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Abstract
For the extended Rayleigh problem of hydrodynamics stability dealing with homogeneous
shear flows with variable cross section, we have obtained a parabolic instability region.
This improved parabolic instability region intersects with the semicircular instability region
under certain condition. The validity of the result is illustrated with an example of basic
flows. Furthermore, we have obtained a bound for the complex part of the phase velocity.

Keywords Hydrodynamic stability · Shear flows · Variable bottom · Sea straits

Mathematics Subject Classification 76E05

1 Introduction

The concept of inviscid incompressible shear flows in sea straits with variable cross section
was first initiated by Pratt et al. (2000), a well-structured mathematical analysis of this
problem was developed in Deng et al. (2003). An extended Taylor–Goldstein problem with
respect to the variable topography that is applicable to sea straits was obtained in Deng et al.
(2003). In the aforementioned studies, the density could be either a variable or a constant.
In case of the density being the variable, it leads to the extended version of the Taylor–
Goldstein problem of hydrodynamic stability. Whereas, the extended Rayleigh problem of
hydrodynamic stability is attained, when the density is constant. It was observed that in many
ways the general analytical results on the above said problems are varied. Specifically, the
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role of the curvature of the basis flow velocity plays a vital place in the homogeneous case
but not so in the stratified case.

In this paper, the extended Rayleigh problem is taken for the study. Several analytical
results associated with this problem have already been obtained in Pratt et al. (2000), Ganesh
and Subbiah (2013), Subbiah and Ganesh (2010), Dou and Ganesh (2014), Jafer and Godo
(2017) and Deng et al. (2003). Specifically, Subbiah and Ganesh (2007) derived a parabolic
instability and it intersects with the semicircular instability region of Deng et al. (2003) for a
class of basic flows. The functions f (z) and g(z) were defined in Subbiah and Ganesh (2007).
The semicircular instability region of Deng et al. (2003) is reduced in Subbiah and Ganesh
(2007) for the flows satisfying the conditions like f (z) < 0 or g(z) > 0. In this paper, we
obtained an improved parabolic instability region.

Banerjee et al. (1988) has proved the parabolic instability region for the Rayleigh prob-
lem. This was taken deeper to extended Rayleigh problem by Subbiah and Ganesh (2007).
Reenapriya and Ganesh (2015) extended the work and derived a parabolic instability region
with the condition that U0min > 0. The parabolic instability region referred in Subbiah and
Ganesh (2007) is dependent on conditions like f (z) < 0 or g(z) > 0. Reenapriya andGanesh
(2015) have obtained a parabolic instability region which is valid for U0min > 0. Therefore,
it is essential to improve the parabolic instability region for the extended Rayleigh problem
that has none of the conditions as given in Subbiah and Ganesh (2007), Reenapriya and
Ganesh (2015). The new parabolic instability region is a generalized instability region for
both the Rayleigh problem and the extended Rayleigh problem. Also, we derived a bounds
for complex part of the phase velocity.

2 Extended Rayleigh problem (Fig. 1)

Weconsider a channelwith variable topography aligned in the x-direction and b(z) = yL−yR
be the width of the channel, where y = yL and y = yR are the lateral positions of the side
walls. The channel contains an incompressible, inviscid, homogeneous fluid flow for which
the density ρ0(constant), Pressure P and velocity −→u = (u, v, w) are governed by Euler’s
equations such as

ρ

[
du

dt

]
= −∂ p

∂x
, 0 = −∂ p

∂ y
,

ρ

[
dw

dt

]
= −∂ p

∂z

and

∇.
−→u = 0,

where d
dt = ∂

∂t + u ∂ p
∂x + w ∂

∂z is the Eulerian derivative.
Integrating ∇.

−→u = 0, across the channel and applying the boundary conditions at the
walls, we have

∂u

∂x
+ wT (z) + ∂w

∂z
= 0,

where T (z) = 1
b(z)

db(z)
dz = b

′
b = d(logz)

dz is the topography.
Let the basic flow be given by the velocity (U (z), 0, 0) and Pressure P = P0 (constant)and

the perturbed state is given by velocity field (U0(z)+u, v, w) and the Pressure P = P0 + P .
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Fig. 1 The observer faces the x-
direction

After linearizing the equation of motions, we have

ρ0

(
∂u

∂t
+U0

∂u

∂t
+ w

dU0

dz

)
= −∂ p

∂x
,

0 = −∂ p

∂ y
,

ρ0

(
∂w

∂t
+U0

∂w

∂x

)
= −∂ p

∂z
,

∂u

∂x
+ wT (z) + ∂w

∂z
= 0.

By applying the normal mode disturbances (u, w, P, ρ) = (û, ŵ, P̂, ρ̂)eik(x−ct) in the above
equations and omitting the hat sign we have

ρ0

[
(U0 − c)iku + w

∂U0

∂z

]
= −ik P,

ρ0 [(U0 − c)ikw] = −∂P

∂z
,

iku + wT (z) + ∂w

∂z
= 0.

Eliminating all variables except w from the above equations we obtained the extended
Rayleigh problem (cf. Deng et al. (2003)), given by

[
(bW )′

b

]′
−

⎡
⎢⎣k2 +

b
[
U ′
0
b

]′

U0 − c

⎤
⎥⎦W = 0, (1)

with boundary conditions

W (0) = 0 = W (D). (2)

HereW is the complex eigen function(notewe have usedW (z) instead ofw(z) for convention),
k > 0 is the wave number, c = cr + ici is the complex phase velocity,U0 is the basic velocity
profile, b(z) is the breadth function.

For unstable models ci > 0 and so (U0 − c)
1
2 is well defined.
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Introducing the transformation W = (U0 − c)1/2G, we can get the equation satisfied by
G to be

[
(U0 − c)

(bG)′

b

]′
− 1

2
b

(
U ′
0

b

)′
G − k2(U0 − c)G − [ (U ′

0)
2

4 ]
(U0 − c)

G = 0, (3)

with boundary conditions

G(0) = 0 = G(D). (4)

3 Instability regions

Theorem 3.1 The following integral relations are valid when the imaginary part of the com-
plex phase velocity ci is strictly greater than zero and by considering U0s as an arbitrary
real number.

(i)

∫
(U0 − cr )Qdz + 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz +

∫ (U ′
0)

2

4

|U0 − c|2 (U0 −U0s)b|G|2dz

− (cr −U0s)

∫ (U ′
0)

2

4

|U0 − c|2 b|G|2dz = 0,

(ii)

−ci

∫
Qdz + ci

∫ (U ′
0)

2

4

|U0 − c|2 b|G|2dz = 0.

Proof Multiplying (3) by (bG∗), where * stands for complex conjugation; integrating over
[0,D] and using (4), we get

∫
(U0 − c)

[ |(bG)′|2
b

+ k2b|G|2
]
dz + 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz

+
∫ (U ′

0)
2

4

(U0 − c)
b|G|2dz = 0. (5)

Let Q = |(bG)′|2
b + k2b|G|2 then the aforementioned equation becomes

∫
(U0 − c)Qdz + 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz +

∫ (U ′
0)

2

4

(U0 − c)
b|G|2dz = 0. (6)

The real part of the Eq. (6) is given by

∫
(U0 − cr )Qdz + 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz

+
∫ (U ′

0)
2

4

|(U0 − c)|2 (U0 − cr )b|G|2dz = 0.
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Rewriting (U0 − cr ) as (U0 −U0s) − (cr −U0s), where U0s is an arbitrary real number, we
get

∫
(U0 − cr )Qdz + 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz +

∫ (U ′
0)

2

4

|U0 − c|2 (U0 −U0s)b|G|2dz

− (cr −U0s)

∫ (U ′
0)

2

4

|U0 − c|2 b|G|2dz = 0. (7)

The imaginary part of the Eq. (6) is given by

− ci

∫
Qdz + ci

∫ (U ′
0)

2

4

|U0 − c|2 b|G|2dz = 0. (8)

Thus we arrive with the results of Theorem 3.1.

Theorem 3.2 For the existence of unstable mode, the following integral relation is true

1

2

∫
b

(
U ′
0

b

)′
b|G|2dz ≥

∫ (U ′
0)

2

4

|U0 − c|2
[
U0 − cr + U0max

2
− U0min

2

]
b|G|2dz.

Proof The real part of Eq. (5) is given by
∫

(U0 − cr )

[ |(bG)′|2
b

+ k2b|G|2
]
dz + 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz

+
∫ (U ′

0)
2

4

|(U0 − c)|2 (U0 − cr )b|G|2dz = 0. (9)

The imaginary part of Eq. (5) is given by

− ci

∫ [ |(bG)′|2
b

+ k2b|G|2
]
dz + ci

∫ (U ′
0)

2

4

|U0 − c|2 b|G|2dz = 0. (10)

Multiplying the Eq. (10) by
(
cr+U0s

ci

)
and subtracting from (9), we get

∫
(U0 +U0s)

[ |(bG)′|2
b

+ k2b|G|2
]

+ 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz

+
∫ (U ′

0)
2

4

|U0 − c|2 [U0 −U0s − 2cr ]b|G|2dz = 0. (11)

Multiplying the Eq. (10) by
(
U0max−U0min

2ci

)
and adding the resultant with (9), we get

∫ (
U0 − cr − U0max

2
+ U0min

2

) [ |(bG)′|2
b

+ k2b|G|2
]

+ 1

2

∫
b

(
U ′
0

b

)′
b|G|2dz

+
∫ (U ′

0)
2

4

|U0 − c|2
[
U0 − cr + U0max

2
− U0min

2

]
b|G|2dz = 0.

Since (
U0 − cr − U0max

2
+ U0min

2

)
≤ 0,

123



79 Page 6 of 11 K. Reena Priya, V. Ganesh

dropping the term, we get

1

2

∫
b

(
U ′
0

b

)′
b|G|2dz ≥

∫ (U ′
0)

2

4

|U0 − c|2
[
U0 − cr + U0max

2
− U0min

2

]
]b|G|2dz. (12)

Hence the Theorem 3.2 is proved.

Theorem 3.3 An essential condition for the existence of unstable mode is

c2i ≤ λ [cr +U0max] ,

where λ =

∣∣∣∣ (U ′
0)

2

4

∣∣∣∣
max∣∣∣ (3U0min+U0max)

2

∣∣∣ [ bminπ2

bmaxD2 + k2
] .

Proof Substituting the Eq. (12) in (11), we get
∫

(U0 +U0s)

[ |(bG)′|2
b

+ k2b|G|2
]
dz

+
∫ (U ′

0)
2

4

|U0 − c|2
[
U0min

2
− U0max

2
− cr −U0s

]
b|G|2dz ≤ 0;

Since

1

|U0 − c|2 ≤ 1

c2i

and using Rayleigh–Ritz inequality,

(U0min +U0s)

[
bminπ

2

bmaxD2 + k2
] ∫

b|G|2dz

≤ [ (U ′
0)

2

4 ]max

c2i

[
U0max

2
− U0min

2
+ cr +U0s

] ∫
b|G|2dz.

Substituting U0s = U0max+U0min
2 in the above equation we get

c2i ≤

∣∣∣∣ (U ′
0)

2

4

∣∣∣∣
max[

3U0min+U0max
2

] [
bminπ2

bmaxD2 + k2
] (cr +U0max) ;

c2i ≤ λ [cr +U0max] , (13)

where

λ =

∣∣∣∣ (U ′
0)

2

4

∣∣∣∣
max∣∣∣ (3U0min+U0max)

2

∣∣∣ [ bminπ2

bmaxD2 + k2
] .

Theorem 3.4 If λ < λc
where

λc = (U0min + 3U0max) − 2
√
2U0max(U0max +U0min)
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then the parabola

c2i ≤ λ [cr +U0max] ,

intersects the semicircle
[
cr −

(
U0min +U0max

2

)]2
+ c2i ≤

(
U0max −U0min

2

)2

.

Proof The semi-circle given in Deng et al. (2003) is

[
cr −

(
U0max +U0min

2

)]2
+ c2i ≤

[
U0max −U0min

2

]2
. (14)

Substituting (13) in (14), we get

[
cr −

(
U0max +U0min

2

)]2
+ λ [cr +U0max] ≤

[
U0max −U0min

2

]2
;

c2r + cr [λ −U0max −U0min] + [λU0max +U0maxU0min] ≤ 0.

It’s discriminant part is given by

[λ − (U0max +U0min)]2 − 4(1) [λU0max +U0maxU0min] ≥ 0;
λ2 − 2λ(U0min +U0max) +U 2

0min +U 2
0max + 2U0minU0max

− 4λU0max − 4U0minU0max ≥ 0;
[λ2 + λ(−2U0min − 6U0max) + [U0max −U0min]

2 ≥ 0.

Solving for λ, we get

λ = (U0min + 3U0max) ± 2
√
2U0max(U0max +U0min).

If λ < λc, λc = (U0min + 3U0max) − 2
√
2U0max(U0max +U0min),

then the parabola will intersects the semicircle.

Remark IfU0 = constant then by semicircle theorem, the flow is stable. IfU0 	= constant
and U0min = 0, then the above instability region is valid. Moreover, if U0 changes its sign

then
∣∣∣ (3U0min+U0max)

2

∣∣∣ > 0 and the region is valid. Now we shall illustrate the applicability of

our results for an example of basic flow.

Example U0 = z − 1
2 , 0 ≤ z ≤ 1. In this case U0min = − 1

2 , U0max = 1
2 . Our result is valid

for this case (Fig. 2).

Theorem 3.5 If ci > 0 then we have the integral relation∫ [∣∣W ′∣∣2 + k2 |W |2
]
dz − 1

2

∫
T ′ |W |2 dz

+
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 −U0s) |W |2 dz − (cr −U0s)

ci
Im.

∫
TW ′W ∗dz = 0.
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Fig. 2 Instability Region

Proof The extended Rayleigh problem is given by

W ′′ + TW ′ + T ′W −
⎡
⎢⎣k2 +

b
[
U ′
0
b

]′

U0 − c

⎤
⎥⎦W = 0, (15)

with boundary conditions

W (0) = 0 = W (D). (16)

Multiplying (15) by W ∗, integrating over [0, D] and using (16), we get

∫ ∣∣W ′∣∣2 dz +
∫

k2 |W |2 dz −
∫

TW ′W ∗dz −
∫

T ′ |W |2 dz

+
∫ b

[
U ′
0
b

]′

U0 − c
|W |2 dz = 0,

since Re
∫
TW ′W ∗dz = − 1

2

∫
T ′ |W |2 dz and taking real and imaginary part, we get

∫ [∣∣W ′∣∣2 + k2 |W |2
]
dz + 1

2

∫
T ′ |W |2 dz −

∫
T ′ |W |2 d

+
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 − cr ) |W |2 dz = 0;

∫ [∣∣W ′∣∣2 + k2 |W |2
]
dz − 1

2

∫
T ′ |W |2 dz +

∫ b
[
U ′
0
b

]′

|U0 − c|2 (U0 − cr ) |W |2 dz = 0

(17)

and

− Im.

∫
TW ′W ∗dz + ci

∫ b
[
U ′
0
b

]′

|U0 − c|2 |W |2 dz = 0. (18)
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Multiplying (18) by cr−U0s
ci

and adding to (17),we get
∫ [∣∣W ′∣∣2 + k2 |W |2

]
dz − 1

2

∫
T ′ |W |2 dz

+
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 −U0s) |W |2 dz − (cr −U0s)

ci
Im.

∫
TW ′W ∗dz = 0. (19)

Theorem 3.6 If ci > 0 then we have the following integral relation

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz − k4
∫

|W |2 dz − 2k2
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 − cr ) |W |2 dz

−
∫

[
b

[
U ′
0
b

]′]2

|U0 − c|2 |W |2 dz = 0.

Proof Multiplying (1) by [ (bW ∗)′
b ]′ and integrating over [0,D] and using (2), we get

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz −
∫ ⎡

⎢⎣k2 +
b

[
U ′
0
b

]′

U0 − c

⎤
⎥⎦W

[
(bW ∗)′

b

]′
dz = 0. (20)

From (1),

[
(bW )′

b

]′
=

⎡
⎢⎣k2 +

b
[
U ′
0
b

]′

U0 − c

⎤
⎥⎦W ,

[
(bW ∗)′

b

]′
=

⎡
⎢⎣k2 +

b
[
U ′
0
b

]′

U0 − c∗

⎤
⎥⎦W ∗. (21)

Substituting (21) in (20), we get

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz −
∫ ⎡

⎢⎣k2 +
b

[
U ′
0
b

]′

U0 − c

⎤
⎥⎦

⎡
⎢⎣k2 +

b
[
U ′
0
b

]′

U0 − c∗

⎤
⎥⎦WW ∗dz = 0,

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz − k4
∫

|W |2 dz − k2
∫ b

[
U ′
0
b

]′

U0 − c∗ |W |2 dz

− k2
∫ b

[
U ′
0
b

]′

U0 − c
|W |2 dz −

∫
[
b

[
U ′
0
b

]′]2

|U0 − c|2 |W |2 dz = 0.

Equating the real part, we get

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz − k4
∫

|W |2 dz − 2k2
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 − cr ) |W |2 dz
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−
∫

[
b

[
U ′
0
b

]′]2

|U0 − c|2 |W |2 dz = 0. (22)

Theorem 3.7 If T ′ ≤ 0 and cr = U0s then bounds for ci is given by

ci ≤

√√√√√√√√
k2b

(
U ′
0
b

)′
(U0 −U0s) +

[
b

(
U ′
0
b

)′]2
[

π4b2min
D4b2max

+ k2 π2

D2

] .

Proof Multiplying (18) by (cr−U0s )
ci

2k2 and subtracting from (22), we get

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz − k4
∫

|W |2 dz − 2k2
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 −U0s) |W |2 dz

+ 2k2
(cr −U0s)

ci
Im.

∫
TW ′W ∗dz −

∫
[
b

[
U ′
0
b

]′]2

|U0 − c|2 |W |2 dz = 0. (23)

Multiplying (19) by k2 and adding to (23), we get

∫ ∣∣∣∣
[

(bW )′

b

]′∣∣∣∣
2

dz + k2
∫ ∣∣W ′∣∣2 dz − k2

2

∫
T ′ |W |2 dz

− k2
∫ b

[
U ′
0
b

]′

|U0 − c|2 (U0 −U0s) |W |2 dz

+ k2
(cr −U0s)

ci
Im.

∫
TW ′W ∗dz −

∫
[
b

[
U ′
0
b

]′]2

|U0 − c|2 |W |2 dz = 0,

If T ′ ≤ 0, cr = U0S and using Rayleigh -Ritz inequality, we get

[
π4b2min

D4b2max
+ k2

π2

D2

]∫
|W |2 dz −

∫
[
k2b

[
U ′
0
b

]′
(U0 −U0s) +

[
b

[
U ′
0
b

]′]2]

|U0 − c|2 |W |2 dz ≤ 0.

Since

1

|U0 − c|2 ≤ 1

c2i
,

[
π4b2min

D4b2max
+ k2

π2

D2

]
c2i −

⎡
⎣k2b

[
U ′
0

b

]′
(U0 −U0s) +

[
b

[
U ′
0

b

]′]2
⎤
⎦ ≤ 0,

[
π4b2min

D4b2max
+ k2

π2

D2

]
c2i ≤

⎡
⎣k2b

[
U ′
0

b

]′
(U0 −U0s) +

[
b

[
U ′
0

b

]′]2
⎤
⎦ ,
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ci ≤

√√√√√√√√
k2b

(
U ′
0
b

)′
(U0 −U0s) +

[
b

(
U ′
0
b

)′]2
[

π4b2min
D4b2max

+ k2 π2

D2

] .

4 Concluding remarks

For the extended Rayleigh problem of hydrodynamic stability, we have obtained a parabolic
instability region. The parabolic instability region is an unbounded region it will be important
only if the parabolic instability region intersects the semicircular instability region. Hence, we
have proved that the parabolic instability region which intersects the semicircular instability
region under some conditions. We have illustrated the validity of our results for a basic flow.
Unlike the previous parabolic instability regions, our newparabolic instability region does not
depend on any conditions. When b=constant or T = 0, we can get the instability region for
standard Rayleigh problem. Hence, our parabolic instability region is also true for standard
Rayleigh problem. Also, we have derived a bound for the complex part of phase velocity.

References

Banerjee MB, Gupta JR, Subbiah M (1988) On reducing Howards semicircle for homogeneous shear flows.
J Math Anal Appl 130:398–402

Deng J, Pratt L, Howard L, Jones C (2003) On stratified Shear flow in sea straits of arbitrary cross section.
Stud Appl Math 111:409–434

Dou HS, Ganesh V (2014) Short wave stability of homogenous shear flows with variable topography. Appl
Math Mech 35(5):541–548

Ganesh V, Subbiah M (2013) Series solutions and a perturbation formula for the extended Rayleigh problem
of hydrodynamic stability. Proc Indian Acad-Sci (Math Sci) 123(2):293–302

Jafer AB, Godo AA (2017) On the stability of shear flows. Int J Sci Eng Appl Sci 3(11):1–6
Pratt L, Deese HE, Murray SP, Johns W (2000) Continuous dynamical modes in straits having arbitrary cross

sections with applications to the Bab al Mandab. J Phys Oceanogo 303:2515–2534
Reenapriya K, Ganesh V (2015) On the instability region for the extended rayleigh problem of hydrodynamic

stability. Appl Math Sci 9(46):265–272
Subbiah M, Ganesh V (2007) On the stability of homogeneous shear flows in sea straits of arbitrary cross

section. Indian J Pure Appl Math 38(1):43–50
Subbiah M, Ganesh V (2010) On short wave stability and sufficient conditions for stability in the extended

Rayleigh problem of hydrodynamic stability. Proc Indian Acad Sci (Math Sci) 120(3):387–394

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	An improved instability region for the extended Rayleigh problem of hydrodynamic stability
	Abstract
	1 Introduction
	2 Extended Rayleigh problem (Fig.1)
	3 Instability regions
	4 Concluding remarks
	References




