑m

i�1 λ(�σ (i))−λ(�σ (i−1))

(
1−υ2

β̄σ (i)

)
+
∑m

i�1 λ(�σ (i))−λ(�σ (i−1))

(
υ2

β̄σ (i)

)

≥

√
2
∏m

i�1

(
υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏m

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�
m∏
i�1

(
υβ̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔ υε

β̄
≥ υβ̄, (32)

where the quality holds if and only if υβ̄i
(i � 1, 2, . . . ,m) are equal.

Then Eqs. (31), (32) can be transformed into the following forms: μβ̄ � μβ̄ε and υβ̄ �
υβ̄ε respectively. Hence, S(β̄) � μ2

β̄
− υ2

β̄
� μ2

β̄ε − υ2
β̄ε � S(β̄ε). So S(β̄) � S(β̄ε). If

S(β̄) > S(β̄ε). Then we have

PFCIA
(
β̄1, β̄2, . . . , β̄m

)
> PFECIA

(
β̄1, β̄2, . . . , β̄m

)
. (33)

If S(β̄) � S(β̄ε), i.e.,μ2
β̄
−υ2

β̄
� μ2

β̄ε −υ2
β̄ε , then we have H (β̄) � μ2

β̄
+υ2

β̄
� μ2

β̄ε +υ2
β̄ε �

H (β̄ε). Thus we have

PFCIA
(
β̄1, β̄2, . . . , β̄m

) � PFECIA
(
β̄1, β̄2, . . . , β̄m

)
. (34)

From Eqs. (33) to (34) we have Eq. (30) always holds, where the equality holds if and
only if β̄i (i � 1, 2, . . . ,m) are equal. Thus,

PFCIA(β̄1, β̄2, . . . , β̄m) ≥ PFECIA(β̄1, β̄2, . . . , β̄m)

Example 1 Let β̄1 � (0.6, 0.7), β̄2 � (0.8, 0.5) and β̄3 � (0.9, 0.4) be the three PFNs.
Let μ(�1) � 0.35, μ(�2) � 0.3, μ(�3) � 0.25, then λ of β̄1, β̄2, β̄3 can be determine as
λ � 0.36. Thus by Eq. (7) we calculate μ(�1,�2) � 0.69, μ(�1,�3) � 0.63, μ(�2,�3) �
0.58, μ(�1,�2,�3) � 1. By Definition 4, β̄i (i � 1, 2, 3) is reordered such that β̄i > β̄(i−1).
Hence
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PFECIA
(
β̄1, β̄2, β̄3

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏3

i�1

(
1+μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))−∏3
i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏3

i�1

(
1+μ2

β̄σ (i)

)λ(�σ ( j))−λ(�σ ( j−1))

+
∏3

i�1

(
1−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
,

√
2
∏3

i�1

(
υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏3

i�1

(
2−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏3

i�1

(
υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (0.7734, 0.5499)

S(PFECIA(β̄1, β̄2, β̄3)) � 0.2235

.

Now using PFCIA operator, we have

PFCIA
(
β̄1, β̄2, β̄3

) �
⎛
⎝
√√√√1 −

3∏
i�1

(
1 − μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
,

3∏
i�1

(
υβ̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
⎞
⎠

� (0.7806, 0.5447)

S
(
PFCIA

(
β̄1, β̄2, β̄3

)) � 0.2359

.

Thus, from the above example, we have
PFECIA

(
β̄1, β̄2, β̄3

)
� PFCIA

(
β̄1, β̄2, β̄3

)
.

The PFECIA operator has the following properties:

Theorem 4 (Idempotency) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of
PFNs and λ be a fuzzy measure on Y:

PFECIA(β̄1, β̄2, . . . , β̄m) � β̄. (35)

Proof We have,

PFECIA(β̄1, β̄2, . . . , β̄m) �PFECIA(β̄, β̄, . . . , β̄)

�
(

λ(�σ (1)) − λ(�σ (0)) ·ε β̄ ⊕ε λ(�σ (2)) − λ(�σ (1))

·εβ̄ ⊕ε · · · ⊕ε λ(�σ (m)) − λ(�σ (m−1)) ·ε β̄

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√∏m
i�1

(
1+μ2

β̄

)λ(�σ (i))−λ(�σ (i−1))−∏m
i�1

(
1−μ2

β̄

)λ(�σ (i))−λ(�σ (i−1))

√∏m
i�1

(
1+μ2

β̄

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
1−μ2

β̄

)λ(�σ (i))−λ(�σ (i−1))
,

√
2
∏m

i�1

(
υ2

β̄

)λ(�σ (i))−λ(�σ (i−1))

√∏m
i�1

(
2−υ2

β̄

)λ(�σ (i))−λ(�σ (i−1))
+
∏m

i�1

(
υ2

β̄

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

�
(
1+μβ̄−1−μβ̄

1+μβ̄+1−μβ̄
,

2υβ̄

2−υβ̄+υβ̄

)
� (μβ̄, υβ̄ ) � β̄

.

(36)

�

This completes the proof.

Theorem 5 (Boundary) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of PFNs
and λ a fuzzy measure on Y. Where {σ (1), σ (2), . . . , σ (m)} is a permutation of {1, 2, . . . ,m}
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such that β̄σ (1) � β̄σ (2) � · · · � β̄σ (m) and �σ(k) � {
yσ (k)|i � k

}
for k � 1, and �σ (0) � φ.

If β̄min � min
(
β̄i
)
, β̄max � max

(
β̄i
)
. Then

β̄min � PFECIA(β̄1, β̄2, . . . , β̄n) � β̄max (37)

Proof Let, g(a) �
√

2−a2

a2
, a ∈ (0, 1]. Then, g′(x) � −2

a3

√
a2

2−a2
< 0. So g(x) is decreasing

function on (0, 1]. Since, μβ̄min
� μβ̄i

� μβ̄max
, for all i . Then g

(
μβ̄max

)
� g

(
μβ̄i

)
�

g
(
μβ̄min

)
(i � 1, 2, . . . ,m) i.e.,

√
2−μ2

β̄max

μ2
β̄max

�
√

2−μ2
β̄i

μ2
β̄i

�
√

2−μ2
β̄min

μ2
β̄min

and since �σ(i) ⊇
�σ(i−1), then λ(�σ (i)) − λ(�σ (i−1)) � 0. Let {σ (1), σ (2), . . . , σ (m)} is a permutation of
{1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) � · · · � β̄σ (m), we have,√√√√

m∏
i�1

(
2−μ2

β̄max

μ2
β̄max

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√ m∏
i�1

(
2−μ2

β̄σ (i)

μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
m∏
i�1

(
2−μ2

β̄min
μ2

β̄min

)λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√( 2−μ2

β̄max

μ2
β̄max

)∑m
i�1 λ(�σ (i))−λ(�σ (i−1))

�

√√√√ m∏
i�1

(
2−μ2

β̄σ (i)

μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√( 2−μ2
β̄min

μ2
β̄min

)∑m
i�1 λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√( 2−μ2

β̄max

μ2
β̄max

)∑m
i�1 λ(�σ (i))−λ(�σ (i−1))

�

√√√√
m∏
i�1

(
2−μ2

β̄i
μ2

β̄i

)λ(�σ (i))−λ(�σ (i−1))

�
√(

2−μ2
β̄min

μ2
β̄min

)

⇔
√(

2−μ2
β̄max

μ2
β̄max

)
+ 1

�

√√√√ m∏
i�1

(
2−μ2

β̄σ (i)

μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+ 1

�
√(

2−μ2
β̄min

μ2
β̄min

)
+ 1

⇔
√
2√

μ2
β̄max
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�

√√√√ m∏
i�1

(
2−μ2

β̄i
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+ 1

�
√
2√

μ2
β̄min

⇔
√

μ2
β̄min√
2

� 1√√√√√∏m
i�1

⎛
⎝
2−μ2

β̄σ (i)

μ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))

+1

�
√

μ2
β̄max√
2

⇔
√

μ2
β̄min

�
√
2√√√√√∏m

i�1

⎛
⎝
2−μ2

β̄σ (i)

μ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))

+1

�
√

μ2
β̄max

⇔ μβ̄min

�
√
2√√√√√∏m

i�1

⎛
⎝
2−μ2

β̄σ (i)

μ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))

+1

� μβ̄max

⇔ μβ̄min

�
√
2√√√√√√√√√

∏m
i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

� μβ̄max

⇔ μβ̄min

�
√
2√√√√∏m

i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

� μβ̄max

⇔ μβ̄min

�

√√√√
2
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

� μβ̄max
. (38)

�
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Again let, h(b) �
√

1−b2

1+b2
, b ∈ [0, 1]. Then, h′(b) � −2b

(1+b2)
2

√
1+b2

1−b2
< 0. Since h(b)

is a decreasing function on [0, 1]. Thus, υβ̄max
� υβ̄ j

� υβ̄min
for all i . Then h(υβ̄min

) �

h(υβ̄i
) � h(υβ̄max

) for all i . i.e.,

√
1−υ2

β̄min
1+υ2

β̄min

�
√

1−υ2
β̄σ (i)

1+υ2
β̄σ (i)

�
√

1−υ2
β̄max

1+υ2
β̄max

, (i � 1, 2, . . . ,m), and

let λ(�σ (i))−λ(�σ (i−1)) > 0(i � 1, 2, . . . ,m) and
∑m

i�1 λ(�σ (i))−λ(�σ (i−1)) � 1, we have

⇔
√√√√
(

1−υ2
β̄min

1+υ2
β̄min

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
(

1−υ2
β̄σ (i)

1+υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�
√(

1−υ2
β̄max

1+υ2
β̄max

)λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√

m∏
i�1

(
1−υ2

β̄min
1+υ2

β̄min

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√ m∏
i�1

(
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�
√√√√

m∏
i�1

(
1−υ2

β̄max

1+υ2
β̄max

)λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√( 1−υ2

β̄min
1+υ2

β̄min

)∑m
i�1 λ(�σ (i))−λ(�σ (i−1))

�

√√√√ m∏
i�1

(
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�
√(

1−υ2
β̄max

1+υ2
β̄max

)λ(�σ (i))−λ(�σ (i−1))

⇔
√(

1−υ2
β̄min

1+υ2
β̄min

)
+ 1 �

√√√√ m∏
i�1

(
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+ 1

�
√(

1−υ2
β̄max

1+υ2
β̄max

)
+ 1

⇔
√
2√

1+υ2
β̄min

�

√√√√
m∏
i�1

(
1−υ2

β̄i
1+υ2

β̄i

)λ(�σ (i))−λ(�σ (i−1))

+ 1

�
√
2√

1+υ2
β̄max

⇔
√
1 + υ2

β̄max

�
√
2√√√√√√

m∏
i�1

⎛
⎝
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

⎞
⎠

λ(Ĉσ (i) )−λ(Ĉσ (i−1))

+1

�
√
1 + υ2

β̄min

⇔
√
1 + υ2

β̄max

�
√
2√√√√√√√√

∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

�
√
1 + υ2

β̄min
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⇔
√
1 + υ2

β̄max
�

√
2

√
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

√
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

�
√
1 + υ2

β̄min

⇔
√
1 + υ2

β̄max
�

√
2
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

√
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

�
√
1 + υ2

β̄min

⇔
√
1 + υ2

β̄max
�

√√√√√√
2
∏m

j�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

�
√
1 + υ2

β̄min

⇔
√
1 + υ2

β̄max
− 1 �

√√√√√√
2
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))
− 1

�
√
1 + υ2

β̄min
− 1

⇔
√

υ2
β̄max

�

√√√√√√
2
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))−∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))−∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

�
√

υ2
β̄min

⇔ υβ̄max
�

√
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))−∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

√
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

+
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i) )−λ(�σ (i−1))

� υβ̄min
. (39)

Let PFECIA(β̄1, β̄2, . . . , β̄n) � β̄. Then Eqs. (38) and (39) can be written as: μβ̄min
�

μβ̄ � μβ̄max
and υβ̄max

� υβ̄ � υβ̄min
, respectively. Thus S(β̄) � μ2

β̄
− υ2

β̄
� μ2

β̄max
−

υ2
β̄max

� S(β̄max) and S(β̄) � μ2
β̄

− υ2
β̄

� μ2
β̄min

− υ2
β̄min

� S(β̄min). If, S(β̄) < S(β̄max) and

S(β̄) > S(β̄min). Then we have

β̄min < PFECIA(β̄1, β̄2, . . . , β̄n) < β̄max. (40)

If S(β̄) � S(β̄max) i.e., μ2
β̄

− υ2
β̄

� μ2
β̄max

− υ2
β̄max

. Then we have μ2
β̄

� μ2
β̄max

and

υ2
β̄

� υ2
β̄max

. Thus H (β̄) � μ2
β̄
+ υ2

β̄
� μ2

β̄max
+ υ2

β̄max
� H (β̄max). Hence

PFECIA(β̄1, β̄2, . . . , β̄n) � β̄max. (41)

If S(β̄) � S(β̄min) i.e., μ2
β̄

− υ2
β̄

� μ2
β̄min

− υ2
β̄min

. Then we have μ2
β̄

� μ2
β̄min

and

υ2
β̄

� υ2
β̄min

. Thus, H (β̄) � μ2
β̄
+ υ2

β̄
� μ2

β̄min
+ υ2

β̄min
� H (β̄min). Thus

PFECIA(β̄1, β̄2, . . . , β̄n) � β̄min. (42)
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Thus from Eqs. (40) to (44) we have Eq. (37) always holds. Thus

β̄min � PFECIA(β̄1, β̄2, . . . , β̄m) ≤ β̄max.

Theorem 6 (Monotonicity) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of

PFNs and λ a fuzzy measure on Y. Let β̄∗
i � (μ∗̄

βi
, υ ∗̄

βi
)(i � 1, 2, . . . ,m) be a collection

of PFNs. Then

PFECIA(β̄1, β̄2, . . . , β̄m) � PFECIA(β̄∗
1 , β̄∗

2 , . . . , β̄∗
m) (43)

where {σ (1), σ (1), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) � β̄σ (2) �
· · · � β̄σ (m) and �σ(k) � {yσ (k)|i � k} for k � 1, and �σ (0) � φ.

Proof Let, g(x) �
√

2−a2

a2
, a ∈ (0, 1]. Then, g′(a) � −2

a3

√
a2

2−a2
< 0. Since g(a) is decreas-

ing function on (0, 1]. If μβ̄i
� μβ̄∗

i
for all i . Then, g(μβ̄∗

i
) � g(μβ̄i

)(i � 1, 2, . . . ,m). i.e.,√√√√ 2−μ2
β̄∗
σ (i)

μ2
β̄∗
σ (i)

�
√

2−μ2
β̄σ (i)

μ2
β̄σ (i)

, (i � 1, 2, . . . ,m).

we have,

⇔
√√√√
(

2−μ2
β̄∗
σ (i)

μ2
β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
(

2−μ2
β̄σ (i)

μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√ m∏

i�1

(
2−μ2

β̄∗
σ (i)

μ2
β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√ m∏
i�1

(
2−μ2

β̄σ (i)

μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√ m∏

i�1

(
2−μ2

β̄∗
σ (i)

μ2
β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+ 1 �

√√√√ m∏
i�1

(
2−μ2

β̄σ (i)

μ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+ 1

⇔ 1√√√√√ m∏
i�1

⎛
⎝
2−μ2

β̄σ (i)

μ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))

+1

� 1√√√√√√
m∏
i�1

⎛
⎜⎝
2−μ2

β̄∗
σ (i)

μ2
β̄∗
σ (i)

⎞
⎟⎠

λ(�σ (i))−λ(�σ (i−1))

+1

⇔
√
2√√√√√ m∏

i�1

⎛
⎝
2−μ2

β̄σ (i)

μ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))

+1

�
√
2√√√√√√

m∏
i�1

⎛
⎜⎝
2−μ2

β̄∗
σ (i)

μ2
β̄∗
σ (i)

⎞
⎟⎠

λ(�σ (i))−λ(�σ (i−1))

+1

⇔
√
2√√√√∏m

i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�
√
2√√√√∏m

i�1

(
2−μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
μ2

β̄∗
σ (i)

)λ(�σ (I ))−λ(�σ (I−1))
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⇔
√
2

√√√√∏m
i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√
2

√√√√∏m
i�1

(
μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
2−μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔

√√√√
2
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
2
∏m

i�1

(
μ2

β̄∗
σ ( j)

)λ(ℵσ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
2−μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))
. (44)

�

Again let, h(b) �
√

1−b2

1+b2
, b ∈ [0, 1], then h′(b) � −2b

(1+b2)
2

√
1+b2

1−b2
< 0. Since h(b) is a

decreasing function on (0, 1]. If υβ̄ j
� υβ̄∗

j
for all i. Then h(υβ̄∗

j
) � h(υβ̄ j

) for all i . i.e.,√√√√ 1−υ2
β̄∗
σ (i)

1+υ2
β̄∗
σ (i)

�
√

1−υ2
β̄σ (i)

1+υ2
β̄σ (i)

, (i � 1, 2, . . . ,m). Now,

⇔
√√√√ m∏

i�1

(
1−υ2

β̄∗
σ (i)

1+υ2
β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√ m∏
i�1

(
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔
√√√√1 +

m∏
i�1

(
1−υ2

β̄∗
σ (i)

1+υ2
β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√1 +
m∏
i�1

(
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔ 1√√√√√1+
∏m

i�1

⎛
⎝
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))
� 1√√√√√√1+

∏m
i�1

⎛
⎜⎝
1−υ2

β̄∗
σ (i)

1+υ2
β̄∗
σ (i)

⎞
⎟⎠

λ(�σ (i))−λ(�σ (i−1))

⇔
√
2√√√√√1+

∏m
i�1

⎛
⎝
1−υ2

β̄σ (i)

1+υ2
β̄σ (i)

⎞
⎠

λ(�σ (i))−λ(�σ (i−1))
�

√
2√√√√√√1+

∏m
i�1

⎛
⎜⎝
1−υ2

β̄∗
σ (i)

1+υ2
β̄∗
σ (i)

⎞
⎟⎠

λ(�σ (i))−λ(�σ (i−1))

⇔
√
2√√√√√√√√

∏m
i�1

(
1+υ2

β̄σ (i)

)
‘λ(�σ (i))−λ(�σ (i−1))+

∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
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�
√
2√√√√√√√√√

∏m
i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔

√√√√
2
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√
2
∏m

i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⇔

√√√√√√√
2
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
− 1

�

√√√√√√√
2
∏m

j�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ ( j))−λ(�σ (i−1))

∏m
i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))
− 1

⇔

√√√√∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

−∏m
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

�

√√√√∏m
i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

−∏m
i�1

(
1−υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
1+υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄∗
σ (i)

)λ(�σ (i))−λ(�σ (i−1))
. (45)

Let, PFECIA(β̄1, β̄2, . . . , β̄m) � β̄ and PFECIA(β̄∗
1 , β̄∗

2 , . . . , β̄∗
m) � β̄∗.

Then (44) and (45) can be transformed into the following forms:μβ̄ � μβ̄∗ andυβ̄////υβ̄∗
respectively. Since S(β̄) � μ2

β̄
− υ2

β̄
� μ2

β̄∗ − υ2
β̄∗ � S(β̄∗). Thus, S(β̄) � S(β̄∗). If

S(β̄) < S(β̄∗), Then we have

PFECIA(β̄1, β̄2, . . . , β̄m) < PFECIA(β̄∗
1 , β̄∗

2 , . . . , β̄∗
m). (46)

If S(β̄) � S(β̄∗). i.e., μ2
β̄

− υ2
β̄

� μ2
β̄∗ − υ2

β̄∗ , then we have μ2
β̄

� μ2
β̄∗ and υ2

β̄
� υ2

β̄∗ .

Thus, H (β̄) � μ2
β̄
+ υ2

β̄
� μ2

β̄∗ + υ2
β̄∗ � H (β̄∗). Then we have

PFECIA(β̄1, β̄2, . . . , β̄m) � PFECIA(β̄∗
1 , β̄∗

2 , . . . , β̄∗
m). (47)

From Eqs. (46) to (47), we have

PFECIA(β̄1, β̄2, . . . , β̄m) � PFECIA(β̄∗
1 , β̄∗

2 , . . . , β̄∗
m)
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This completes the proof. �

Theorem 7 Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m), ρ̄i � (μρ̄i , υρ̄i ) (i � 1, 2, . . . ,m)are
two collections of PFNs on Y and λ be a fuzzy measure on Y. Where {σ(1), σ (2), . . . , σ (m)}
is a permutation of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥ · · · ≥ β̄σ (m) and �σ(k) �{
yσ (k)|i ≤ k

}
for k ≥ 1, and ℵσ (0) � φ. Then the following statements are equivalent:

1. For ℵ,�∈P(Y ) such that |ℵ| � |�|, we have λ(ℵ) � λ(�).
2. There is an exponential weighted vector w � (w1, w2, . . . , wm) such that

PFECIA
(
β̄1, β̄2, . . . , β̄m

) � PFEOWAw

(
β̄1, β̄2, . . . , β̄m

)

Proof Proof of the Theorem is same as Proposition 1 (Sect. 4.2) in (Marichal 2002). �

Remark Assume that PFEWA operator has an exponential weighted vector w �
(w1, w2, . . . , wm)T. Then by Theorem 1 it is clear that λ is an additive fuzzy measure
λ(�) � ∑

i∈ℵ wi , PFECIA operator will be reduce to a PFEWA operator, where wi � λ(i).
Conversely it is clear that PFEWA is a PFECIA operator with additive fuzzy measure λ:
λ(�) � ∑

i∈ℵ wi , ℵ ⊆ Y .

From Theorem 1 and above Remark, “it is clear that PFECIA operator is a generalization
of both PFEOWA and PFEWA operators. Thus, PFEOWA and PFEWA operators are two
special cases of PFECIA operator”.

Definition 13 Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m) is the collection of PFNs and λ a
fuzzymeasure on Y . Then a Pythagorean fuzzy Einstein Choquet integral geometric PFECIG
operator based on fuzzy measure is a mapping PFECIG : Ωn → Ω , and

PFECIG(β̄1, β̄2, . . . , β̄m) �
⎛
⎝ β̄

∧λ(�σ (1))−λ(�σ (0))
ε

1 ⊗ε β̄
∧λ(�σ (2))−λ(�σ (1))

ε

2

⊗ε · · · ⊗ε β̄
∧λ(�σ (m))−λ(�σ (m−1))

ε
m

⎞
⎠, (48)

where {σ (1), σ (1), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥
· · · ≥ β̄σ (m) and �σ(k) � {yσ (k)|i ≤ k} for k ≥ 1, and �σ (0) � φ. Based on the Einstein
operational law we have the following result.

Theorem 8 Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of PFNs with ∧ε and
λ be a fuzzy measure on Y
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PFECIG(β̄1, β̄2, . . . , β̄m)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏m

i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
,

√
∏m

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))−∏m
j�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏m
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏m

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)

where {σ (1), σ (1), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥
· · · ≥ β̄σ (m) and �σ(k) � {yσ (k)|i ≤ k} for k ≥ 1, and �σ (0) � φ.

Proof Proof of the Theorem follows from Theorem 1. �

Theorem 9 Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m) is a collection of PFNs and λ be a
fuzzy measure on Y. Then the aggregated value by utilizing PFECIG operator is also a
PFN , i.e., PFECIG

(
β̄1, β̄2, . . . , β̄m

)∈PFN, where {σ (1), σ (1), . . . , σ (m)} is a permutation
of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥ · · · ≥ β̄σ (m) and �σ(k) � {yσ (k)|i ≤ k} for k ≥ 1,
and �σ (0) � φ.

Proof Proof of the Theorem is same as Theorem 2. �

Theorem 10 Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m) is a collection of PFNs with≤L , and
λ be a fuzzy measure on Y , then

PFCIG(β̄1, β̄2, . . . , β̄m) � PFECIG(β̄1, β̄2, . . . , β̄m), (50)

where {σ (1), σ (1), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥
· · · ≥ β̄σ (m) and �σ(k) � {yσ (k)|i ≤ k} for k ≥ 1, and �σ (0) � φ.

Proof Proof of the Theorem is same as Theorem 3. �

Example 2 If we apply the PFECIG operator to Example (1), then we have

PFECIG(β̄1, β̄2, β̄3) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
∏3

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√
∏3

i�1

(
2−μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏3

i�1

(
μ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
,

√
∏2

i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))−∏3
i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

√√√√∏2
i�1

(
1+υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

+
∏3

i�1

(
1−υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�(0.7383, 0.5798)

S
(
PFECIG(β̄1, β̄2, β̄3)

) �0.1585

Now by utilizing PFCIG operator, we have
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PFCIG(β̄1, β̄2, β̄3) �
⎛
⎝

3∏
i�1

(μβ̄σ (i)
)λ(�σ (i))−λ(�σ (i−1)),

√√√√1 −
3∏

i�1

(
1 − υ2

β̄σ (i)

)λ(�σ (i))−λ(�σ (i−1))
⎞
⎠

� (0.7301, 0.5864)

S(PFCIG(β̄1, β̄2, β̄3)) � 0.1437.

This shows that PFCIG(β̄1, β̄2, β̄3) � PFECIG(β̄1, β̄2, β̄3)

Theorem 11 (Idempotency) Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m) is a collection of
PFNs and λ a fuzzy measure on Y. Where {σ (1), σ (2), . . . , σ (n)} is a permutation of
{1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥ · · · ≥ β̄σ (m) and �σ(k) � {

yσ (k)|i ≤ k
}
for k ≥ 1,

and �σ (0) � φ, then

PFECIG(β̄1, β̄2, . . . , β̄m) � β̄. (51)

Proof Proof of the Theorem follows from Theorem 4. �

Theorem 12 (Boundary) Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m) is a collection of PFNs
and λ a fuzzy measure on Y. Where {σ (1), σ (2), . . . , σ (n)} is a permutation of {1, 2, . . . ,m}
such that β̄σ (1) ≥ β̄σ (2) ≥ · · · ≥ β̄σ (m) and �σ(k) � {

yσ (k)|i ≤ k
}
for k ≥ 1, and �σ (0) � φ.

If β̄min � min(β̄i ), β̄max � max(β̄i ). Then

β̄min � PFECIG(β̄1, β̄2, . . . , β̄m) � β̄max (52)

Proof Proof of the Theorem follows from Theorem 5. �

Theorem 13 (Monotonicity) Suppose β̄i � (μβ̄i
, υβ̄i

) (i � 1, 2, . . . ,m) is a collection of

PFNs and λ a fuzzy measure on Y. Suppose β̄∗
i � (μ∗̄

βi
, υ ∗̄

βi
) (i � 1, 2, . . . ,m) is a collection

of PFNs. Then

PFECIG(β̄1, β̄2, . . . , β̄m) � PFECIG(β̄∗
1 , β̄∗

2 , . . . , β̄∗
m) (53)

where {σ (1), σ (1), . . . , σ (m)} is a permutation of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥
· · · ≥ β̄σ (m) and �σ(k) � {yσ (k)|i ≤ k} for k ≥ 1, and �σ (0) � φ.

Proof Proof of the Theorem follows from Theorem 6. �

Theorem 14 Suppose β̄i � (μβ̄i
, υβ̄i

)(i � 1, 2, . . . ,m), ρ̄i � (μρ̄i , υρ̄i ) (i � 1, 2, . . . ,m)
are two collections of PFNsonYandλbe a fuzzymeasure onY.Where {σ (1), σ (1), . . . , σ (m)}
is a permutation of {1, 2, . . . ,m} such that β̄σ (1) ≥ β̄σ (2) ≥ · · · ≥ β̄σ (m) and ℵσ(k) �{
yσ (k)|i ≤ k

}
for k ≥ 1, and ℵσ (0) � φ. Then the following statements are equivalent:

1. For ℵ,�∈P(Y ) such that |ℵ| � |�|, we have λ(ℵ) � λ(�) .
2. There is an exponential weighted vector w � (w1, w2, . . . , wm) such that

PFECIG
(
β̄1, β̄2, . . . , β̄m

) � PFEOWGw

(
β̄1, β̄2, . . . , β̄m

)

Proof Proof of the Theorem is same as Proposition 1 (Sect. 4.2) in (Marichal 2002). �

Remark Assume that PFEWA operator has an exponential weighted vector w �
(w1, w2, . . . , wm)T. Then by Theorem 8 it is clear that λ is an additive fuzzy measure
λ(ℵ) � ∑

i∈ℵ wi , PFECIG operator will be reduced to a PFEWG operator, wherewi � λ(i).
Conversely it is clear that PFEWG is a PFECIG operator with additive fuzzy measure λ:
λ(ℵ) � ∑

i∈ℵ wi , ℵ ⊆ Y .
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From Theorem 8 and above Remark, it is clear that PFECIG operator is a generalization
of both PFEOWG and PFEWG operators. Thus, PFEOWG and PFEWG operators are two
special cases of PFECIG operator.

Both the PFECIA operator and PFECIG operator address not only the importance of
the elements or their ordered positions, but also the correlations of the elements or their
ordered positions. However, the difference between these two operators is that the PFECIG
operator is much more sensitive to the given arguments. Especially in the case where there
is an argument taking the value of zero, the aggregated value of these arguments using the
PFECIG operator must be zero no matter what the other given arguments are. For instance
if we take β̄1 � (0.0, 0.0), β̄2 � (1.0, 0.0) and β̄3 � (1.0, 0.0). Consider the fuzzy density
and its λ parameter as presented in Example 1, then by applying PFECIG operator we get
PFCIG(β̄1, β̄2, β̄3) � (0.0, 0.0).

4 Multi-attribute decisionmaking based on Pythagorean fuzzy Einstein
Choquet integral aggregation operators

In this section, we utilize the proposed aggregation operators namely Pythagorean fuzzy Ein-
stein Choquet integral average (PFECIA) operator and Pythagorean fuzzy Einstein Choquet
integral geometric (PFECIG) operator to multiple attribute decision-making problems under
Pythagorean fuzzy environment.

MCDM problems usually comprise the following two Phases: “(1) Aggregation phase: to
get the overall value for each alternative the aggregation phase combines the individual criteria
value of each alternative given by experts. (2) Exploitation phase: to get the best alternatives
exploitation phase orders the overall values. In practical decision making the experts or DMs
may not have a particular or adequate knowledge about the DM problem, or powerless to
classify clearly the point to which one alternative is better than the other. Usually, MCGDM
problem contains ambiguous and vague information. We propose MCGDM problems under
interval-valued Pythagorean fuzzy environment using the concept of Choquet integral and
Einstein operations. The main advantage of the Choquet integral is that it coincides with
the Lebesgue integral when the measure is additive. An additive measure may be openly
tied to the notions of additive expected utility (Schmeidler 1989) and common preferential
independence (Marichal 2002). TheChoquet integral is able to performaggregation of criteria
even when mutual preferential independence is violated”.

Suppose D � {d1, d2, . . . , dr } is the set of the DMs involved in the decision procedure,
Y � (Y1, Y2, . . . , Ym) the set of the alternatives and C � (C1,C2, . . . ,Cn) be the set of the
criteria used for evaluating the alternatives.

In the following, we shall utilize the PFECIA/PFECIG operator to propose an approach
to MCGDM under Pythagorean fuzzy setting, which involves the following steps:

Suppose M (k) � [β̄(k)
i j ]m×n � [(μ(k)

β̄i j
, υ

(k)
β̄i j

)]m×n is a Pythagorean fuzzy decision matrix

providing by the DMs Dk∈D and is expressed as a PFNs whereμ
(k)
β̄i j

indicates the degree that

the alternatives Yi∈Y fulfills the criteria C j∈C expressed by the DMs Dk , and υ
(k)
β̄i j

indicates

the degree that the alternatives Yi∈Y does not fulfills the criteria C j∈C expressed by the

DMs Dk , such that μ
(k)
β̄i j

∈[0, 1], υ(k)
β̄i j

∈[0, 1], (μ(k)
β̄i j

)2 + (υ(k)
β̄i j

)2 ≤ 1, i � 1, 2, . . . ,m; j �
1, 2, . . . , n.

To synchronize the data, “first step is to look at the criteria. If all the criteria C j

( j � 1, 2, . . . , n) are of same type, then there is no need for normalization. Conversely
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if these contain different scales and/or units then there is needed to transform them all to the
same scale and/or unit. Let us consider two types of criteria, namely, (1) cost type and the
(2) benefit type. Considering their natures, a benefit criteria (the bigger the values better is
it) and cost criteria (the smaller the values the better is it) are of rather opposite type. In such
cases, we need to first transform the criteria values of cost type into the criteria values of
benefit type”. So transform the Pythagorean fuzzy decision matrix M (k) � [β̄(k)

i j ]m×n into

normalized decision matrix M∗(k) � [γ̄ (k)
i j ]m×n , where γ̄

(k)
i j � (μ(k)

γ̄i j
, υ

(k)
γ̄i j

) and

γ̄
(k)
i j �

{
β̄
(k)
i j for benefit criteria, i � 1, 2, . . . ,m; j � 1, 2, . . . , n.

(β̄(k)
i j )

c for cost criteria, i � 1, 2, . . . ,m; j � 1, 2, . . . , n.

where (β̄(k)
i j )

c is the complement of β̄
(k)
i j , such that (β̄

(k)
i j )

c � (υ(k)
β̄i j

, μ
(k)
β̄i j

)

With attributes normalized and using the PFECIA/PFECIG operator, we now develop an
algorithm to solve multiple attribute group decision-making problems under Pythagorean
fuzzy environment:

Step 1: For each alternative Yi (i � 1, . . . ,m) all DMs dk(k � 1, . . . , r ) is requested to
definite their individual estimation or preference based on each criteria C j ( j �
1, . . . , n) by an PFN β̄k

j � (μβ̄k
j
, υβ̄k

j
) (i � 1,2,…,m; j � 1,2,…,n; k � 1,2,…,r).

Then we can get a decision-making matrix as:

M (k) �

C1 C2 . . . Cn

Y1
Y2
...
Ym

⎡
⎢⎢⎢⎢⎣

β̄
(k)
11 β̄

(k)
12 . . . β̄

(k)
1n

β̄
(k)
21 β̄

(k)
22 . . . β̄

(k)
2n

...
...

. . .
...

β̄
(k)
m1 β̄

(k)
m2 . . . β̄

(k)
mn

⎤
⎥⎥⎥⎥⎦

.

Step 2: First confirm the fuzzy density μi � μ(�i ) of each criterion and μi � μ(�i ) of
each decision maker. According to Eq. (8) λ1 parameter of criteria and λ2 parameter
of decision maker can be computed, respectively

Step 3: By Definition 5, β̄
(k)
i j in i-th line of M (k) is reordered such that β̄

(k)
i( j) > β̄

(k)
i( j−1):

utilizing the PFECIA\PFECIG operator:

γ̄i j � (μγ̄i j , υγ̄i j ) � PFECIA(β̄(1)
i j , β̄

(2)
i j , . . . , β̄

(l)
i j )

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√∏l
k�1

(
1+

(
μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

−∏l
k�1

(
1−
(

μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

√√√√∏l
k�1

(
1+

(
μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

+
∏l

j�1

(
1−
(

μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

,

√√√√2
∏l

k�1

((
υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

√√√√∏l
k�1

(
2−
(

υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

+
∏l

k�1

((
υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(54)

or

γ̄i j � (μγ̄i j , υγ̄i j )

� PFECIG(β̄(1)
i j , β̄

(2)
i j , . . . , β̄

(l)
i j )
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�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√2
∏l

k�1

((
μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

√√√√∏l
k�1

(
2−
(

μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

+
∏l

k�1

((
μ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

,

√√√√∏l
k�1

(
1+

(
υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

−∏l
k�1

(
1−
(

υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

√√√√∏l
k�1

(
1+

(
υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

+
∏l

k�1

(
1−
(

υ
(k)
β̄i j

)2
)λ(�σ (k))−λ(�σ (k−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(55)

to get the collectivePythagorean fuzzy decisionM � [γ̄i j ]m×n i � 1, 2, . . . ,m; j �
1, 2, . . . , n.

Step 4: Same to step 3, all β̄(k)
i (k � 1, 2, . . . , r ) is reordered such that β̄(k)

i > β̄
(k−1)
i

Step 5: Aggregate all the Pythagorean fuzzy numbers γ̄i j for each alternative Yi by utilizing
PFECIA/PFECIG operator

γ̄i � (μγ̄i , υγ̄i ) �PFECIA(γ̄i1, γ̄i2, . . . , γ̄in)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√∏n
j�1

(
1+μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))−∏n
j�1

(
1−μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))

√∏n
j�1

(
1+μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))
+
∏n

j�1

(
1−μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))
,

√
2
∏n

j�1

(
υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))

√∏n
j�1

(
2−υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))
+
∏n

j�1

(
υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(56)

or

γ̄i � (μγ̄i , υγ̄i ) � PFECIG(γ̄i1, γ̄i2, . . . , γ̄in)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

√
2
∏n

j�1

(
μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))

√∏n
j�1

(
2−μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))
+
∏n

j�1

(
μ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))
,

√∏n
j�1

(
1+υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))−∏n
j�1

(
1−υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))

√∏n
j�1

(
1+υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))
+
∏n

j�1

(
1−υ2

γ̄i j

)λ(�σ ( j))−λ(�σ ( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(57)

to derive the overall Pythagorean fuzzy preference numbers γ̄i , i � 1, 2, . . . ,m, of
the alternatives Yi , i � 1, 2, . . . ,m.

Step 6: Calculate the score value as follows

S(γ̄i ) � μ2
γ̄i

− υ2
γ̄i

, i � 1, 2, . . . ,m. (58)

Step 7: Rank all the alternativesYi (i � 1, 2, . . . ,m), according to the score values S(γ̄i )(i �
1, 2, . . . ,m), in descending order. The greater Yi , with the highest value of S(γ̄i ), is
the best alternative
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Table 1 Pythagorean fuzzy
decision matrix R(1) with respect
to d1

A1 A2 A3 A4

Y1 (0.6, 0.7) (0.8, 0.4) (0.8, 0.6) (0.2, 0.9)

Y2 (0.6, 0.8) (0.6, 0.7) (0.8, 0.4) (0.7, 0.6)

Y3 (0.7, 0.5) (0.3, 0.9) (0.6, 0.7) (0.6, 0.5)

Y4 (0.8, 0.4) (0.6, 0.8) (0.7, 0.6) (0.4, 0.8)

Table 2 Pythagorean fuzzy
decision matrix R(1) with respect
to d2

A1 A2 A3 A4

Y1 (0.8, 0.6) (0.5, 0.7) (0.9, 0.2) (0.5, 0.8)

Y2 (0.6, 0.7) (0.8, 0.3) (0.6, 0.5) (0.7, 0.6)

Y3 (0.7, 0.5) (0.5, 0.8) (0.8, 0.6) (0.3, 0.9)

Y4 (0.5, 0.6) (0.7, 0.6) (0.4, 0.8) (0.7, 0.5)

Table 3 Pythagorean fuzzy
decision matrix R(1) with respect
to d3

A1 A2 A3 A4

Y1 (0.4, 0.8) (0.9, 0.3) (0.5, 0.6) (0.8, 0.5)

Y2 (0.6, 0.7) (0.7, 0.6) (0.8, 0.5) (0.6, 0.8)

Y3 (0.8, 0.6) (0.4, 0.8) (0.7, 0.6) (0.5, 0.6)

Y4 (0.9, 0.3) (0.5, 0.7) (0.5, 0.8) (0.7, 0.5)

5 Illustrative example

In this section we present two numerical examples to illustrate the proposed method. The
first example is about supplier selection and the second one is adapted from Garg (2017a)

Example 3Suppose that there are four suppliersY1,Y2,Y3 andY4 whose core competencies
are evaluated by means of the following four attributes:

A1: the level of technology innovation as how much they have developed their skill.
A2: the control ability of flow that shows their supply ways and mechanism.
A3: the ability of management as how they manage their supplying activities.
A4: the level of service to fulfil their duties supplies.
Now there are three decision makers D � {d1, d2, d3} who are invited to evaluate the

core competencies of four candidates under these four attributes. For decision maker dk(k �
1, 2, 3), the evaluated value of supplier Yi (i � 1, 2, 3, 4) with respect to A j ( j � 1, 2, 3, 4)

can be expressed by PFN R(k) � [β̄(k)
i j ]m×n : the Pythagorean fuzzy decision matrix R(k) �

[β̄(k)
i j ]4×4(k � 1, 2, 3) can be gotten as listed in Tables 1, 2, and 3.
To get the best supplier(s), the following steps are involved:

Step 1: We first determine fuzzy density of the attributes and decision maker, and their λ

parameter, respectively
Suppose μ(�1) � 0.4, μ(�2) � 0.35, μ(�3) � 0.25, μ(�4) � 0.3. Then by
Eq. (8), λ of attributes can be determined; λ1 � −0.54, and μ(�1,�2) � 0.67,
μ(�1,�3) � 0.6, μ(�1,�4) � 0.64, μ(�2,�3) � 0.55, μ(�2,�4) � 0.59,
μ(�3,�4) � 0.51, μ(�1,�2,�3) � 0.83, μ(�1,�2,�4) � 0.87, μ(�2,�3,�4) �
0.76, μ(�1,�3,�4) � 0.80, μ(�1,�2,�3,�4) � 1
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Suppose thatμ(d1) � 0.4,μ(d2) � 0.4,μ(d3) � 0.4. Then λ of decision maker can
be determined: λ2 � −0.44 and μ(d1, d2) � 0.73, μ(d1, d3) � 0.73, μ(d2, d3) �
0.73, μ(d1, d2, d3) � 1.

For PFECIA Operator

Step 2: For Pythagorean fuzzy decisionmatrix R(1), according toDefinition 4, the evaluated
value β̄

(1)
i j of supplier Yi (i � 1, 2, 3, 4) is reordered such that β̄1

i( j) ≥ β̄1
i( j−1), then

utilize the PFCIA operator

ā(1)i �PFECIA
(
β̄
(1)
i1 , β̄

(1)
i2 , β̄

(1)
i2 , β̄

(1)
i4

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏4

j�1

(
1+
(
μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))−∏4
j�1

(
1−
(
μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

√
∏4

j�1

(
1+
(
μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

+
∏4

j�1

(
1−
(
μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))
,

√
2
∏4

j�1

((
υβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

√
∏4

j�1

(
2−
(
υβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

+
∏4

j�1

((
υβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

to aggregate ā(1)i j ( j � 1, 2, 3, 4) corresponding to supplier Yi (i � 1, 2, 3, 4):

ā(1)1 � (0.6926, 0.5642), ā(1)2 � (0.6321, 0.6122), ā(1)3 � (0.5801, 0.6108), ā(1)4 �
(0.6782, 0.5840). Similarly, for Tables 2 and 3, we have, respectively,

ā(2)1 � (0.7236, 0.4961) , ā(2)2 � (0.6546, 0.4810) , ā(2)3

� (0.5937, 0.7214) , ā(2)4 � (0.5949, 0.6058) .

and

ā(3)1 � (0.7423, 0.4937) , ā(3)2 � (0.6532, 0.6329) , ā(3)3

� (0.6568, 0.6382) , ā(3)4 � (0.7425, 0.4840) .

Step 3: For supplier X1, we reorder ā(k)1 (k � 1, 2, 3) such that ā(k)1 ≥ ā(k−1)
1 : using the

PFECIG operator aggregates ā(k)1 (k � 1, 2, 3) into collective overall values ā1:

ā(1)1 �PFECIA
(
ā(1)1 , ā(2)1 , ā(3)1

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
∏3

k�1

(
1+
(
μ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))−∏3
k�1

(
1−
(
μ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))

√
∏3

k�1

(
1+
(
μ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))

+
∏3

k�1

(
1−
(
μ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))
,

√
2
∏3

k�1

((
υ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))

√
∏3

k�1

(
2−
(
υ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))

+
∏3

k�1

((
υ
(k)
āσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

ā1 �(0.7234, 0.5129)

Similar to supplier Y1; for Y2, Y3, Y4, we have, respectively
ā2 � (0.6484, 0.5714), ā3 � (0.6161, 0.6510), ā4 � (0.6867, 0.5481)

Step 4: Calculate the score value we have:
S(ā1) � 0.2602, S(ā2) � 0.0939, S(ā3) � −0.0442, S(ā4) � 0.1710.
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Step 5: According to the score values of the collective PFN’s āi of supplierYi (i � 1, 2, 3, 4),
we can obtain that ā1 > ā4 > ā2 > ā3.
Ranking the suppliers according to the score values we get, Y1 > Y4 > Y2 > Y3.
Hence the best supplier is Y1.

For PFECIG Operator

Step 2′ For Pythagorean fuzzy decisionmatrix R(1), according to Definition 4, the evaluated
value β̄

(1)
i j of supplier Yi (i � 1, 2, 3, 4) is reordered such that β̄1

i( j) ≥ β̄1
i( j−1), then

utilize the PFCIG operator

ḡ(1)i �PFECIG
(
β̄
(1)
i1 , β̄

(1)
i2 , β̄

(1)
i2 , β̄

(l)
i4

)

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2
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j�1
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μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

√
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j�1

(
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μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

+
∏4

j�1

((
μβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))
,

√
∏4

j�1

(
1+
(
υβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ (k−1))−∏4
j�1

(
1−
(
υβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

√
∏4

j�1

(
1+
(
υβ̄σ ( j)

)2)λ(�σ (k))−λ(�σ (k−1))

+
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j�1

(
1−
(
υβ̄σ ( j)

)2)λ(�σ ( j))−λ(�σ ( j−1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

to aggregate β̄
(1)
i j ( j � 1, 2, 3, 4) corresponding to supplier Yi :

ḡ(1)1 � (0.6328, 0.5241) , ḡ(1)2 � (0.6741, 0.5156) , ḡ(1)3

� (0.5490, 0.4732) , ḡ(1)4 � (0.6569, 0.5517) .

Similarly, for Tables 2 and 3, we have, respectively,

ḡ(2)1 � (0.6858, 0.4641) , ḡ(2)2 � (0.6920, 0.4049) , ḡ(2)3

� (0.6095, 0.5857) , ḡ(2)4 � (0.5890, 0.5010) .

and

ḡ(3)1 � (0.6719, 0.3946) , ḡ(3)2 � (0.6782, 0.5620) , ḡ(3)3

� (0.6279, 0.5410) , ḡ(3)4 � (0.7003, 0.4256) .

Step 3′ For supplier Y1, we reorder ḡ(k)1 (k � 1, 2, 3) such that ḡ(k)1 ≥ ḡ(k−1)
1 : using the

PFECIG operator aggregates ḡ(k)1 (k � 1, 2, 3) into collective overall values ḡ1:

ḡ1 �PFECIG
(
ḡ(1)1 , ḡ(2)1 , ḡ(3)1

)

�

⎛
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μ
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,
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k�1

(
1+
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(k)
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υ
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ḡσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))
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ḡσ (1)

)2)λ(�σ (k))−λ(�σ (k−1))

+
∏3

k�1

(
1−
(
υ
(k)
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⎞
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.

ḡ1 �(0.6658, 0.4561)

Similar to supplier Y1; for Y2, Y3, Y4, we have, respectively
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Table 4 Pythagorean decision
matrix provided by DM (d1)

C1 C2 C3 C4 C5

Y1 (0.9, 0.4) (0.7, 0.6) (0.8, 0.4) (0.5, 0.8) (0.7, 0.8)

Y2 (0.6, 0.8) (0.9, 0.4) (0.7, 0.5) (0.8, 0.6) (0.9, 0.3)

Y3 (0.6, 0.7) (0.8, 0.5) (0.5, 0.8) (0.6, 0.8) (0.5, 0.8)

Y4 (0.5, 0.6) (0.4, 0.9) (0.9, 0.3) (0.8, 0.4) (0.7, 0.6)

Table 5 Pythagorean decision
matrix provided by DM (d2)

C1 C2 C3 C4 C5

Y1 (0.7, 0.6) (0.9, 0.4) (0.5, 0.6) (0.6, 0.8) (0.3, 0.9)

Y2 (0.8, 0.5) (0.7, 0.5) (0.9, 0.3) (0.4, 0.9) (0.8, 0.6)

Y3 (0.3, 0.9) (0.8, 0.6) (0.7, 0.6) (0.5, 0.6) (0.9, 0.4)

Y4 (0.5, 0.8) (0.6, 0.7) (0.8, 0.4) (0.9, 0.4) (0.6, 0.8)

ḡ2 � (0.6824, 0.4895), ḡ3 � (0.5805, 0.5332), ḡ4 � (0.6491, 0.4935)

Step 4′ Calculate the score value we have:

S(ḡ1) � 0.2353, S(ḡ2) � 0.2261, S(ḡ3) � 0.0527, S(ḡ4) � 0.1778.

Step 5′ According to the score values of the collective PFN’s ḡi of supplierYi (i � 1, 2, 3, 4),
we can obtain that: ḡ1 > ḡ2 > ḡ4 > ḡ3.

Ranking the suppliers according to the score values we get, Y1 > Y2 > Y4 > Y3. Hence
the best supplier is Y1.

Example 4 Consider an investor wants to invest his/her money in a certain company. After
the careful analysis of the market, he/she considers the five possible alternatives denoted
by Yi (i � 1, 2, 3, 4): Y1: is a computer company, Y2: is a furniture company, Y3: is a car
company, Y4: is a chemical company.

In evaluating these alternatives, the investor has summarized the ability of these companies
with six attributes denoted by C j ( j � 1, 2, 3, 4, 5) where

C1: technical ability, C2: expected benefit, C3: competitive power on the market, C4:
ability to bear risk, C5: management capability

Suppose four companies Yi (i � 1, 2, 3, 4) are selected as the possible alternatives,
which are evaluated by three decision makers (DMs) under the above five criteria C j ( j �
1, 2, 3, 4, 5) and construct the following three Pythagorean fuzzy decision matrix M (k) �
[β̄(k)

i j ]m×n (see Tables 4, 5, 6). Since all the criteria are of benefit types, therefore, no need

for normalization and M (k) � M∗(k) � [β̄(k)
i j ]m×n � [γ̄ (k)

i j ]m×n .

Based on the PFECIA operator the main steps are as follows:

Step 1: Suppose that μ(d1) � 0.3, μ(d2) � 0.5, μ(d3) � 0.45. Then λ of experts can be
determined: λ2 � −0.53, and μ(d1, d2) � 0.72, μ(d1, d3) � 0.68, μ(d2, d3) �
0.83, μ(d1, d2, d3) � 1

Step 2: For Pythagorean fuzzy decision matrix M (k) � [γ̄ (k)
i j ]4×5(k � 1, 2, 3), based on

Definition (5), the calculated value γ̄
(k)
i j (k � 1, 2, 3) of alternative Xi is reordered
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Table 6 Pythagorean decision
matrix provided by DM (d3)

C1 C2 C3 C4 C5

Y1 (0.8, 0.5) (0.4, 0.8) (0.6, 0.5) (0.8, 0.6) (0.6, 0.8)

Y2 (0.3, 0.9) (0.7, 0.6) (0.8, 0.4) (0.9, 0.4) (0.7, 0.5)

Y3 (0.6, 0.8) (0.9, 0.3) (0.7, 0.5) (0.8, 0.5) (0.5, 0.6)

Y4 (0.7, 0.5) (0.8, 0.5) (0.4, 0.9) (0.7, 0.6) (0.6, 0.7)

Table 7 Collective Pythagorean fuzzy decision matrix M

C1 C2 C3 C4 C5

Y1 (0.8253, 0.4836) (0.7880, 0.5405) (0.6511, 0.4975) (0.6853, 0.7076) (0.5766, 0.8321)

Y2 (0.6723, 0.6682) (0.7828, 0.4938) (0.8477, 0.3609) (0.7906, 0.5867) (0.8172, 0.4675)

Y3 (0.5629, 0.7868) (0.8532, 0.4287) (0.6730, 0.5845) (0.6811, 0.5845) (0.7738, 0.5214)

Y4 (0.6035, 0.6126) (0.6866, 0.6369) (0.7781, 0.4776) (0.8406, 0.4501) (0.6895, 0.5675)

such that γ̄ (k)
i( j) ≥ γ̄

(k)
i( j−1), then utilize the PFECIA operator (Eq. 55) to aggregate all

the individual matrices M (k) � [γ̄ (k)
i j ]4×5 (k � 1, 2, 3), into collective Pythagorean

fuzzy decision matrix M � [γ̄i j ]4×5 (see Table 7)
Step 3: Supposeμ(�1) � 0.4, μ(�2) � 0.35, μ(�3) � 0.25, μ(�4) � 0.3, μ(�5) � 0.45,

so by Eq. (8), λ of criteria can be computed; λ1 � −0.79 and μ(�1,�2) � 0.68,
μ(�1,�3) � 0.60, μ(�1,�4) � 0.64,μ(�1,�5) � 0.71, μ(�2,�3) � 0.56,
μ(�2,�4) � 0.6,μ(�2,�5) � 0.68, μ(�3,�4) � 0.51, μ(�3,�5) � 0.61, μ

(�4,�5) � 0.64, μ(�1,�2,�3) � 0.84, μ(�1,�2,�4) � 0.88, μ(�1,�2,�5) �
0.86, μ(�1,�3,�4) � 0.81, μ(�1,�3,�5) � 0.82, μ(�2,�3,�4) � 0.77,
μ(�2,�3,�5) � 0.88, μ(�2,�4,�5) � 0.82, μ(�3,�4,�5) � 0.77, μ

(�1,�2,�3,�4) � 0.88, μ(�1,�2,�3,�5) � 0.94, μ(�1,�3,�4,�5) � 0.92,
μ(�2,�3,�4,�5) � 0.90, μ(�1,�2,�3,�4,�5) � 1

Step 4: Utilize the PFECIA operator (Eq. 57) to aggregate all the preference values γ̄i j (j
� 1, 2, 3, 4,5) in the ith line ofM and get the overall preference values γ̄i
γ̄1 � (0.7649, 0.5472) γ̄2 � (0.8093, 0.4504) γ̄3 � (0.7870, 0.5025) γ̄4 � (0.7694,
0.5006)

Step 5: Compute the score of γ̄i (i � 1, 2, 3, 4), respectively:
S(γ̄1) � 0.2856, S(γ̄2) � 0.4521, S(γ̄3) � 0.3669, S(γ̄4) � 0.3414.

Step 6: Ranking the alternatives according to the score we have Y2 >Y3 >Y4 >Y1

Thus, the most desirable alternative is Y2.

Based on the PFECIG operator, the main steps are as follows:

Step 1′: See step 1
Step 2′: Utilize the PFECIG operator (Eq. 56) to aggregate all the individual matrices

M (k) � [γ̄ (k)
i j ]4×5 (k � 1, 2, 3), into collective Pythagorean fuzzy decision matrix

M � [γ̄i j ]4×5 (see Table 8)
Step 3′: Utilize the PFECIG operator (Eq. 59) to aggregate all the preference values γ̄i j (j

� 1, 2, 3, 4, 5) in the ith line of M and get the overall preference values γ̄i
γ̄1 � (0.7078, 0.5991), γ̄2 � (0.7768, 0.5131), γ̄3 � (0.7206, 0.5783), γ̄4 � (0.7027,
0.6250)
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Table 8 Collective Pythagorean fuzzy decision matrix M

C1 C2 C3 C4 C5

Y1 (0.8129, 0.4929) (0.7004, 0.5992) (0.6227, 0.5099) (0.6861, 0.7262) (0.5190, 0.8394)

Y2 (0.5879, 0.7377) (0.7595, 0.5054) (0.8330, 0.3753) (0.6993, 0.6911) (0.8018, 0.5014)

Y3 (0.5377, 0.7986) (0.8452, 0.4653) (0.6635, 0.6073) (0.6451, 0.6073) (0.6895, 0.5675)

Y4 (0.5853, 0.6459) (0.6466, 0.6857) (0.7025, 0.6236) (0.8219, 0.4671) (0.6661, 0.7004)

Table 9 Comparison analysis with existing methods

Method Score values Order of alternatives

Y1 Y2 Y3 Y4

PFEOWA Garg (2016a) 0.2404 0.3434 0.1595 0.2457 Y2 >Y4 >Y3 >Y1

PFEOWG Garg (2017a) 0.0397 0.2197 0.0753 0.1076 Y2 >Y4 >Y3 >Y1

PFCIA (Peng and Yang 2016) 0.3308 0.4480 0.3834 0.3552 Y2 >Y3 >Y4 >Y1

PFCIG (Peng and Yang 2016) 0.1057 0.1893 0.1516 0.0481 Y2 >Y3 >Y1 >Y4

PFECIA 0.2856 0.4521 0.3669 0.3414 Y2 >Y3 >Y4 >Y1

PFECIG 0.1421 0.3402 0.1848 0.1032 Y2 >Y3 >Y1 >Y4

Step 4′: Compute the score of γ̄i (i � 1, 2, 3, 4), respectively:
S(γ̄1) � 0.1421, S(γ̄2) � 0.3402, S(γ̄3) � 0.1848, S(γ̄4) � 0.1032.

Step 5′: Ranking the alternatives according to the score we have Y2 >Y3 >Y1 >Y4

Thus the most desirable alternative is Y2.
From the above analysis, “the main advantages of our developed Pythagorean fuzzy Ein-

stein Choquet integral aggregation operators is that, it not only accommodate the Pythagorean
fuzzy environment and not only consider the importance of the elements or their ordered posi-
tions, but also reflect the correlations among the elements or their ordered positions. It must
be noted that many existing operators are the special cases of the proposed operators. There-
fore, our proposed Pythagorean fuzzy Einstein Choquet integral aggregation operators are
more flexible than the intuitionistic fuzzy Einstein Choquet integral aggregation operators as
in the Pythagorean fuzzy environment the decision makers deals with the situations where
the degree of membership and nonmembership of particular criteria are such that its sum is
greater than 1”.

On the other hand if the comparison analyses based on the different study are conducted,
which was proposed by various authors such as Garg (2017a, b) and Peng and Yang (2016),
then their subsequently results are summarized as shown in Table 9.

From this comparison table we conclude that the best alternative obtained using the devel-
oped operators coincided with these existing methods. Therefore, the considered approach
can be taken as an alternative way to solve these types of problem in a more profitable
way. According to the above comparison analysis, the proposed method for addressing the
decision-making problems has the following advantages with respect to the existing ones.

(a) Additionally, it has observed from Table 9 that the results computed by the various
existing approaches are under the environment where all the elements in PFS are inde-
pendent, i.e., they only consider the addition of the importance of individual elements.
While the proposed operators not only consider the importance of the elements or their
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ordered positions, but also can reflect the correlations among the elements or their
ordered positions.

(b) The existing operators for PFS are a special case of the proposed operators. Therefore,
it has been concluded that the proposed aggregation operators are more generalized and
suitable to solve the real-life problems more accurately than the existing ones.

6 Conclusion

Garg (2016a, 2017a) proposed Pythagorean fuzzy Einstein operators and proposed aMCDM
approach based on the developed operators. However, these operators only consider situations
where all the elements in a PFS are independent, i.e., they only consider the addition of
the importance of individual elements. Therefore, to address this situation in this paper
due to the consideration of the inter-dependent phenomena among the evaluated criteria
and Einstein operations we developed Pythagorean fuzzy Einstein Choquet integral average
(PFECIA) operator and Pythagorean fuzzy Einstein Choquet integral geometric (PFECIG)
operator. The important achievement of the developed Pythagorean fuzzy Choquet integral
aggregation operators is that, it considers inter-dependent phenomena among the evaluated
criteria.We discussed some basic properties of the developed operators namely idempotency,
boundary and monotonicity. Moreover, we applied the proposed aggregation operators to
multi-attribute decisionmakingunderPythagorean fuzzy environment. Furthermore, to verify
and demonstrate the practicality and effectiveness of the developed operators two illustrative
examples were given. Finally we have compared the proposed approach to existing methods.

In the future, we will extend the developed approach to linguistic Pythagorean fuzzy
set environment (Garg 2018d), Pythagorean hesitant fuzzy set environment (Khan et al.
2017), Hesitant Pythagorean fuzzy set environment (Garg 2018e) and correlation coefficient
environment (Garg 2016b)
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