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Abstract
In this paper, we introduce a modified Halpern algorithm for approximating a common
solution of split equality convexminimization problem and split-equality fixed-point problem
for Bregman quasi-nonexpansive mappings in p-uniformly convex and uniformly smooth
Banach spaces. We introduce a generalized step size such that the algorithm does not require
a prior knowledge of the operator norms and prove a strong convergence theorem for the
sequence generated by our algorithm. We give some applications and numerical examples
to show the consistency and accuracy of our algorithm. Our results complement and extend
many other recent results in this direction in literature.

Keywords Split feasibility problem · Minimization problem · Proximal operator · Bregman
quasi-nonexpansive · Split equality problem · Fixed point problem

Mathematics Subject Classification 47H10 · 47J25 · 47N10 · 65J15 · 90C33

1 Introduction

Let E1 and E2 be Banach spaces and let C and Q be nonempty closed convex subsets of
E1 and E2, respectively. We denote the dual of E1 and E2 by E∗

1 and E∗
2 , respectively.

Let A: E1 → E2 ba a bounded linear operator. The split feasibility problem (SFP) can be
formulated as:
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find x ∈ C such that Ax ∈ Q. (1.1)

The notion of SFP was first introduced by Censor and Elfving (1994) in the framework of
Hilbert spaces for modeling inverse problems which arise from phase retrievals and medical
image reconstruction.TheSFPhas attractedmuch attentiondue to its applications inmodeling
real-world problems such as inverse problem in signal processing, radiation therapy, data
denoising and data compression (see Ansari and Rehan 2014; Bryne 2002; Censor et al.
2005, 2006; Mewomo and Ogbuisi 2018; Shehu and Mewomo 2016 for details). A very
popular algorithm constructed to solve the SFP in real Hilbert spaces was the following
CQ-algorithm proposed by Bryne (2002). Let x1 ∈ C and compute

xn+1 = PC (xn − μA∗(I − PQ)Axn), n ≥ 1, (1.2)

where A∗ is the adjoint of A, PC and PQ are the metric projections of C and Q, respectively,
μ ∈ (0, 2

λ
) with λ being the spectral radius of the operator A∗A. The sequence generated by

(1.2) was shown to converge weakly to a solution of the SFP (1.1).
Schöpfer et al. (2008) studied the problem (1.1) in p-uniformly convex real Banach spaces

which are also uniformly smooth and proposed the following algorithm: for x1 ∈ E1, set

xn+1 = �C J
E∗
1
[
J E1(xn) − μn A

∗ J E2(Axn − PQ(Axn))
]
, n ≥ 1, (1.3)

where �C denotes the Bregman projection from E1 onto C and J E is the duality mapping.
The algorithm (1.3) generalizes the CQ-algorithm proposed by Bryne (2002). For several
extensions of the CQ-algorithm and work on the SFP, please see Bryne (2004), Qu and Xiu
(2005) and Yang (2004) and the references therein.

Moudafi and Thakur (2014) studied the proximal split minimization problem (PSMP) as
generalization of SFP in real Hilbert spaces. Moudafi and Thakur (2014) considered finding
a solution x∗ ∈ H1 of the problem

min
x∈H1

{
f (x) + gμ(Ax)

}
, (1.4)

where f : H1 → R ∪ {+∞}, g: H2 → R ∪ {+∞} are two proper, convex, lower-
semicontinuous functions and gμ(x) = minu∈H2{g(u) + 1

2μ‖u − x‖2} stands for the
Moreau–Yosida approximate of the function g with respect to the parameter μ.

By the differentiability ofYosida-approximate gμ, (1.4) can be formulated as: find x∗ ∈ H1

such that

0 ∈ μ∂ f (x∗) + A∗(I − proxμg)(Ax
∗), (1.5)

where proxμg(x) = argmin{g(u) + 1
2μ‖u − x‖2} is the proximal mapping of g and ∂ f (x)

is the subdifferential of f at x defined as

∂ f (x) := {u ∈ H1: f (y) ≥ f (x) + 〈u, y − x〉 ∀y ∈ H1}.
The inclusion (1.5) in turn yields the following equivalent fixed-point formulation

x∗ = proxμλ f (x
∗ − μA∗(I − proxλg)(Ax

∗)). (1.6)

Thus, (1.6) suggests to consider the following split proximal algorithm.

xk+1 = proxμkλ f (xk − μk A
∗(I − proxλg)Axk).

Now, let T : H → H be a nonlinear operator, a point x ∈ H is called a fixed point of T if
T x = x . The set of all fixed points of T is denoted by F(T ). Let H1, H2 be real Hilbert
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spaces, T1: H1 → H1, T2: H2 → H2 be two nonlinear operators such that F(T1) and F(T2)
are nonempty. The split common fixed point problem (SCFPP) is defined as:

find x ∈ F(T1) such that Ax ∈ F(T2), (1.7)

where A: H1 → H2 is a bounded linear operator. The SCFPP was first studied by Censor and
Segal (2009) in the setting of Hilbert spaces for the case where T1 and T2 are nonexpansive
mappings. They proposed the following algorithm and proved its weak convergence to a
solution of (1.7) under some suitable conditions.

{
x0 ∈ C,

xn+1 = T1[xn − γ A∗(I − T2)Axn],
whereγ ∈ (0, 2

λ
)withλbeing the spectral radius of the operator A∗A.Moudafi (2011) studied

the SCFPP in infinite-dimensional Hilbert spaces. Moudafi (2011) proposed the following
algorithm (1.8) and obtained a weak convergence theorem for finding solution of (1.7) for
quasi-nonexpansive mappings.

⎧
⎨

⎩

x0 ∈ C,

yn = xn − γ A∗(I − T1)Axn,
xn+1 = (1 − αn)yn + αnT2yn,

(1.8)

where γ ∈ (0, 1
λβ

) for β ∈ (0, 1) and λ being the spectral radius of the operator A∗A.
Let H1, H2 and H3 be real Hilbert spaces and let C , Q be nonempty, closed and convex

subsets of H1 and H2, respectively. Let A: H1 → H3, B: H2 → H3 be bounded linear
operators, the split equality fixed point problem (SEFPP) is defined as

find x ∈ F(T1) and y ∈ F(T2) such that Ax = By, (1.9)

where T1: H1 → H1 and T2: H2 → H2 are nonlinear mappings on H1 and H2, respec-
tively. The SEFPP allows asymmetric and partial relations between the variables x and y.
It has applications in phase retrievals, decision sciences, medical image reconstruction and
intensity-modulated radiation therapy. If in (1.9), H2 = H3 and B = I , the identity mapping,
then SEFPP (1.9) reduces to the SCFPP (1.7). The SEFPPwas introduced byMoudafi (2012)
in the framework of Hilbert spaces for firmly nonexpansive operators. To solve this problem,
Moudafi (2012) proposed the following alternating algorithm:

{
xn+1 = U (xn − γn A∗(Axn − Byn)),
yn+1 = T (yn + γn B∗(Axn+1 − Byn)), n ≥ 1,

(1.10)

where {γn} is a positive non-decreasing sequence such that γn ∈ (
ε,min( 1

λA
, 1

λB
) − ε), λA,

λB stand for the spectral radii of A∗A and B∗B, respectively, I−T1 and I−T2 are demiclosed
at 0. It was established that the iterative scheme (1.10) converges weakly to a solution of
(1.9) in Hilbert spaces.

Motivated by the work of Moudafi (2012), Moudafi and Al-Shemas (2013) studied the
SEFPP (1.9) in the setting of Hilbert spaces and proposed the following simultaneous algo-
rithm:

{
xn+1 = U (xn − γn A∗(Axn − Byn)),
yn+1 = T (yn + γn B∗(Axn − Byn)), n ≥ 1,

(1.11)

where {γn} ⊂ (ε, 2
λA+λB

−ε). They proved that the iterative scheme (1.11) converges weakly
to a solution of problem (1.9).

123



77 Page 4 of 28 A. Taiwo et al.

Ma et al. (2013) also proposed the following algorithm for solving the SEFPP (1.9) in
Hilbert spaces:

⎧
⎪⎨

⎪⎩

x1 ∈ H1, y1 ∈ H2,

xn+1 = (1 − αn)xn + αnU (xn − γn A∗(Axn − Byn)),

xn+1 = (1 − αn)yn + αnT (yn + γn B∗(Axn − Byn)), n ≥ 1,

(1.12)

where {γn} ⊂ (ε, 2
λA+λB

− ε), {αn} ⊂ [α, 1] for some α > 0 and U : H1 → H1 and
T : H2 → H2 T are firmly quasi-nonexpansive mappings. They proved strong and weak
convergence theorems for the iterative scheme under some mild conditions.

Note that algorithms (1.10)–(1.12) depend on a prior knowledge of the operator norms for
their implementation. To overcome this difficulty, Zhao (2015) introduced a new algorithm
with a way of selecting the stepsize such that its implementation does not require prior
knowledge of the operator norms. In particular, Zhao (2015) proposed the following iterative
method: choose initial guess x0 ∈ H1, y0 ∈ H2,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn − γn A∗(Axn − Byn),

xn+1 = αnun + (1 − αn)U (un),

vn = yn + γn B∗(Axn − Byn),
yn+1 = βnvn + (1 − βn)T (un),

(1.13)

where αk ∈ [0, 1], βk ∈ [0, 1], and

γn ∈
(
0,

2‖Axn − Byn‖2
‖A∗(An − Byn)‖2 + ‖B∗(Axn − Byn)‖2

)
,

n ∈ 	 otherwise γn = γ (γ being any nonnegative value), where the set of indexes 	 =
{n: Axn − Byn = 0}.

We note that while there are many literature on solving the SEFPP in Hilbert spaces there
are only few literature on SEFPP in Banach spaces. Our aim in this paper is to study the
SEFPP in the setting of other Banach spaces higher than the Hilbert spaces.

Let E1, E2 and E3 be p-uniformly convex and uniformly smooth Banach spaces and let
f : E1 → R∪ {+∞} and g: E2 → R∪ {+∞} be proper, convex and lower semicontinuous
functions. Let T1: E1 → E1 and T2: E2 → E2 be Bregman quasi-nonexpansivemappings. In
this paper, we consider the following split equality convex minimization problem (SECMP)
and fixed point problem:

find x ∈ F(T1) ∩ Argmin( f ), y ∈ F(T2) ∩ Argmin(g) such that Ax = By,

(1.14)

where A: E1 → E3 and B: E2 → E3 are bounded linear operators.
It is important to consider the problem of finding a common solution of SECMP and

SEFPP due to its possible applications to mathematical models whose constraints can be
expressed as SECMP and SEFPP. This happens, in particular, in the practical problems such
as in signal processing, network resource allocation, image recovery, see for instance Iiduka
(2012, 2015) and Maingé (2008b).

We denote the set of solutions of problem (1.14) by 	. We introduce a modified Halpern
iterative algorithm with a generalized stepsize so that the implementation of our algorithm
does not require prior knowledge of the operator norms.We prove a strong convergence result
and give some applications of our result to other nonlinear problems. Finally, we present a
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numerical example to show the efficiency and accuracy of our algorithm. This result also
extends the result of Mewomo et al. (2018) from Hilbert to Banach spaces settings.

2 Preliminaries

In this section, we give some preliminaries, definitions and results which will be needed in
the sequel. We denote by ‘xn⇀x’ and ‘xn → x’, the weak and the strong convergence of
{xn} to a point x , respectively.

Let E be a real Banach space with the norm ‖ · ‖ and E∗ be the dual with the norm ‖ · ‖∗.
We denote the value of the functional j ∈ E∗ at x ∈ E by 〈x, j〉. Let 1 < q ≤ 2 ≤ p with
1
p + 1

q = 1. The modulus of convexity of E is the function δE (ε): (0, 2] → [0, 1] defined by

δE (ε) := inf

{
1 −

∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

E is said to be uniformly convex if δE (ε) > 0 and p-uniformly convex if there exists a
Cp > 0 such that δE (ε) ≥ Cpε

p , for any ε ∈ (0, 2]. The L p spaces, 1 < p < ∞ are
uniformly convex. A uniformly convex Banach space is strictly convex and reflexive. Also,
the modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE (τ ) := sup

{‖x + τ y‖ + ‖x − τ y‖
2

− 1: ‖x‖ = ‖y‖ = 1

}
.

E is called uniformly smooth if limτ→0+ ρE (τ )
τ

= 0 and q-uniformly smooth if there exists
Cq > 0 such that ρE (τ ) ≤ Cqτ

q . Every uniformly smooth space Banach is smooth and
reflexive.

A continuous strictly increasing function φ:R+ → R
+ such that φ(0) = 0 and

limt→∞ φ(t) = ∞ is called a gauge function. Given a gauge function φ, the mapping
J E
φ : E → 2E

∗
defined by

J E
φ (x) = {u∗ ∈ E∗: 〈x, u∗〉 = ‖x‖‖u∗‖∗, ‖u∗‖∗ = φ(‖x‖)}

is called the duality mapping with gauge function φ. It is known (see Chidume 2009) that
J E
φ (x) is nonempty for any x ∈ E . In the particular case where φ(t) = t , the duality map

J = Jφ is called the normalized duality map. If φ(t) = t p−1 where p > 1, the duality
mapping J E

φ = J E
p is called the generalized duality mapping from E to 2E

∗
. Let φ be a

gauge function and f (t) = ∫ t
0 φ(s)ds, then f is a convex function on R+.

It is known that when E is uniformly smooth, then J E
p is norm to norm uniformly con-

tinuous on bounded subsets of E and E is smooth if and only if J E
p is single valued (see

Chidume 2009).
If E is p-uniformly convex and uniformly smooth, then E∗ is q-uniformly smooth and

uniformly convex. This then implies that the duality mapping J E
p is one-to-one, single valued

and satisfies J E
p = (J E∗

q )−1 (see, e.g. Chidume 2009; Cioranescu 1990).
Xu and Roach (1991) proved the following inequality for q-uniformly smooth Banach

spaces.

Lemma 2.1 Let x, y ∈ E. If E is a q-uniformly smooth Banach space, then there exists a
Cq > 0 such that

‖x − y‖q ≤ ‖x‖q − q〈y, J E
q (x)〉 + Cq‖y‖q .
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Definition 2.2 (Bauschke et al. 2003; Bauschke and Combettes 2011) A function f : E →
R ∪ {+∞} is said to be

(1) proper if its effective domain D( f ) = {x ∈ E : f (x) < +∞} is nonempty,
(2) convex if f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) for every λ ∈ (0, 1), x, y ∈ D( f ),
(3) lower semicontinuous at x0 ∈ D( f ) if f (x0) ≤ limx→x0 inf f (x).

Let x ∈ int(dom f ), for any y ∈ E , the directional derivative of f at x denoted by f 0(x, y)
is defined by

f 0(x, y) := lim
t→0+

f (x + t y) − f (x)

t
. (2.1)

If the limit at t → 0+ in (2.1) exists for each y, then the function f is said to be directionally
differentiable at x .

Let f : E → R ∪ {+∞} be a proper, convex and lower semicontinuous function and x ∈
intdom( f ). The subdifferential of f at x is the convex set defined by

∂ f (x) = {x∗ ∈ E∗: f (y) ≥ 〈y − x, x∗〉 + f (x) ∀ y ∈ E},
and the Fenchel conjugate of f is the function f ∗: E∗ → R ∪ {+∞} defined by

f ∗(y∗) = sup{〈x, y∗〉 − f (x): x ∈ E}.
Given a directionally differentiable function f , the bifunction � f : dom f × int dom f →
[0,+∞) defined by

� f (y, x) := f (y) − f (x) − 〈∇ f (x), y − x〉, (2.2)

where 〈∇ f (x), y〉 = f 0(x, y) is called the Bregman distance with respect to f . Note that
� f (y, x) ≥ 0 (see Bauschke et al. 2003). In general, the Bregman distance is not a metric
due to the fact that it is not symmetric. However, it possesses some distance-like properties.
From (2.2), one can show that the following equality called three-point identity is satisfied:

� f (x, y)+� f (y, z)−� f (x, z) = 〈x− y,∇ f (z)−∇ f (y)〉 ∀x ∈ dom( f ), y, z ∈ intdom( f ).

In addition, if f (x) = 1
p ‖x‖p , where 1

p + 1
q = 1, then we have

� f (y, x) = �p(y, x) = ‖y‖p

p
− ‖x‖p

p
− 〈y − x, J E

p (x)〉

= ‖y‖p

p
− ‖x‖p

p
− 〈y, J E

p (x)〉 + 〈x, J E
p (x)〉

= ‖y‖p

p
− ‖x‖p

p
− 〈y, J E

p (x)〉 + ‖x‖p

= ‖y‖p

p
− 〈y, J E

p (x)〉 + ‖x‖p

q
. (2.3)

The Bregman projection

�C x := argmin
y∈C

�p(x, y), x ∈ E,

is the unique minimizer of the Bregman distance (see Schöpfer 2007). It can be characterized
by the variational inequality:

〈J E
p (x) − J E

p (�C x), z − �C x〉 ≤ 0, ∀z ∈ C .
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We associate with f (x) = 1
p ‖x‖p , the function Vp: E × E∗ → [0,+∞) defined by

Vp(x, x̄) = 1

p
‖x‖p − 〈x, x̄〉 + 1

q
‖x̄‖q , x ∈ E, x̄ ∈ E∗.

Vp(x, x̄) ≥ 0 follows from Young’s inequality and the following properties are satisfied (see
Kohsaka and Takahashi 2005; Phelps 1993):

Vp(x, x̄) = �p(x, J
E∗
q (x̄)) ∀x ∈ E, x̄ ∈ E∗, (2.4)

Vp(x, x̄) + 〈J E∗
q (x̄) − x, ȳ〉 ≤ Vp(x, x̄ + ȳ) ∀x ∈ E, x̄, ȳ ∈ E∗. (2.5)

Also, Vp is convex in the second variable. Thus, for all z ∈ E

�p

(

z, J E∗
q

(
N∑

i=1

ti J
E
p xi

))

≤
N∑

i

�p(z, xi ).

A point x∗ ∈ C is called an asymptotic fixed points of T if C contains a sequence {xn}which
converges weakly to x∗ such that limn→∞ ‖xn − T xn‖ = 0. The set of asymptotic fixed
points of T will be denoted by F̂(T ).

Definition 2.3 (Reich and Sabach 2010b, 2011) A mapping T :C → E is said to be

(1) nonexpansive if ‖T x − T y‖ ≤ ‖x − y‖ for each x, y ∈ C ,
(2) quasi-nonexpansive if F(T ) = ∅ and ‖T x − T y∗‖ ≤ ‖x − y∗‖ for each x ∈ C and

y∗ ∈ F(T ),
(3) Bregman nonexpansive if

�p(T x, T y) ≤ �p(x, y) ∀x, y ∈ C,

(4) Bregman quasi-nonexpansive if F(T ) = ∅ and

�p(T x, y
∗) ≤ �p(x, y

∗) ∀x ∈ C, y∗ ∈ F(T ),

(5) Bregman relative nonexpansive if F(T ) = ∅, F̂(T ) = F(T ) and

�p(T x, y
∗) ≤ �p(x, y

∗) ∀x ∈ C, y∗ ∈ F(T ),

(6) Bregman firmly nonexpansive if for all x, y ∈ C,

�p(T x, T y) + �p(T y, T x) + �p(T x, x) + �p(T y, y) ≤ �p(T x, y) + �p(T y, x).

From these definitions, it is evident that the class of Bregman quasi-nonexpansive contains
the class of Bregman relative nonexpansive, the class of Bregman firmly nonexpansive and
the class of Bregman nonexpansive mapping with F(T ) = ∅.
Let E be a p-uniformly convex and uniformly smooth real Banach space and f : E →
R ∪ {+∞} be a proper, convex and lower semicontinuous function. The proximal mapping
associated with f with respect to the Bregman distance is defined as

proxγ f (x) := argmin
u∈E

{
f (u) + 1

γ
�p(u, x)

}
.

Bauschke et al. (2003) explore some important properties of the operator proxγ f . We note
from Bauschke et al. (2003) that dom proxγ f ⊂ int domφ and ran proxγ f ⊂ domφ ∩
dom f , where φ(x) = 1

p ‖x‖p and it is convex and Gâteaux differentiable. Furthermore, if
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ran proxγ f ⊂ int domφ, then proxγ f is Bregman firmly nonexpansive and single-valued on
its domain if int domφ is strictly convex. The set of fixed points of proxγ f is indeed the set
of minimizers of f (see Bauschke et al. 2003 for more details). Throughout this paper, we
shall assume that ran proxγ f ⊂ int domφ.

The following result can be obtained from Jolaoso et al. (2017, Lemma 2.18).

Lemma 2.4 (Jolaoso et al. 2017) Let E be a p-uniformly convex Banach space which is
uniformly smooth. Let f : E → R ∪ {+∞} be a proper, convex and lower semicontinuous
function and let proxγ f : E → E be the proximal operator associated with f for γ > 0, then
the following inequality holds: for all x ∈ E and z ∈ F(proxγ f ), we have

�p(z, proxγ f (x)) + �p(proxγ f (x), x) ≤ �p(z, x).

The following results will be needed to establish our main theorem.

Lemma 2.5 (Naraghirad andYao 2013) Let E be a smooth and uniformly convex real Banach
space. Let {xn} and {yn} be two sequences in E. Then limn→∞ �p(xn, yn) = 0 if and only
if limn→∞ ‖xn − yn‖ = 0.

Lemma 2.6 (Xu 2002) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1 − αn)an + anδn, n ≥ 0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R such that
∑∞

n=1 αn = ∞, and lim supn→∞ δn ≤ 0. Then
limn→∞ an = 0.

Lemma 2.7 (Maingé 2008a) Let {an} be sequence of real numbers such that there exists a
subsequence {ni } of {n} with ani < ani+1 for all i ∈ N. Then, there exists an increasing
sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all
(sufficiently large) numbers k ∈ N:

amk ≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, . . . k} such that the condition an ≤ an+1

holds.

Lemma 2.8 (Xu and Roach 1991) Let q ≥ 1 and r > 0 be two fixed real numbers. Then, a
Banach space E is uniformly convex if and only if there exists a continuous, strictly increasing
and convex function g:R+ → R

+, g(0) = 0 such that for all x, y ∈ Br and 0 ≤ λ ≤ 1,

‖λx + (1 − λ)y‖q ≤ λ‖x‖q + (1 − λ)‖y‖q − Wq(λ)g(‖x − y‖),
where Wq(λ) := λq(1 − λ) + λ(1 − λ)q and Br := {x ∈ E : ‖x‖ ≤ r}.

3 Main results

In this section, we present a modified Halpern algorithm for solving (1.14) where T1 and T2
are Bregman quasi-nonexpansive mappings.

Theorem 3.1 Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also
uniformly smooth. LetC and Q benonempty closed, convex subsets of E1 and E2, respectively,
A: E1 → E3 and B: E2 → E3 be bounded linear operators. Let f : E1 → R ∪ {+∞} and
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g: E2 → R ∪ {+∞} be proper, convex and lower semicontinuous functions, T1: E1 → E1

and T2: E2 → E2 be Bregman quasi-nonexpansive mappings such that 	 = ∅. For fixed
u ∈ E1 and v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and let {αn} ⊂ [0, 1].
Assume that the nth iterate (xn, yn) ⊂ E1 × E2 has been constructed; then we compute the
(n + 1)th iterate (xn+1, yn+1) via the iteration:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = proxγn f

(
J
E∗
1

q

[
J E1
p (xn) − γn A∗ J E3

p (Axn − Byn)
])

,

xn+1 = J
E∗
1

q

(
αn J

E1
p (u) + (1 − αn)

[
βn J

E1
p (un) + (1 − βn)J

E1
p (T1un)

] )
,

vn = proxγng

(
J
E∗
2

q

[
J E2
p (yn) + γn B∗ J E3

p (Axn − Byn)
])

,

yn+1 = J
E∗
2

q

(
αn J

E2
p (v) + (1 − αn)

[
δn J

E2
p (vn) + (1 − δn)J

E2
p (T2vn)

] )
,

(3.1)

for n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ is the adjoint operator of A. Further, we choose
the stepsize γn such that if n ∈ � := {n: Axn − Byn = 0}, then

γ
q−1
n ∈

(

0,
q‖Axn − Byn‖p

Cq‖A∗ J E3
p (Axn − Byn)‖q + Dq‖B∗ J E3

p (Axn − Byn)‖q

)

, (3.2)

where Cq and Dq are constants of smoothness of E1 and E2, respectively. Otherwise, γn = γ

(γ being any nonnegative value). Then {xn} and {yn} are bounded.

Proof Let (x, y) ∈ 	, using Lemma 2.1, (2.3) and the Bregman firmly nonexpansivity of
prox operators, we have

�p(x, un) = �p

(
x, proxγn f

(
J
E∗
1

q

[
J E1
p (xn) − γn A

∗ J E3
p (Axn − Byn)

]))

≤ �p

(
x, J

E∗
1

q

[
J E1
p (xn) − γn A

∗ J E3
p (Axn − Byn)

])

= ‖x‖p

p
− 〈x, J E1

p xn〉 + γn〈x, A∗ J E3
p (Axn − Byn)〉

+
∥∥∥J E1

p xn − γn A∗ J E3
p (Axn − Byn)

∥∥∥
q

q

≤ ‖x‖p

p
− 〈x, J E1

p xn〉 + γn〈x, A∗ J E3
p (Axn − Byn)〉

+ ‖J E1
p xn‖q
q

− γn〈xn, A∗ J E3
p (Axn − Byn)〉

+ Cq

q
γn

q‖A∗ J E3
p (Axn − Byn)‖q

= ‖x‖p

p
− 〈x, J E1

p xn〉 + ‖xn‖p

q
− γn〈xn − x, A∗ J E3

p (Axn − Byn)〉

+ Cq

q
γn

q‖A∗ J E3
p (Axn − Byn)‖q

= �p(x, xn) − γn〈Axn − Ax, J E3
p (Axn − Byn)〉

+ Cq

q
γ
q
n ‖A∗ J E3

p (Axn − Byn)‖q . (3.3)
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Following similar to the argument as in (3.3), we have

�p (y, vn) ≤ �p(y, yn) + γn〈Byn − By, J E3
p (Axn − Byn)〉

+Dq

q
γ
q
n ‖B∗ J E3

p (Axn − Byn)‖q .
(3.4)

Adding (3.3) and (3.4) and noting that Ax = By, we obtain

�p(x, un) + �p(y, un)

≤ �p(x, xn) + �p(y, yn) − γn〈Axn − Byn, J
E3
p (Axn − Byn)〉

+ Cq

q
γ
q
n ‖A∗ J E3

p (Axn − Byn)‖q + Dq

q
γ
q
n ‖B∗ J E3

p (Axn − Byn)‖q

= �p(x, xn) + �p(y, yn) − γn

{
‖Axn − Bxn‖p

− γ
q−1
n

q

(
Cq‖A∗ J E3

p (Axn − Byn)‖q + Dq‖B∗ J E3
p (Axn − Byn)‖q

)}
. (3.5)

From the choice of γn (3.2), we have that

�p(x, un) + �p(y, un) ≤ �p(x, xn) + �p(y, yn). (3.6)

Thus from (3.1) and (3.6), we get

�p(x, xn+1) + �p(y, yn+1)

= �p

(
x, J

E∗
1

q

(
αn J

E1
p u + (1 − αn)

[
βn J

E1
p un + (1 − βn)J

E1
p (T1un)

]))

+�p

(
y, J

E∗
2

q (αn J
E2
p v + (1 − αn)[δn J E2

p vn + (1 − δn)J
E2
p (T2vn)])

)

≤ αn�p(x, u) + (1 − αn)βn�p(x, un) + (1 − αn)(1 − βn)�p(x, T1un)

+αn�p(y, v) + (1 − αn)δn�p(y, vn) + (1 − αn)(1 − δn)�p(y, T2vn)

≤ αn�p(x, u) + (1 − αn)βn�p(x, un) + (1 − αn)(1 − βn)�p(x, un) + αn�p(y, v)

+ (1 − αn)δn�p(y, vn) + (1 − αn)(1 − δn)�p(y, vn)

= αn[�p(x, u) + �p(y, v)] + (1 − αn)[�p(x, un) + �p(y, vn)]
≤ αn[�p(x, u) + �p(y, v)] + (1 − αn)[�p(x, xn) + �p(y, yn)

≤ max{(�p(x, u) + �p(y, v)), (�p(x, xn) + �p(y, yn))}
...

≤ max

{
(�p(x, u) + �p(y, v)), (�p(x, x0) + �p(y, y0))

}
.

Thus, the last inequality implies that {xn} and {yn} are bounded. Consequently, {un}, {vn},
{T1un} and {T2vn} are bounded. ��
Theorem 3.2 Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also
uniformly smooth. LetC and Q benonempty closed, convex subsets of E1 and E2, respectively,
A: E1 → E3 and B: E2 → E3 be bounded linear operators. Let f : E1 → R ∪ {+∞} and
g: E2 → R∪{+∞} be proper, convex and lower semicontinuous functions, T1: E1 → E1 and
T2: E2 → E2 be Bregman quasi-nonexpansive mappings such that F(Ti ) = F̂(Ti ), i = 1, 2
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and 	 = ∅. For fixed u ∈ E1 and v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and
let {αn} ⊂ [0, 1]. Suppose ({xn}, {yn}) is generated by algorithm (3.1) and the following
conditions are satisfied:

(i) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(ii) 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iii) 0 < b ≤ lim infn→∞ δn ≤ lim supn→∞ δn < 1.

Then the sequence {(xn, yn)} converges strongly to (x∗, y∗) = (�	u,�	v).

Proof Let (x, y) ∈ 	. Then from (2.4) and (2.5), we have

�p(x, xn+1) = �p

(
x, J

E∗
1

q (αn J
E1
p u + (1 − αn)[βn J

E1
p un + (1 − βn)J

E1
p (T1un)])

)

= Vp

(
x, αn J

E1
p u + (1 − αn)[βn J

E1
p un + (1 − βn)J

E1
p T1un]

)

≤ Vp

(
x, αn J

E1
p u + (1 − αn)[βn J

E1
p un + (1 − βn)J

E1
p (T1un)]

−αn(J
E1
p u − J E1

p x)
)

+ αn〈J E1
p u − J E1

p x, xn+1 − x〉
= Vp

(
x, αn J

E1
p x + (1 − αn)

[
βn J

E1
p un + (1 − βn)J

E1
p T1un

] )

+αn〈J E1
p u − J E1

p x, xn+1 − x〉
= �p

(
x, J

E∗
1

q

(
αn J

E1
p x + (1 − αn)

[
βn J

E1
p un + (1 − βn)J

E1
p T1un

]) )

+αn〈J E1
p u − J E1

p x, xn+1 − x〉
≤ αn�p(x, x) + (1 − αn)βn�p(x, un) + (1 − αn)(1 − βn)�p(x, T1un)

+αn〈J E1
p u − J E1

p x, xn+1 − x〉
≤ (1 − αn)βn�p(x, un) + (1 − αn)(1 − βn)�p(x, un)

+αn〈J E1
p u − J E1

p x, xn+1 − x〉
= (1 − αn)�p(x, un) + αn〈J E1

p u − J E1
p x, xn+1 − x〉. (3.7)

Similarly for �p(y, yn+1), we obtain

�p(y, yn+1) ≤ (1 − αn)�p(y, vn) + αn〈J E2
p v − J E2

p y, yn+1 − y〉. (3.8)

Thus, from (3.5), (3.7) and (3.8), we obtain that

�p(x, xn+1) + �p(y, yn+1)

≤ (1 − αn)
(
�p(x, un) + �p(y, vn)

) + αn(〈J E1
p u − J E1

p x, xn+1 − x〉
+ 〈J E2

p v − J E2
p y, yn+1 − y〉) (3.9)

≤ (1 − αn)(�p(x, xn) + �p(y, yn)) − γn(1 − αn)

{
‖Axn − Bxn‖p

− γ
q−1
n

q

(
Cq‖A∗ J E3

p (Axn − Byn)‖q + Dq‖B∗ J E3
p (Axn − Byn)‖q

)}

+αn〈J E1
p u − J E1

p x, xn+1 − x〉 + αn〈J E2
p v − J E2

p y, yn+1 − y〉. (3.10)

To this end, let �n = �p(x, xn) + �p(y, yn) and τn = αn〈J E1
p u − J E1

p x, xn+1 − x〉 +
αn〈J E2

p v − J E2
p y, yn+1 − y〉. We consider the following cases:

123



77 Page 12 of 28 A. Taiwo et al.

Case 1 Suppose ∃ n0 ∈ N such that {�n} is monotonically non-increasing for all n ≥ n0.
Since �n is bounded it implies that {�n} converges and

�n+1 − �n → 0, as n → ∞.

Set

Kn = Cq‖A∗ J E3
p (Axn − Byn)‖q + Dq‖B∗ J E3

p (Axn − Byn)‖q ,
it follows from (3.10) that

γn(1 − αn)

(

‖Axn − Byn‖p − γ
q−1
n

q
Kn

)

≤ (1 − αn)�n − �n+1 + αnτn → 0, (3.11)

as n → ∞. By the choice of the stepsize (3.2), there exists a very small ε > 0 such that

0 < γ
q−1
n ≤ q||Axn − Byn ||p

Kn
− ε,

which means that

γ
q−1
n Kn ≤ q||Axn − Byn ||p − εKn,

and hence

εKn

q
≤ ||Axn − Byn ||p − γ

q−1
n

q
Kn → 0, as n → ∞.

Hence

lim
n→∞ Kn = lim

n→∞
(
Cq‖A∗ J E3

p (Axn − Byn)‖q + Dq‖B∗ J E3
p (Axn − Byn)‖q

)
= 0.

This implies that

lim
n→∞ ‖A∗ J E3

p (Axn − Byn)‖q = lim
n→∞ ‖B∗ J E3

p (Axn − Byn)‖q = 0. (3.12)

Also from (3.11), we have

lim
n→∞ ||Axn − Byn ||p = 0. (3.13)

Let wn = J
E∗
1

q (βn J
E1
p un + (1− βn)J

E1
p T1un) and zn = J

E∗
2

q (δn J
E2
p vn + (1− δn)J

E2
p T2vn).

Using Lemma 2.8, we have

�p(x, wn) = �p(x, J
E∗
1

q (βn J
E1
p un + (1 − βn)J

E1
p T1un))

= 1

p
‖x‖p − βn〈x, J E1

p un〉 − (1 − βn)〈x, J E1
p T1un〉

+ 1

q
‖βn J

E1
p un + (1 − βn)J

E1
p T1un‖q

≤ βn
1

p
‖x‖p + (1 − βn)

1

p
‖x‖p − βn〈x, J E1

p un〉 − (1 − βn)〈x, J E1
p T1un〉

+ 1

q
βn‖un‖p + (1 − βn)

q
‖T1un‖p

− Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖)
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= βn�p(x, un) + (1 − βn)�p(x, T1un) − Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖)

≤ �p(x, un) − Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖). (3.14)

Similarly, we have

�p(y, zn) ≤ �p(y, vn) − Wq(δn)

q
g(‖J E2

p vn − J E2
p (T2vn)‖). (3.15)

By adding (3.14) and (3.15), we have

�p(x, wn) + �p(y, zn) ≤ �p(x, un) + �p(y, vn) − Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖)

− Wq(δn)

q
g(‖J E2

p vn − J E2
p (T2vn)‖)

≤ �p(x, xn) + �p(y, yn) − Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖)

− Wq(δn)

q
g(‖J E2

p vn − J E2
p (T2vn)‖). (3.16)

Observe that

�p(x, xn+1) + �p(y, yn+1) = �p(x, J
E∗
1

q (αn J
E1
p u + (1 − αn)J

E1
p wn))

+�p(y, J
E∗
2

q (αn J
E2
p v + (1 − αn)J

E2
p zn))

≤ αn
(
�p(x, u) + �p(y, v)

)

+ (1 − αn)
(
�p(x, wn) + �p(y, zn)

)
,

therefore, from (3.16), we get

�p(x, xn+1) + �p(y, yn+1) ≤ αn
(
�p(x, u) + �p(y, v)

)

+ (1 − αn)
(
�p(x, xn) + �p(y, yn)

− Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖)

− Wq(δn)

q
g(‖J E2

p vn − J E2
p (T2vn)‖)

)
.

This implies that

(1 − αn)

(
Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖) + Wq(δn)

q
g(‖J E2

p vn − J E2
p (T2vn)‖)

)

≤ αn
(
�p(x, u) + �p(y, v)

) + (1 − αn)
(
�p(x, xn)

+�p(y, yn)
) − (

�p(x, xn+1) + �p(y, yn+1)
)

= �n − �n+1 + αn(�p(x, u) + �p(y, v)) − αn�n → 0, as n → ∞. (3.17)

Hence

lim
n→∞

(
Wq(βn)

q
g(‖J E1

p un − J E1
p (T1un)‖) + Wq(δn)

q
g(‖J E2

p vn − J E2
p (T2vn)‖)

)
= 0.

(3.18)
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Thus, we obtain

lim
n→∞ g(‖J E1

p un − J E1
p (T1un)‖) = lim

n→∞ g(‖J E2
p vn − J E2

p (T2vn)‖) = 0.

By the continuity of g, we have

lim
n→∞ ‖J E1

p un − J E1
p (T1un)‖ = lim

n→∞ ‖J E2
p vn − J E2

p (T2vn)‖ = 0.

Also, since J E1
q and J E2

q are uniformly continuous on bounded subsets of E1 and E2, respec-
tively, then

lim
n→∞ ||T1un − un || = lim

n→∞ ||T2vn − vn || = 0. (3.19)

Furthermore,

‖J E1
p wn − J E1

p un‖ = (1 − βn)‖J E1
p T1un − J E1

p un‖ → 0, as n → ∞,

and

‖J E2
p zn − J E2

p vn‖ = (1 − δn)‖J E2
p T2vn − J E2

p un‖ → 0, as n → ∞.

This implies that

lim
n→∞ ||wn − un || = lim

n→∞ ||zn − vn || = 0. (3.20)

Also

�p(xn+1, wn) = �p(J
E∗
1

q (αn J
E1
p u + (1 − αn)J

E1
p wn), wn)

≤ αn�p(u, wn) + (1 − αn)�p(wn, wn) → 0 as n → ∞,

therefore, by Lemma 2.5, we have

lim
n→∞ ||xn+1 − wn || = 0. (3.21)

Similarly

�p(yn+1, zn) = �p(J
E∗
2

q (αn J
E2
p v + (1 − αn)J

E2
p zn), zn)

≤ αn�p(v, zn) + (1 − αn)�p(zn, zn) → 0 as n → ∞,

and

lim
n→∞ ||yn+1 − zn || = 0.

Now, let sn = J
E∗
1

q (J E1
p xn−γn A∗ J E3

p (Axn−Byn)) and tn = J
E∗
2

q (J E2
p yn+γn B∗ J E3

p (Axn−
Byn)). Note that from (3.3) and (3.4), we have

�p(x, sn) + �p(y, tn) ≤ �p(x, xn) + �p(y, yn).

Using Lemma 2.4, we obtain

�p(x, un) + �p(y, vn) = �p(x, proxγn f sn) + �p(y, proxγngtn)

≤ �p(x, sn) − �p(proxγn f sn, sn)+�p(y, tn)−�p(proxγngtn, tn).
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Hence from (3.10), we have

�p(proxγn f sn, sn) + �p(proxγngtn, tn)

≤ �p(x, sn) + �p(y, tn) − (�p(x, un) + �p(y, vn))

≤ �p(x, xn) + �p(y, yn) − (�p(x, un) + �p(y, vn))

≤ �p(x, xn) + �p(y, yn) − (�p(x, xn+1) + �p(y, yn+1))

+αn(〈J E1
p u − J E1

p x, xn+1 − x〉 + 〈J E2
p v − J E2

p y, yn+1 − y〉)
= �n − �n+1 + αn(〈J E1

p u − J E1
p x, xn+1 − x〉

+ 〈J E2
p v − J E2

p y, yn+1 − y〉) → 0, as n → ∞.

Hence
lim
n→∞ �p(proxγn f sn, sn) = lim

n→∞ �p(proxγngtn, tn) = 0.

Thus by Lemma 2.5, we get

lim
n→∞ ||proxγn f sn − sn || = lim

n→∞ ||proxγngtn − tn || = 0. (3.22)

Since E1 and E2 are uniformly smooth, then J E1
p and J E2

p are uniformly continuous on
bounded subsets of E1 and E2, respectively. Therefore

lim
n→∞ ||J E1

p sn − J E1
p un || = lim

n→∞ ||J E2
p tn − J E2

p vn || = 0.

It follows from the definition of sn that

0 ≤ ||J E1
p sn − J E1

p xn ||
≤ γn ||A∗||||J E3

p (Axn − Byn)||
= γn ||A∗||||Axn − Byn ||p−1 → 0, as n → ∞.

Hence

lim
n→∞ ||sn − xn || = 0.

Similarly, we can show that

lim
n→0

||tn − yn || = 0. (3.23)

It follows therefore from (3.22) that

lim
n→∞ ||un − xn || ≤ lim

n→∞
(
||un − sn || + ||sn − xn ||

)
= 0, (3.24)

and

lim
n→∞ ||vn − yn || ≤ lim

n→∞
(
||vn − tn || + ||tn − yn ||

)
= 0. (3.25)

Hence, by combining (3.20), (3.21) and (3.24), we get

lim
n→∞ ||xn+1 − xn || ≤ lim

n→∞
(
||xn+1 − wn || + ||wn − un || + ||un − xn ||

)
= 0. (3.26)

Similarly, we obtain

lim
n→∞ ||yn+1 − yn || ≤ lim

n→∞
(
||yn+1 − zn || + ||zn − vn || + ||vn − yn ||

)
= 0. (3.27)
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Since E1, E2 are uniformly convex and uniformly smooth and {(xn, yn)} is bounded, there
exists a subsequence {(xni , yni )} of {(xn, yn)} such that (xni , yni )⇀ (x̄, ȳ) ∈ E1 × E2.
Also from (3.24) and (3.25), we obtain that {(uni , vni )}⇀ (x̄, ȳ). Since F̂(Ti ) = F(Ti ), for
i = 1, 2, it follows from (3.19) that x̄ ∈ F(T1) and ȳ ∈ F(T2). Furthermore, we show that
x̄ ∈ Argmin( f ) and ȳ ∈ Argmin(g). Since sni − xni → 0, as i → ∞, it follows from (3.22)
that x̄ = proxγni f

(x̄), hence x̄ is a fixed point of the proximal operator of f , or equivalently,
0 ∈ ∂ f (x̄). Thus, x̄ ∈ Argmin( f ). Similarly, we obtain that ȳ ∈ Argmin(g).

Now, since A: E1 → E3 and B: E2 → E3 are bounded linear operators, we have
Axni ⇀Ax̄ and Byni ⇀B ȳ. By the weak lower semicontinuity of the norm and (3.13), we
have

||Ax̄ − B ȳ|| ≤ lim inf
i→∞ ||Axni − Byni || = 0.

Hence, Ax̄ = B ȳ. This implies that (x̄, ȳ) ∈ 	.
Next, we show that {(xn, yn)} converges strongly to (x∗, y∗) = (�	u,�	v). From

(3.10), we have

�p(x, xn+1) + �p(y, yn+1) ≤ (1 − αn)(�p(x, xn) + �p(y, yn))

+αn(〈J E1
p u − J E1

p x, xn+1 − x〉
+ 〈J E2

p v − J E2
p y, yn+1 − y〉). (3.28)

Choose subsequences {xni } of {xn} and {yni } of {yn} such that

lim sup
n→∞

〈J E1
p u − J E1

p x∗, xn+1 − x∗〉 = lim
i→∞〈J E1

p u − J E1
p x∗, xni+1 − x∗〉,

and

lim sup
n→∞

〈J E2
p v − J E2

p y∗, yn+1 − y∗〉 = lim
i→∞〈J E2

p v − J E2
p y∗, yni+1 − y∗〉.

Since (xni , yni )⇀(x̄, ȳ) and from (3.26) and (3.27), we get

lim sup
n→∞

〈J E1
p u − J E1

p x∗, xn+1 − x∗〉 = lim
i→∞〈J E1

p u − J E1
p x∗, xni+1 − x∗〉

= 〈J E1
p u − J E1

p x∗, x̄ − x∗〉 ≤ 0, (3.29)

and

lim sup
n→∞

〈J E2
p (v) − J E2

p (y∗), yn+1 − y∗〉 = lim
i→∞〈J E2

p v − J E2
p y∗, yni+1 − y∗〉

= 〈J E2
p v − J E2

p y∗, ȳ − y∗〉 ≤ 0. (3.30)

Hence, from (3.28), (3.29), (3.30) and using Lemma 2.6, we get that

lim
n→∞

(
�p(xn, x

∗) + �p(yn, y
∗)

) = 0.

This therefore implies that (xn, yn) → (x∗, y∗) = (�	u,�	v).

Case 2 Suppose �n is not eventually monotonically decreasing. Then by Lemma 2.7, there
exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and

0 ≤ �mk ≤ �mk+1 for all k ∈ N.

Following similar argument as in case 1, we obtain ‖xmk − umk‖ → 0, ‖ymk − vmk‖ → 0,
‖T1umk − umk‖ → 0 and ‖T2vmk − vmk‖ → 0 as k → ∞.
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Also

lim sup
k→∞

〈J E1
p u − J E1

p x∗, xmk+1 − x∗〉 ≤ 0. (3.31)

and

lim sup
k→∞

〈J E2
p v − J E2

p y∗, ymk+1 − y∗〉 ≤ 0. (3.32)

From (3.10), we obtain

�p(x
∗, xmk+1) + �p(y

∗, ymk+1) ≤ (1 − αmk )(�p(x
∗, xmk ) + �p(y

∗, ymk ))

+ αmk (〈J E1
p u − J E1

p x∗, xmk+1 − x∗〉
+ 〈J E2

p v − J E2
p y, ymk+1 − y∗〉). (3.33)

Since 0 ≤ �mk ≤ �mk+1, then from (3.33), we have

0 ≤ �mk+1 − �mk

≤ (1 − αmk )(�p(x
∗, xmk ) + �p(y

∗, ymk ))

+αmk (〈J E1
p u − J E1

p x∗, xmk+1 − x∗〉 + 〈J E2
p v − J E2

p y∗, ymk+1 − y∗〉)
− (�p(x

∗, xmk ) + �p(y
∗, ymk )). (3.34)

Hence

�p(x
∗, xmk ) + �p(y

∗, ymk ) ≤ 〈J E1
p u − J E1

p x∗, xmk+1 − x∗〉
+〈J E2

p v − J E2
p y∗, ymk+1 − y∗〉.

Therefore from (3.31) and (3.32), we obtain

lim
k→∞(�p(x

∗, xmk ) + �p(y
∗, ymk )) = 0.

This implies that
lim
n→∞(�p(x

∗, xn) + �p(y
∗, yn)) = 0.

Hence {(xn, yn)} converges strongly to (x∗, y∗) = (�	u,�	v). In both cases, we obtain
that (xn, yn) → (x∗, y∗). This completes the proof. ��

We now give the following direct consequences of our main result.

(i) Taking T1 and T2 to be Bregman firmly nonexpansive mappings on E1 and E2, respec-
tively.Note that the class ofBregmanfirmly nonexpansivemappings satisfies the property
F̂(T ) = F(T ) (see Lemma 15.6 in Reich and Sabach 2011, page 308). Then, we have
the following results:

Corollary 3.3 Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also
uniformly smooth. LetC and Q benonempty closed, convex subsets of E1 and E2, respectively,
A: E1 → E3 and B: E2 → E3 be bounded linear operators. Let f : E1 → R ∪ {+∞} and
g: E2 → R ∪ {+∞} be proper, convex and lower semicontinuous functions, T1: E1 → E1

and T2: E2 → E2 be Bregman firmly nonexpansive mappings such that 	 = ∅. For fixed
u ∈ E1 and v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and let {αn} ⊂ [0, 1].
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Suppose ({xn}, {yn}) is generated by the following algorithm: for a fixed (u, v) ∈ E1 × E2,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = proxγn f

(
J
E∗
1

q

[
J E1
p (xn) − γn A∗ J E3

p (Axn − Byn)
])

,

xn+1 = J
E∗
1

q

(
αn J

E1
p (u) + (1 − αn)

[
βn J

E1
p (un) + (1 − βn)J

E1
p (T1un)

] )
,

vn = proxγng

(
J
E∗
2

q

[
J E2
p (yn) + γn B∗ J E3

p (Axn − Byn)
])

,

yn+1 = J
E∗
2

q

(
αn J

E2
p (v) + (1 − αn)

[
δn J

E2
p (vn) + (1 − δn)J

E2
p (T2vn)

] )
,

for n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ is the adjoint operator of A. Further, we choose
the stepsize γn such that if n ∈ � := {n: Axn − Byn = 0}, then

γ
q−1
n ∈

(

0,
q‖Axn − Byn‖p

Cq‖A∗ J E3
p (Axn − Byn)‖q + Dq‖B∗ J E3

p (Axn − Byn)‖q

)

.

Otherwise, γn = γ (γ being any nonnegative value). Assume that the following conditions
are satisfied:

(i) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(ii) 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iii) 0 < b ≤ lim infn→∞ δn ≤ lim supn→∞ δn < 1.

Then the sequence {(xn, yn)} converges strongly to (x∗, y∗) = (�	u,�	v).

(ii) Taking f = iC and g = iQ , i.e., the indicator functions on C and Q, respectively. The
the proximal operators proxγ f = �C and proxγ g = �Q (see Bauschke et al. 2003).
Hence, we have the following result.

Corollary 3.4 Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also
uniformly smooth. LetC and Q benonempty closed, convex subsets of E1 and E2, respectively,
A: E1 → E3 and B: E2 → E3 be bounded linear operators. Let T1: E1 → E1 and T2: E2 →
E2 be Bregman quasi-nonexpansive mappings such that F(T1) = ∅ and F(T2) = ∅. For
fixed u ∈ E1 and v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and let {αn} ⊂ [0, 1].
Suppose ({xn}, {yn}) is generated by the following algorithm: for a fixed (u, v) ∈ E1 × E2,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = J
E∗
1

q

(
J E1
p (xn) − γn A∗ J E3

p (Axn − Byn)
)

,

xn+1 = J
E∗
1

q

(
αn J

E1
p (u) + (1 − αn)

[
βn J

E1
p (un) + (1 − βn)J

E1
p (T1un)

] )
,

vn = J
E∗
2

q

(
J E2
p (yn) + γn B∗ J E3

p (Axn − Byn)
)

,

yn+1 = J
E∗
2

q

(
αn J

E2
p (v) + (1 − αn)

[
δn J

E2
p (vn) + (1 − δn)J

E2
p (T2vn)

] )
,

for n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ is the adjoint operator of A. Further, we choose
the stepsize γn such that if n ∈ � := {n: Axn − Byn = 0}, then

γ
q−1
n ∈

(

0,
q‖Axn − Byn‖p

Cq‖A∗ J E3
p (Axn − Byn)‖q + Dq‖B∗ J E3

p (Axn − Byn)‖q

)

.
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Otherwise, γn = γ (γ being any nonnegative value). Assume that the following conditions
are satisfied:

(i) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(ii) 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iii) 0 < b ≤ lim infn→∞ δn ≤ lim supn→∞ δn < 1.

Then the sequence {(xn, yn)} converges strongly to (x∗, y∗) = (�F(T1)u,�F(T2)v).

(iii). Finally, if we let E1, E2 and E3 to be real Hilbert spaces. Then we have the following
corollary from our main result.

Corollary 3.5 Let H1, H2 and H3 be real Hilbert spaces, C and Q be nonempty closed,
convex subsets of H1 and H2, respectively, A: H1 → H3 and B: H2 → H3 be bounded linear
operators. Let f : H1 → R ∪ {+∞} and g: H2 → R ∪ {+∞} be proper, convex and lower
semicontinuous functions, T1: H1 → H1 and T2: H2 → H2 be quasi-nonexpansivemappings
such that 	 = ∅. For fixed u ∈ H1 and v ∈ H2, choose an initial guess (x1, y1) ∈ H1 × H2

and let {αn} ⊂ [0, 1]. For arbitrary x0, u ∈ H1 and y0, v ∈ H2 define an iterative algorithm
by ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

un = proxγn f (xn − γn A∗(Axn − Byn))

xn+1 = αnu + (1 − αn)[βnun + (1 − βn)T1un]
vn = proxγng(yn + γn B∗(Axn − Byn))

yn+1 = αnv + (1 − αn)[δnvn + (1 − δn)(T2vn)]
for n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ is the adjoint operator of A. Further, we choose
the stepsize γn such that if n ∈ � := {n: Axn − Byn = 0}, then

γ
q−1
n ∈

(
0,

2‖Axn − Byn‖2
‖A∗(Axn − Byn)‖2 + ‖B∗(Axn − Byn)‖2

)
.

Otherwise, γn = γ (γ being any nonnegative value). Assume that the following conditions
are satisfied:

(i) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(ii) 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iii) 0 < b ≤ lim infn→∞ δn ≤ lim supn→∞ δn < 1.

Then (3.5) converges strongly to (x∗, y∗) = (P	u, P	v).

4 Applications

4.1 Split equality convexminimization and equilibrium problems

LetC be a nonempty, closed and convex subset of a real Banach space E and G:C ×C → R

be a nonlinear bifunction. The Equilibrium Problem (EP) introduced by Blum and Oettli
(1994) as a form of generalization of variational inequality problem is given as

find x∗ ∈ C such that G(x∗, x) ≥ 0, ∀x ∈ C .

We shall denote the set of solutions of the EP with respect to the bifunction G by EP(G).
Several algorithms have been introduced for finding the solution of EP in Banach spaces. For
solving EP, it is customary to assume that the bifunction G satisfies the following conditions:
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(A1) G(x, x) = 0, for all x ∈ C ,
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0, for all x, y ∈ C ,
(A3) for all x, y, z ∈ C , lim supt→0+ G(t z + (1 − t)x, y) ≤ G(x, y),
(A4) for each x ∈ C , G(x, ·) is convex and lower semi-continuous.

The resolvent operator of the bifunction G with respect to the Bregman distance �p is given
as

RespG(x) =
{
u ∈ C :G(u, y) + 1

r
〈y − u, J E

p (u) − J E
p (x)〉 ≥ 0 ∀ y ∈ C

}
.

It was proved in Reich and Sabach (2010a) that RespG satisfies the following properties:

i. RespG is single-valued;
ii. RespG is a Bregman firmly nonexpansive mapping;
iii. F(RespG) = EP(G);
iv. EP(G) is a closed and convex subset of C ;
v. for all x ∈ E and q ∈ F(RespG)

�p(q,RespG(x)) + �p(Res
p
G(x), x) ≤ �p(q, x).

We now consider the following Split Equality Convex Minimization and Equilibrium Prob-
lems:

Let E1, E2 and E3 be real Banach spaces,C and Q be nonempty, closed and convex subsets
of E1 and E2, respectively. Let G1:C × C → R and G2: Q × Q → R be bifunctions,
f : E1 → R ∪ {+∞} and g: E2 → R ∪ {+∞} be proper, lower-semicontinous convex
functions, A: E1 → E3 and B: E2 → E3 be bounded linear operators.

Find x ∈ EP(G1) ∩ Argmin( f ), y ∈ EP(G2) ∩ Argmin(g) such that Ax = By.

(4.1)

We denote the solution set of the Problem (4.1) by �. Finding the common solutions of
convex minimization problem, equilibrium problem and fixed point problem (4.1) has been
studied recently by many authors in the setting of real Hilbert spaces (see for instance Abass
et al. 2018; Jolaoso et al. 2018; Ogbuisi andMewomo 2017; Okeke andMewomo 2017; Tian
and Liu 2012; Yazdi 2019). However, there are very few results on the split equality convex
minimization problem and split equality equilibrium problems in higher Banach spaces.

Setting T1 = RespG1
and T2 = RespG2

in our Theorem 3.2, we obtain the following result
for approximating solution of Problem (4.1) in uniformly convex Banach spaces.

Theorem 4.1 Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also
uniformly smooth. LetC and Q benonempty closed, convex subsets of E1 and E2, respectively,
A: E1 → E3 and B: E2 → E3 be bounded linear operators. Let f : E1 → R ∪ {+∞} and
g: E2 → R ∪ {+∞} be proper, lower-semicontinous convex functions, G1:C × C → R,
and G2: Q × Q → R be bifunctions satisfying condition (A1)–(A4) such that � = ∅. For
fixed u ∈ E1 and v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and let {αn} ⊂ [0, 1].
Assume that the nth iterate (xn, yn) ⊂ E1 × E2 has been constructed; then we compute the
(n + 1)th iterate (xn+1, yn+1) via the iteration:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = proxγn f

(
J
E∗
1

q

[
J E1
p (xn) − γn A∗ J E3

p (Axn − Byn)
])

,

xn+1 = J
E∗
1

q

(
αn J

E1
p (u) + (1 − αn)

[
βn J

E1
p (un) + (1 − βn)J

E1
p (RespG1

un)
] )

,

vn = proxγng

(
J
E∗
2

q

[
J E2
p (yn) + γn B∗ J E3

p (Axn − Byn)
])

,

yn+1 = J
E∗
2

q

(
αn J

E2
p (v) + (1 − αn)

[
δn J

E2
p (vn) + (1 − δn)J

E2
p (RespG2

vn)
] )

,

(4.2)

for n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ is the adjoint operator of A. Further, we choose
the stepsize γn such that if n ∈ � := {n: Axn − Byn = 0}, then

γ
q−1
n ∈

(

0,
q‖Axn − Byn‖p

Cq‖A∗ J E3
p (Axn − Byn)‖q + Dq‖B∗ J E3

p (Axn − Byn)‖q

)

.

Otherwise, γn = γ (γ being any nonnegative value). In addition, if the following conditions
are satisfied:

(i) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(ii) 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iii) 0 < b ≤ lim infn→∞ δn ≤ lim supn→∞ δn < 1.

Then the sequence {(xn, yn)} converges strongly to (x∗, y∗) ∈ �.

4.2 Zeros of maximal monotone operators

Let E be a Banach spacewith dual E∗. Let A: E → 2E
∗
be amultivaluedmapping. The graph

of A denoted by gr(A) is defined by gr(A) = {(x, u) ∈ E × E∗: u ∈ Ax}. A is called a non-
trivial operator if gr(A) = ∅. A is called a monotone operator if ∀ (x, u), (y, v) ∈ gr(A),
〈x − y, u − v〉 ≥ 0.

A is said to be a maximal monotone operator if the graph of A is not a proper subset of
the graph of any other monotone operator. The Bregman resolvent operator associated with
A is denoted by ResA and defined by

ResA = (Jp + A)−1 ◦ Jp: E → 2E .

It is known that ResA is single-valued and Bregman firmly nonexpansive. Also, ∀ x ∈ E ,
λ ∈ (0,∞), x ∈ A−1(0) if and only if x ∈ F(ResλA) (see Bauschke et al. 2003). It is also
known (see Reich and Sabach 2010a) that Dp(z,ResAx) + Dp(ResAx, x) ≤ Dp(z, x).

Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also uniformly
smooth. Let C1 and C2 be nonempty closed and convex subsets of E1 and E2, respectively.
Let f : E1 → R ∪ {+∞} and g: E2 → R ∪ {+∞} be proper, lower-semicontinous convex
functions. Let T1: E1 → 2E

∗
1 and T2: E2 → 2E

∗
2 be maximal monotone operators and

A: E1 → E3 and B: E2 → E3 be bounded linear operators. Consider the following problem:

find x ∈ T−1
1 (0) ∩ Argmin f , y ∈ T−1

2 (0) ∩ Argmin g such that Ax = By. (4.3)

Since ResλA is Bregman firmly nonexpansive and F(ResλA) = A−1(0), then we have the
following result for approximating solution of (4.3) in uniformly convex real Banach spaces.

Theorem 4.2 Let E1, E2 and E3 be p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C1 and C2 be nonempty closed and convex subsets of E1 and E2,
respectively. Let f : E1 → R∪{+∞}and g: E2 → R∪{+∞}be proper, lower-semicontinous
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convex functions. Let T1: E1 → 2E
∗
1 and T2: E2 → 2E

∗
2 be maximal monotone operators

and A: E1 → E3 and B: E2 → E3 be bounded linear operators. Assume 	 = {
(x, y) ∈

T−1
1 (0) × T−1

2 (0): x ∈ Argmin f , y ∈ Argmin g, Ax = By
} = ∅. For fixed u ∈ E1 and

v ∈ E2, choose an initial guess (x1, y1) ∈ E1 × E2 and let {αn} ⊂ [0, 1]. Assume that the
nth iterate (xn, yn) ⊂ E1 × E2 has been constructed; then we compute the (n + 1)th iterate
(xn+1, yn+1) via the iteration:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = proxγn f

(
J
E∗
1

q

[
J E1
p (xn) − γn A∗ J E3

p (Axn − Byn)
])

,

xn+1 = J
E∗
1

q

(
αn J

E1
p (u) + (1 − αn)

[
βn J

E1
p (un) + (1 − βn)J

E1
p (ResT1un)

] )
,

vn = proxγng

(
J
E∗
2

q

[
J E2
p (yn) + γn B∗ J E3

p (Axn − Byn)
])

,

yn+1 = J
E∗
2

q

(
αn J

E2
p (v) + (1 − αn)

[
δn J

E2
p (vn) + (1 − δn)J

E2
p (ResT2vn)

] )
,

(4.4)

for n ≥ 1, {βn}, {δn} ⊂ (0, 1), where A∗ and B∗ are the adjoint operators of A and B,
respectively. Further, we choose the stepsize γn such that if n ∈ � := {n: Axn − Byn = 0},
then

γ
q−1
n ∈

(

0,
q‖Axn − Byn‖p

Cq‖A∗ J E3
p (Axn − Byn)‖q + Dq‖B∗ J E3

p (Axn − Byn)‖q

)

. (4.5)

Otherwise, γn = γ (γ being any nonnegative value). In addition, if the following conditions
are satisfied:

(i) limn→∞ αn = 0, and
∑∞

n=0 αn = ∞,
(ii) 0 < a ≤ lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(iii) 0 < b ≤ lim infn→∞ δn ≤ lim supn→∞ δn < 1.

Then the sequence {(xn, yn)} converges strongly to (x∗, y∗) ∈ (�	u,�	v).

5 Numerical example

In this section, we present two examples to show the behaviour of the iterative algorithm
presented in this paper.

Example 5.1 Let E1 = E2 = E3 = R
3 and let A and B be 3 × 3 randomly generated

matrices. Let f (x) = ||x ||2 for all x ∈ R
3, the proximal operator with respect to f is defined

as

prox f (x) =
⎧
⎨

⎩

(
1 − 1

||x ||2
)

, if ||x ||2 ≥ 1,

0, if ||x ||2 < 1.
(5.1)

Also, define g(x) = max
{
1 − |x |, 0

}
for x ∈ R

3, then the proximal operator of g is given

by

proxg(x) =

⎧
⎪⎨

⎪⎩

x, if |x | < 1,

sgn(x), if 1 ≤ |x | ≤ 2,

sgn(x − 1), if |x | > 2.
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Take C = {x ∈ R
3: 〈a, x〉 ≥ b}, where a = (1,− 5, 4) and b = 1. Then

�C (x) = PC (x) = b − 〈a, x〉
||a||22

a + x .

Also, let Q = {x ∈ R
3: 〈c, x〉 = d}, where c = (1, 2, 3) and d = 4. Then, we have that

�Q(x) = PQ(x) = max
{
0,

d − 〈c, x〉
||c||2

}
c + x .

Suppose T1 = PC and T2 = PQ , let u = rand(3, 1) and v = 0.5 ∗ rand(3, 1). We let
αn = 1

n+1 , βn = 2n
3(n+1) and δn = 3n+5

7n+9 . Then our algorithm (3.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = proxγn f

(
xn − γn AT (Axn − Byn)

)
,

xn+1 = u
n+1 + n

n+1

[
2nun
3(n+1) + n+3

3(n+1) PC (un)
]
,

vn = proxγng

(
yn + γn BT (Axn − Byn)

)
,

yn+1 = v
n+1 + n

n+1

[
(3n+5)
7n+9 vn + (4n+4)

7n+9 PQ(vn)
]
,

(5.2)

for n ≥ 1. If Axn − Byn = 0, then we choose γn ∈ (0, 2‖Axn−Byn‖2
‖AT (Axn−Byn)‖2+‖BT (Axn−Byn)‖2 ).

Else, γn = γ (γ being any positive real number). We choose various values of the initial
points x1 and y1 as follows:

Case 1 (a) x1 = 1 ∗ rand(3, 1), y1 = 2 ∗ rand(3, 1),
(b) x1 = −5 ∗ rand(3, 1), y1 = −10 ∗ rand(3, 1),

Case 2 (a) x1 = −0.1 ∗ rand(3, 1), y1 = 0.2 ∗ rand(3, 1),
(b) x1 = 0.5 ∗ rand(3, 1), y1 = −1 ∗ rand(3, 1).

Using max{||xn+1−xn ||2,||yn+1−yn ||2}
max{||x2−x1||2,||y2−y1||2} < 10−3 as the stopping criterion, we plot the graphs of

||xn+1 − xn ||2 and ||yn+1 − yn ||2 against the number of iterations in each cases. We note
that the change in the initial values does not have any significant effect on the number of
iterations nor the cpu time. The numerical results can be found in Figs. 1 and 2.

Example 5.2 In this second example, we consider the infinite-dimensional space and com-
pare our algorithm (3.1) with algorithm (1.13) of Zhao (2015). Let E1 = E2 = E3 =
L2([0, 2π]) with norm ||x ||2 = ∫ 2π

0 |x(t)|dt and inner product 〈x, y〉 = ∫ 2π
0 x(t)y(t)dt,

x, y ∈ E . Suppose C := {x ∈ L2([0, 2π ]): ∫ 2π
0 (t2 + 1)x(t)dt ≤ 1} and Q := {x ∈

L2([0, 2π]): ∫ 2π
0 |x(t) − sin(t)|2 ≤ 16} are subsets of E1 and E2, respectively. Define

A: L2([0, 2π]) → L2([0, 2π ]) by A(x)(t) = ∫ 2π
0 exp−st x(t)dt for all x ∈ L2([0, 2π]) and

By(t) = ∫ 2π
0

1
10 (x(t))dt . It is easy to verify that A and B are bounded linear operators.

Now, let f = iC and g = iQ , the indicator functions on C and Q, respectively, then

proxγ f = �C and proxγ g = �Q . Also, let T1x(t) = ∫ 2π
0 x(t)dt and T2y(t) = ∫ 2π

0
1
4 y(t)dt ,

choose u = cos(3t), v = exp−2t , αn = 5
10(n+1) , βn = 5n

8n+7 and δn = 3n−2
5n+5 . Then our

algorithm (3.1) becomes:
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Fig. 1 Example 5.1, left: Case 1 (a), time: 0.0321s; right: Case 1 (b), time: 0.0481s
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Fig. 2 Example 5.1, left: Case 2 (a), time: 0.0211s; right: Case 2 (b), time: 0.0427s
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Table 1 Comparison between
algorithms (3.1) and (1.13) for
example 5.2

Algorithm (3.1) Algorithm (1.13)

Case 1 (a)

CPU time (s) 44.0807 60.6224

No. of iter. 9 13

Case 1 (b)

CPU time (s) 26.0900 48.3587

No. of iter. 10 14

Case 2 (a)

CPU time (s) 26.2605 39.4114

No. of iter. 10 12

Case 2 (b)

CPU time (s) 14.4332 42.8501

No. of iter. 10 13

Iteration number (n)
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Algorithm (5.3)
Algorithm (1.13)

(a) (b)

Fig. 3 Example 5.2, left: Case 1 (a); right: Case 1 (b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

un = �C (xn − γn A∗(Axn − Byn)) ,

xn+1 = 5 cos(3t)
10(n+1) + 10n+5

10(n+1)

[
5nun
8n+7 + 3n+7

8n+7T1(un)
]
,

vn = �Q (yn + γn B∗(Axn − Byn)) ,

yn+1 = 5 exp−2t

10(n+1) + 10n+5
10(n+1)

[
3n−2
5n+5vn + (2n+7)

5n+5 T2(vn)
]
,

(5.3)
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Fig. 4 Example 5.2, left: Case 2 (a); right: Case 2 (b)

for n ≥ 1. If Axn − Byn = 0, then we choose γn ∈ (0, 2‖Axn−Byn‖2
‖A∗(Axn−Byn)‖2+‖B∗(Axn−Byn)‖2 ).

Else, γn = γ (γ being any positive real number). We choose various values of the initial
points x1 and y1 as follows:

Case 1 (a) x1 = 2t3 exp5t , y1 = t3 + 2t − 5,
(b) x1 = 2t sin(3π t), y1 = t2 cos(2π t),

Case 2 (a) x1 = 3 exp−5t , y1 = 2t sin(3t),
(b) x1 = exp2t , y1 = 3

10 exp
2t .

Using ||xn+1−xn ||2+||yn+1−yn ||2
||x2−x1||2+||y2−y1||2 < 10−5 as the stopping criterion, we plot the graphs of ||xn+1−

xn ||2 + ||yn+1 − yn ||2 against the number of iterations in each cases and also compare the
performance of our algorithm (5.3) with algorithm (1.13). The numerical results are reported
in Table 1 and Figs. 3 and 4.
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