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Abstract
The constructions of entanglement-assisted quantum codes have been studied intensively by
researchers. Nevertheless, it is hard to determine the number of shared pairs required for
constructing entanglement-assisted quantum codes from linear codes. In this paper, by mak-
ing use of the notion of decomposition for defining sets of constacyclic codes, we construct
several new families of entanglement-assisted quantumMDS codes from constacyclic codes,
some of which are of minimum distances greater than q + 1. Moreover, we tabulate their
parameters to illustrate what we find in this paper.
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Mathematics Subject Classification 94B05 · 94B15 · 81P70 · 81P45

1 Introduction

Theoretical advantages of quantum mechanics to classical mechanics led scholars to study
quantum computation and communication, which caused quantum bits (qubits) to be studied
in place of classical bits. However, one principal difficulty for qubits was decoherence which
overthrows the information in a superposition of qubits (Shor 1995). Shor realized that this
key difficulty could be coped by introducing the first quantum code that encodes one qubit
to a superposition of nine qubits and corrects at most one quantum error (Shor 1995). This
pioneer paper of Shor encouraged researchers to develop quantum error correcting codes
(QECCs). CalledCSS construction, the first systematic construction forQECCswas explored
by Calderbank et al. and Steane, independently in Calderbank and Shor (1996) and Steane
(1996), respectively. According to CSS construction, one can construct a QECC from binary
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linear codes which are nested. Later, Gottesman developed a stabilizer formalism for QECCs
that defines a QECC to be a subspace of C2⊗n

fixed by a commutative subgroup of Pauli
matrix group on binary qubits, whereC2⊗n

is an n-fold tensor product of the two-dimensional
complex vector space C2 (Gottesman 1997). Calderbank et al. (1998) turned constructing
QECCs into finding self-orthogonal additive codes over the finite field of four elements with
respect to trace inner product. As a generalization of the paper (Calderbank et al. 1998),
Ketkar et al. (2006) defined Pauli matrices for highly states over Fq and gave a way for
constructing nonbinary quantum stabilizer codes from self-orthogonal additive codes over
Fq2 with respect to trace-alternating form, in particular, self-orthogonal linear codes over
Fq2 with respect to Hermitian inner product. Inspired by Ketkar et al. (2006), many scholars
have focused on construction of new nonbinary stabilizer quantum codes (Aly et al. 2007;
Chen et al. 2015; Grassl and Rötteler 2015; He et al. 2016; Hu et al. 2015; Jin et al. 2017;
Kai and Zhu 2013; Kai et al. 2014; Liqin et al. 2016; Liu et al. 2017; Yuan et al. 2017; Zhang
and Chen 2014; Zhang and Ge 2015).

Brun et al. (2006) developed a new systematic method for constructing QECCs. Accord-
ing to the construction given by Brun et al. (2006), the requirement of self-orthogonality for
linear codes over Fq2 was no longer needed, which allows us to quantize all linear codes over
Fq2 . The QECCs obtained via the construction presented by Brun et al. (2006) are called
entanglement-assisted quantum error correcting codes (EAQECCs). An EAQECC of length
n and minimum distance d over Fq is denoted by �n, k, d; c�q , and this EAQECC encodes
k qubits to n-channel qubits via c pairs of maximally entanglement states and corrects up
to � d−1

2 � errors. An �n, k, d; c�q EAQECC with n − k = c is called a maximal entan-
glement EAQECC. An �n, k, d; c�q EAQECC is called an entanglement-assisted quantum
MDS code (EAQMDSC) if its parameters attain the entanglement-assisted singleton bound
k ≤ n−2(d − 1)+c. Formore details for EAQECCs,we refer the readers to (Brun et al. 2006,
2014; Lai and Brun 2013; Wilde and Brun 2008). There have been many studies on the con-
structions forEAQECCswhich improve the parameters of existing ones (Chen et al. 2017; Fan
et al. 2016; Guenda et al. 2018; Li et al. 2011; Lu et al. 2018; Lv et al. 2015; Qian and Zhang
2015, 2017). Fan et al. (2016) constructed several classes of EAQMDSCs fromclassicalMDS
codes with one or more shared entangled states. Guenda et al. (2018) proved that the number
of shared pairs required is associated with the hull of linear codes and, using this connection,
obtainedmethods for constructingEAQECCswith desired amount of entanglement. Qian and
Zhang (2015) constructed �2n − k, k,≥ d; 2n − 2k� EAQECCs from arbitrary [n, k, d] lin-
ear codes. Brun et al. (2006) also proved that there exists an �n, 2k − n + c, d; c�q EAQECC
if there exits an [n, k, d]q linear code C with c = rank(HH†), where H is the parity check
matrix of the codeC and H† is the conjugate transpose of the matrix H . While this construc-
tion enables us to quantize all linear codes over Fq2 , determining the parameter c, which is
the number of entanglement states required, is an open problem. Li et al. (2011) proposed a
solution to this problem by making use of a decompose notion for the defining sets of cyclic
codes and constructed EAQECCs from cyclic codes. Then, Chen et al. (2017) extended this
decompose notion for the defining sets of cyclic codes to negacyclic codes over Fq2 and
obtained a few families of EAQMDSCs with minimum distances greater than q + 1. They
also constructed two classes of maximal entanglement EAQECCs. Motivated from these
studies, in this paper, we consider a decomposition of defining sets of constacyclic codes
over Fq2 to determine the number of shared pairs required and, by taking advantage of this
decomposition, we construct a few new families of EAQMDSs.

EAQMDSCs constructed in this paper are as follows:
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1. For odd prime power q ≡ 3(mod4), �q2 + 1, q2 − 4q + 4, 2q + 2; 5�q and
�q2 + 1, q2 − 4λ + 8, 2λ + 2; 9�q , where q + 1 ≤ λ ≤ 2q − 2.

2. For odd prime power q ≡ 3(mod4), � q
2−1
4 ,

q2−1
4 − 2d + 4, d; 2�q , where q+9

4 ≤ d ≤ q .

3. For odd prime power q ≡ 3(mod4), � q
2−1
4 ,

q2−1
4 − 2d + 6, d; 4�q , where 3q+7

4 ≤ d ≤
5q+1
4 .

The contents of this paper are organized as follows: In Sect. 2, we present the fundamentals
needed for following sections. In Sect. 3, we construct four new families of EAQMDSCs
from constacyclic codes by making use of a decomposition for defining sets of constacyclic
codes over Fq2 . Moreover, by tabulating the parameters of some of EAQMDSCs that we
derive, we illustrate the findings in this paper. In Sect. 4, we conclude the paper.

2 Preliminaries

Let Fq2 be a finite field of q2 elements. A k-dimensional subspace of the vector space Fn
q2

is a linear code of length n over Fq2 and this linear code is denoted by [n, k]q2 . An [n, k]q2
linear code C is an [n, k, d]q2 linear code if C detects d − 1 errors but not d errors, where
d is called the minimum distance of the code C . The Hermitian inner product 〈x, y〉h of
the vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Fn

q2
is 〈x, y〉h = ∑n

i=1 xi y
q
i .

The Hermitian dual C⊥h of a linear code C over Fq2 of length n is the set of vectors in Fn
q2

which are perpendicular to all vectors in C with respect to the Hermitian inner product. A
parity check matrix H of an [n, k]q2 linear code C with respect to Hermitian inner product
is an (n − k) × n matrix whose rows constitute a basis for C⊥h . Conjugate of a vector
x = (x1, x2, . . . , xn) in Fn

q2
is x† = (xq1 , xq2 , . . . , xqn ) and conjugate transpose of an m × n

matrix H = (xi, j ) with entries in Fq2 is an n × m matrix H† = (xqj,i ).
Let α be a nonzero element in Fq2 with multiplicative order r . A linear code C over Fq2

of length n is called an α-constacyclic code ifμ(c) ∈ C for all c ∈ C , whereμ : Fn
q2

→ Fn
q2
,

μ((c1, c2, . . . , cn)) = (αcn, c1, . . . , cn−1). In the case that α = −1, an α-constacyclic code
is called a negacyclic code. It is a well-known fact that an α-constacyclic code C in Fn

q2

can be viewed as an ideal in the quotient ring
Fq2 [x]
〈xn−α〉 and so C = 〈g(x)〉 for some g(x)

dividing xn − α. Let (n, q) = 1. All roots of xn − α over Fq2 are γ , γ 1+r ,…, γ 1+(n−1)r ,
where γ is an rnth primitive root of unity in some extension field of Fq2 and γ n = α. Set
Or ,n = {1, 1 + r , . . . , 1 + (n − 1)r}. The q2-cyclotomic coset modulo rn containing i is
the set Ci = {iq2 j mod rn : j ∈ N }. The defining set Z ⊆ Or ,n of an α-constacyclic code
C = 〈g(x)〉 over Fq2 is the set Z = {i ∈ Or ,n : g(γ i ) = 0}. The following is a lower bound
for α-constacyclic codes:

Theorem 1 (BCH bound for constacyclic codes) (Krishna and Sarwate 1990; Aydin et al.
2001) Let (n, q) = 1. Let γ be an rnth primitive root of unity, such that γ n = α, where
α is a nonzero element in Fq2 with multiplicative order r . Then, the minimum distance
of an α-constacyclic code of length n over Fq2 with the defining set including the set
{1 + r j, l ≤ j ≤ l + d − 2} is at least d.

It is well known that the Hermitian dual of an α-constacyclic code over Fq2 is an α−q -
constacyclic code. Kai et al. (2014) give a necessary and sufficient condition for constacyclic
codes over Fq2 to contain their Hermitian duals.
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Lemma 1 (Kai et al. 2014) Let C be a constacyclic code of length n over Fq2 with defining

set Z, where (n, q) = 1. Then, C⊥h is included by C if and only if Z ∩ −qZ = ∅.
Let c be a nonnegative integer. Via c pairs of maximally entanglement states, an

�n, k, d; c�q EAQECC encodes k information qubits into n qubits, and can correct up to
⌊ d−1

2

⌋
errors which act on n qubits, where d is called minimum distance of the EA quantum

code. FromWilde and Brun (2008), we have the following analog between linear codes over
Fq2 and EAQECCs.

Theorem 2 (Wilde and Brun 2008) If there exists an [n, k, d]q2 linear code with parity check
matrix H, then there exists an EAQECC having parameters �n, 2k − n + c, d; c�q , where
c = rank(HH†).

Brun et al. (2006) establish a bound on the parameters of an �n, k, d; c�q EAQECC.

Proposition 1 (Brun et al. 2006) (Entanglement-Assisted (EA) Singleton bound) For an
�n, k, d; c�q EAQECC, k ≤ n − 2(d − 1) + c.

An EAQECC satisfying EA singleton bound is called an EAQMDSC. For an �n, k, d; c�q
EAQECC, the number c of maximally entanglement states based on the linear codes is less
than or equal to n−k, and if c = n−k, then this is called a maximal entanglement EAQECC.

3 Entanglement-assisted quantumMDS codes derived from
constacyclic codes

InChen et al. (2017), by taking advantage of a decomposition of the defining sets of negacyclic
codes, Jianzhang Chen et al. determine the number of entanglement states of EAQECCs
obtained from negacyclic codes over Fq2 . Then, this result is extended to constacyclic codes
over Fq2 in Liu et al. (2018) and Lu et al. (2018).

For a constacyclic code C over Fq2 with defining set Z , define the sets Zβ =
{i ∈ Z : −qi ∈ Z} and Zδ = {i ∈ Z : −qi /∈ Z}. Then, Z = Zβ ∪ Zδ , Zβ ∩ Zδ = ∅
and Zβ = Z ∩ −qZ . We call Z = Zβ ∪ Zδ as a decomposition of Z . Note that constacyclic
codes Cβ and Cδ with defining set Zβ or Zδ , respectively, are codes over Fq2 , since Zβ and
Zδ are union of some q2-cyclotomic cosets, and in this case, C = Cβ ∩ Cδ . Moreover, the

definition of Zδ implies that −qZδ ∩ Zδ = ∅, and by Lemma 1, C⊥h
δ ⊆ Cδ . We have the

following result from Liu et al. (2018) and Lu et al. (2018).

Proposition 2 (Liu et al. 2018; Lu et al. 2018) Let C be a constacyclic code over Fq2 with
length n and defining set Z, where (n, q) = 1, and let Z = Zβ ∪ Zδ be a decomposition
of Z. Then, the number c of entanglement states required for EAQECCs obtained from C is
equal to |Zβ |.

3.1 Entanglement-assisted quantumMDS codes of length n = q2 + 1

In Chen et al. (2017), authors study the construction of EAQMDSCs of length q2 + 1 for
odd prime power q ≡ 1 (mod4). However, the case q ≡ 3 (mod4) is not considered. In this
section, using negacyclic codes over Fq2 , we construct EAQMDSCs codes of length q2 + 1
for odd prime power q satisfying q ≡ 3 (mod4) and q > 3.
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Lemma 2 Let q > 3 be an odd prime power of the form q = 4k + 3. Let n = q2 + 1 and

s = n/2. For 0 ≤ i ≤ q2−1
4 , all q2-cyclotomic cosets modulo 2n containing s − 2i are as

follows:

1. For all 0 < i ≤ q2−1
4 , Cs−2i = {s − 2i, s + 2i}.

2. Cs = {s}.
Proof Since o2n

(
q2

) = 2, the size of q2-cyclotomic coset modulo 2n is less than or equal

to 2. For Cs−2i , 0 ≤ i ≤ q2−1
4 , it follows from q2 (1 + 2 j) ≡ 1 + 2

(
q2−1
2 − j

)
mod 2n

that q2 (s − 2i) = q2
(
1 + 2

(
q2−1
4 − i

))
≡ 1 + 2

(
q2−1
4 + i

)
= s + 2i mod 2n and so

Cs−2i = {s − 2i, s + 2i}. Moreover, if i = 0, then Cs = {s}. ��
Lemma 3 Let q > 3 be an odd prime power of the form q = 4k + 3. Let n = q2 + 1 and
s = n/2. Then

1. −qCs = Cs,
2. −qCs−2(q−1) = Cs−2(q+1),
3. −qZ ∩ Z = ∅, where Z = ⋃λ

i=1 Cs−2i , 1 ≤ λ ≤ q − 1,
4. −qCs−2 = Cs−2q .

Proof 1. It follows from (q + 1) q2+1
2 ≡ 0 mod 2n that −q q2+1

2 ≡ q2+1
2 mod 2n, and so,

−qCs = Cs .
2. Since q2 ≡ −1 mod 2n and−qs ≡ s mod 2n,−q (s − 2 (q − 1)) ≡ s−2 (q + 1) mod

2n. This implies that −qCs−2(q−1) = Cs−2(q+1).

3. It is enough to prove that −qZ ∩ Z = ∅ for Z = ⋃q−1
i=1 Cs−2i . By Lemma 2, Z =

{s − 2 (q − 1) , s − 2 (q − 2) , . . . , s − 2, s + 2, . . . , s + 2 (q − 2) , s + 2 (q − 1)}.
Suppose that −qZ ∩ Z �= ∅. Then, there exists s±2i , s±2 j for some 1 ≤ i, j ≤ q −1,
such that−q (s ± 2i) ≡ s±2 j mod 2n. This implies that±qi± j ≡ 0 mod n. However,
since q + 1 ≤ qi + j ≤ q2 − 1 < n and 1 ≤ qi − j < n − q , there does not exist
1 ≤ i, j ≤ q − 1 satisfying the congruence ±qi ± j ≡ 0 mod n. This is a contradiction.

4. It follows directly from −qs ≡ s mod 2n and Cs−2q = {s − 2q, s + 2q}.
��

Let Z = Z1 ∪
(⋃q−1

i=2 Cs−2i

)
, where Z1 = Cs ∪ Cs−2 ∪ Cs−2q . Then, by Lemma 3,

it follows that −qZ1 = Z1 and (−q
⋃q−1

i=2 Cs−2i ) ∩ (
⋃q−1

i=2 Cs−2i ) = ∅. In this case,
|−qZ ∩ Z | = 5. Take C as a negacyclic code of length q2 + 1 over Fq2 with the defin-
ing set Z . Then, C is a

[
q2 + 1, q2 − 2q, 2q + 2

]
q2 negacyclic code. Applying Theorem 2

to the negacyclic code C and using Proposition 2, we have the following:

Theorem 3 Let q > 3 be an odd prime power with q ≡ 3 (mod4). Then, there exists
EAQMDSC with parameters

�
q2 + 1, q2 − 4q + 4, 2q + 2; 5�q .

Proof By the above argument,we haveEAQECCwith desired parameters. Since these param-
eters attain EA singleton bound, this is EAQMDSC. ��

We list parameters of some EAQMDSCs obtained via Theorem 3 in Table 1.
In addition to theEAQMDSCsobtained above,wehave the following class ofEAQMDSCs

of length q2 + 1 when q ≡ 3 (mod4).
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Table 1 Some parameters of
entanglement-assisted quantum
MDS codes obtained by
Theorem 3

q n �n, k, d; c�q
7 50 �50, 25, 16; 5�7
11 122 �122, 81, 24; 5�11
19 362 �362, 289, 40; 5�19

Theorem 4 Let q > 3 be an odd prime power with q ≡ 3 (mod4). Then, there exist EAQMD-
SCs with parameters

�
q2 + 1, q2 − 4λ + 8, 2λ + 2; 9�q , where q + 1 ≤ λ ≤ 2q − 2.

Proof For each q + 1 ≤ λ ≤ 2q − 2, define Zλ = ⋃λ
i=0 Cs−2i and Z ′ = (

⋃1
i=0 Cs−2i ) ∪

(
⋃q+1

j=q−1 Cs−2 j ). For λ = q + 1, Zq+1 = Z ′ ∪ (
⋃q−2

i=2 Cs−2i ). Then, by Lemma 3,
∣
∣Zq+1 ∩ −qZq+1

∣
∣ = 9. For q + 2 ≤ λ ≤ 2q − 2, we get Zλ = Z ′ ∪ (

⋃q−2
i=2 Cs−2i ) ∪

(
⋃λ

j=q+2 Cs−2 j ). Since −qZ ′ = Z ′ by Lemma 3 (1), (2), and (4), it follows that −qZλ =
Z ′ ∪ (−q

⋃q−2
i=2 Cs−2i ) ∪ (−q

⋃λ
j=q+2 Cs−2 j ). Since Z ′ ⊆ −qZλ ∩ Zλ, |−qZλ ∩ Zλ| ≥ 9.

To get the result |−qZλ ∩ Zλ| = 9, we need to prove the following:
⎛

⎝−q
q−2⋃

i=2

Cs−2i

⎞

⎠ ∩
⎛

⎝
q−2⋃

i=2

Cs−2i

⎞

⎠ = ∅, (1)

⎛

⎝−q
q−2⋃

i=2

Cs−2i

⎞

⎠ ∩
⎛

⎝
λ⋃

j=q+2

Cs−2 j

⎞

⎠ = ∅, (2)

⎛

⎝
q−2⋃

i=2

Cs−2i

⎞

⎠ ∩
⎛

⎝−q
λ⋃

j=q+2

Cs−2 j

⎞

⎠ = ∅, (3)

⎛

⎝−q
λ⋃

i=q+2

Cs−2i

⎞

⎠ ∩
⎛

⎝
λ⋃

i=q+2

Cs−2i

⎞

⎠ = ∅. (4)

By Lemma 3 (3), the equality (1) holds. Since
⎛

⎝−q
q−2⋃

i=2

Cs−2i

⎞

⎠ ∩
⎛

⎝
λ⋃

j=q+2

Cs−2 j

⎞

⎠ = ∅ (5)

if and only if ⎛

⎝
q−2⋃

i=2

Cs−2i

⎞

⎠ ∩
⎛

⎝−q
λ⋃

j=q+2

Cs−2 j

⎞

⎠ = ∅, (6)

it is enough to prove (2) instead of proving both (2) and (3). Suppose that (−q
⋃q−2

i=2 Cs−2i )∩(⋃λ
j=q+2 Cs−2 j

)
�= ∅. Then, there exist four cases for some integers 2 ≤ i ≤ q − 2 and

q + 2 ≤ j ≤ λ:
The case −q (s − 2i) ≡ s − 2 j mod 2n: it follows that qi + j ≡ 0 mod n. However, this

contradicts with 0 < 3q + 2 ≤ qi + j ≤ q2 − 2 < n.
The case −q (s − 2i) ≡ s + 2 j mod 2n: this implies that qi − j ≡ 0 mod n. Since

0 < 2 ≤ qi − j ≤ q2 − 3q − 2 < n, this is a contradiction.
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Table 2 Some parameters of
entanglement-assisted quantum
MDS codes obtained by
Theorem 4

q n �n, k, d; c�q λ

7 50 �50, 57 − 4λ, 2λ + 2; 9�7 8 ≤ λ ≤ 12

11 122 �122, 129 − 4λ, 2λ + 2; 9�11 12 ≤ λ ≤ 20

19 362 �362, 369 − 4λ, 2λ + 2; 9�19 20 ≤ λ ≤ 36

The proofs of the cases−q (s + 2i) ≡ s−2 j mod 2n and−q (s + 2i) ≡ s+2 j mod 2n
are similar to the proofs of the above cases.

For (4), suppose that
(
−q

⋃λ
i=q+2 Cs−2i

)
∩

(⋃λ
i=q+2 Cs−2i

)
�= ∅. Then, for some inte-

gers q + 2 ≤ i, j ≤ λ, there are four cases.
The case −q (s − 2i) ≡ s − 2 j mod 2n: this congruence is equivalent to qi + j ≡

0 mod n. However, this is a contradiction, since n < q2 +3q +2 ≤ qi + j ≤ 2q2 −2 < 2n.
The case −q (s − 2i) ≡ s + 2 j mod 2n: then, qi − j ≡ 0 mod n, which contradicts with

n < q2 + 2 ≤ qi − j ≤ 2q2 − 3q − 2 < 2n.
The proofs of the cases−q (s + 2i) ≡ s−2 j mod 2n and−q (s + 2i) ≡ s+2 j mod 2n

are similar to the proofs of the cases −q (s − 2i) ≡ s + 2 j mod 2n and −q (s − 2i) ≡
s − 2 j mod 2n, respectively.

Now, for each q + 1 ≤ λ ≤ 2q − 2, let Cλ be a negacyclic code of length q2 + 1 over Fq2
with the defining set Zλ. Then, Cλ is a

[
q2 + 1, q2 − 2λ, 2λ + 2

]
q2 negacyclic code. Since|−qZλ ∩ Zλ| = 9, by Theorem 2 and Proposition 2, for each q + 1 ≤ λ ≤ 2q − 2, we get

EAQECC having desired parameters. Since EA singleton bound is attained, these EAQECCs
are MDS. ��

We list parameters of some EAQECCs obtained via Theorem 4 in Table 2.

3.2 Entanglement-assisted quantumMDS codes of length q2−1
4

Let q = 4m + 3 be an odd prime power with m ≥ 1 and n = q2−1
4 . Let α be a (r = 4)th

primitive root of unity over Fq2 . Using α-constacyclic codes over Fq2 of length
q2−1
4 , we are

going to construct EAQMDSCs of length q2−1
4 . We have from Zhang and Chen (2014) that

each q2-cyclotomic coset modulo rn has exactly one element; that is, C1+4 j = {1 + 4 j},
0 ≤ j ≤ n − 1, since q2 ≡ 1 mod rn.

We also have the following from Zhang and Chen (2014) with the notation C1−4 j =
C1+4(n− j).

Lemma 4 (Zhang and Chen 2014) Let n = q2−1
4 and r = 4, where q > 3 is an odd prime

power of the form q = 4m + 3. If Z = ⋃ q−3
2

j=− q−3
4

C1+4 j , then −qZ ∩ Z = ∅.

Since 1 + 4
(
n −

(
q+1
4

))
= 4n − q ≡ −q mod rn, we have the following:

Lemma 5 Let q = 4m + 3 and m ≥ 1 be an odd prime power. Let n = q2−1
4 and r = 4. For

q2-cyclotomic cosets C1 and C− q+1
4

modulo rn, we have −qC1 = C− q+1
4
.
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Theorem 5 Let q be an odd prime power of the form 4m + 3, m ≥ 1. Then, for
each integer q+9

4 ≤ d ≤ q, there exists an EAQMDSC having the parameters
�
q2−1
4 ,

q2−1
4 − 2d + 4, d; 2

�

q
.

Proof For each 0 ≤ λ ≤ q−3
4 and 0 ≤ δ ≤ q−3

2 , define the sets Zλ,δ = ⋃δ

j=− q+1
4 −λ

C1+4 j ,

Zλ = ⋃− q+1
4

j=− q+1
4 −λ

C1+4 j and Zδ = ⋃δ

j=− q−3
4

C1+4 j . We are going to prove that
∣
∣Zλ,δ ∩ −qZλ,δ

∣
∣ = 2. Since Zλ,δ = Zλ ∪ Zδ , we get

Zλ,δ ∩ −qZλ,δ = (Zλ ∪ Zδ) ∩ (−qZλ ∪ −qZδ)

= (Zλ ∩ −qZλ) ∪ (Zλ ∩ −qZδ) ∪ (Zδ ∩ −qZλ) ∪ (Zδ ∩ −qZδ) .

SinceC1 ⊆ −qZλ ∩ Zδ andC− q+1
4

⊆ Zλ ∩−qZδ , to get the result
∣
∣Zλ,δ ∩ −qZλ,δ

∣
∣ = 2,

we are going to prove the following:

Zδ ∩ −qZδ = ∅, (7)

Zλ ∩ −qZλ = ∅, (8)

−qZλ ∩ Zδ = C1, (9)

Zλ ∩ −qZδ = C− q+1
4

. (10)

It follows from Lemma 4 that equality (7) holds. For (8), suppose that Zλ ∩ −qZλ �= ∅.
Then, there exist some integers − q+1

4 − λ ≤ i, j ≤ − q+1
4 , such that −q (1 + 4i) ≡ 1 +

4 j mod rn. This implies that q+1
4 +qi+ j ≡ 0 mod n. It follows from− q−1

2 ≤ − q+1
4 −λ ≤

i, j ≤ − q+1
4 that − q2−1

2 + q+1
4 ≤ q+1

4 + qi + j ≤ − (q+1)2

4 + q+1
4 . This contradicts with

q+1
4 +qi+ j ≡ 0 mod n, since−2n < − q2−1

2 + q+1
4 ≤ q+1

4 +qi+ j ≤ − (q+1)2

4 + q+1
4 < −n.

To prove the equality (9), for − q−3
4 ≤ j ≤ δ we count the integer(s) − q+1

4 − λ ≤ i ≤
− q+1

4 satisfying −q (1 + 4i) ≡ 1 + 4 j mod rn or, equivalently, q+1
4 + qi + j ≡ 0 mod n.

It follows from − q−1
2 ≤ − q+1

4 − λ ≤ i ≤ − q+1
4 and − q−3

4 ≤ j ≤ δ ≤ q−3
2 that

−q2+q+2
2 ≤ q+1

4 + qi + j ≤ −q2+2q−5
4 . Since −2n <

−q2+q+2
2 ≤ q+1

4 + qi + j ≤
−q2+2q−5

4 < 0, the only possible value of q+1
4 +qi+ j is−n. The equality q+1

4 +qi+ j = −n

implies that j ≡ 0 mod q . Since − q−3
4 ≤ j ≤ δ ≤ q−3

2 , j must be 0, and so, i must be

− q+1
4 . This shows that −qZλ ∩ Zδ = C1. Therefore, the equality (9) holds. Then, since

Zλ ∩ −qZδ = −q (−qZλ ∩ Zδ) = −qC1 = C− q+1
4
, the equality (10) holds.

Now, for each 0 ≤ λ ≤ q−3
4 and 0 ≤ δ ≤ q−3

2 , let Cλ,δ be an α-constacyclic code

of length q2−1
4 over Fq2 with the defining set Zλ,δ . Then, Cλ,δ is an α-constacyclic code

with parameters
[
q2−1
4 ,

q2−1
4 − d + 1, d

]

q2
, where d = q+9

4 + λ + δ. In this case, since
∣
∣−qZλ,δ ∩ Zλ,δ

∣
∣ = 2, by Theorem 2 and Proposition 2, for each q+9

4 ≤ d ≤ q , we get an

EAQECC having the parameters
�
q2−1
4 ,

q2−1
4 − 2d + 4, d; 2

�

q
. Since EA singleton bound

is attained, EAQECCs that are constructed are MDS.
��

We list parameters of some EAQMDSCs obtained via Theorem 5 in Table 3.

Since −q
(
1 + r q−3

4

)
≡ 1 + r q−1

2 mod rn, we have the following:
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Table 3 Some parameters of
entanglement-assisted quantum
MDS codes obtained by
Theorem 5

q n �n, k, d; c�q d

7 12 �12, 16 − 2d, d; 2�7 4 ≤ d ≤ 7

11 30 �30, 34 − 2d, d; 2�11 5 ≤ d ≤ 11

19 90 �90, 94 − 2d, d; 2�19 7 ≤ d ≤ 19

23 132 �132, 136 − 2d, d; 2�23 8 ≤ d ≤ 23

27 182 �182, 186 − 2d, d; 2�27 9 ≤ d ≤ 27

31 240 �240, 244 − 2d, d; 2�31 10 ≤ d ≤ 31

Lemma 6 Let q = 4m + 3, m ≥ 1 be an odd prime power. Let n = q2−1
4 and r = 4. For

q2-cyclotomic cosets C q−3
4

and C q−1
2

modulo rn, we have −qC q−3
4

= C q−1
2
.

We derive another class of EAQMDSCs with length n = q2−1
4 , where the number of

entanglement states required is c = 4.

Theorem 6 Let q be an odd prime power of the form 4m + 3, m ≥ 1. Then, for
each integer 3q+7

4 ≤ d ≤ 5q+1
4 , there exists an EAQMDSC having the parameters

�
q2−1
4 ,

q2−1
4 − 2d + 6, d; 4

�

q
.

Proof For each 0 ≤ λ, δ ≤ q−3
4 , define the sets Zλ,δ = ⋃ q−1

2 +δ

j=− q+1
4 −λ

C1+4 j , Zλ =
⋃− q+1

4

j=− q+1
4 −λ

C1+4 j , and Zδ = ⋃ q−1
2 +δ

j=− q−3
4

C1+4 j . We are going to prove that
∣
∣Zλ,δ ∩ −qZλ,δ

∣
∣

= 4. Since Zλ,δ = Zλ ∪ Zδ , we get

Zλ,δ ∩ −qZλ,δ = (Zλ ∪ Zδ) ∩ (−qZλ ∪ −qZδ)

= (Zλ ∩ −qZλ) ∪ (Zλ ∩ −qZδ) ∪ (Zδ ∩ −qZλ) ∪ (Zδ ∩ −qZδ) .

To prove that
∣
∣Zλ,δ ∩ −qZλ,δ

∣
∣ = 4, it is enough to prove the following:

Zλ ∩ −qZλ = ∅ (11)

−qZλ ∩ Zδ = C1 (12)

Zλ ∩ −qZδ = C− q+1
4

(13)

Zδ ∩ −qZδ = C q−3
4

∪ C q−1
2

. (14)

The equality (8) implies that the equality (11) holds. For (12), we count the integer(s)
− q−3

4 ≤ j ≤ q−1
2 + δ, such that −q (1 + 4i) ≡ 1 + 4 j mod rn or, equivalently, q+1

4 +
qi + j ≡ 0 mod n, where − q+1

4 − λ ≤ i ≤ − q+1
4 . It follows from − q−1

2 ≤ − q+1
4 − λ ≤

i ≤ − q+1
4 and − q−3

4 ≤ j ≤ q−1
2 + δ ≤ 3q−5

4 that −2n < − q2−q−2
2 ≤ q+1

4 + qi +
j ≤ − q2−3q+4

4 < 0. This implies that the only possible value of q+1
4 + qi + j is −n. If

q+1
4 + qi + j = −n, then j ≡ 0 mod q . Since − q−3

4 ≤ j ≤ 3q−5
4 , j must be 0, and so, the

equality (12) holds. Since Zλ ∩ −qZδ = −q (−qZλ ∩ Zδ) = −qC1 = C− q+1
4
, the equality

(13) holds.
To prove the equality (14), for− q−3

4 ≤ i ≤ q−1
2 +δ we count the integer(s)− q−3

4 ≤ j ≤
q−1
2 +δ satisfying−q (1 + 4i) ≡ 1+4 j mod rn or, equivalently, q+1

4 +qi + j ≡ 0 mod n.
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Table 4 Some parameters of
entanglement-assisted quantum
MDS codes obtained by
Theorem 6

q n �n, k, d; c�q d

7 12 �12, 18 − 2d, d; 4�7 7 ≤ d ≤ 9

11 30 �30, 36 − 2d, d; 4�11 10 ≤ d ≤ 14

19 95 �90, 96 − 2d, d; 4�19 16 ≤ d ≤ 24

23 132 �132, 138 − 2d, d; 4�23 19 ≤ d ≤ 29

27 184 �182, 188 − 2d, d; 4�27 22 ≤ d ≤ 34

31 240 �240, 246 − 2d, d; 4�31 25 ≤ d ≤ 39

It follows from − q−3
4 ≤ i, j ≤ q−1

2 + δ ≤ 3q−5
4 that −n < − q2−3q−4

4 ≤ q+1
4 + qi + j ≤

3q2−q−4
4 < 3n. This implies that the possible values of q+1

4 + qi + j are 0, n, and 2n.

The case q+1
4 + qi + j = 0: Then, 4 j + 1 ≡ 0 mod q . Since −q < −q + 4 ≤ 4 j + 1 ≤

3q − 4 < 3q , 4 j + 1 can be 0, q or 2q . These cases are impossible, since j is an integer and
q ≡ 3 mod 4. Hence, there is no solution in this case.

The case q+1
4 + qi + j = n: Then, 4 j + 2 ≡ 0 mod q . Since −q < −q + 5 ≤ 4 j + 2 ≤

3q −3 < 3q , 4 j +2 can be 0, q and 2q . The only possibility is 4 j +2 = 2q . If 4 j +2 = 2q ,
then j = q−1

2 and i = q−3
4 .

The case q+1
4 + qi + j = 2n: Then, 4 j + 3 ≡ 0 mod q . Since −q < −q + 6 ≤ 4 j + 3 ≤

3q − 2 < 3q , 4 j + 3 can be 0, q , or 2q . The only possibility is 4 j + 3 = q . If 4 j + 3 = q ,
then j = q−3

4 and i = q−1
2 .

All cases of q+1
4 +qi + j imply that−qZδ ∩ Zδ = C q−3

4
∪C q−1

2
. Hence, the equality (14)

holds. Since the equalities (11), (12), (13), and (14) hold,we conclude that
∣
∣Zλ,δ ∩ −qZλ,δ

∣
∣ =

4.
Now, for each 0 ≤ λ, δ ≤ q−3

4 , let Cλ,δ be an α-constacyclic code of length q2−1
4

over Fq2 with the defining set Zλ,δ . Then, Cλ,δ is an α-constacyclic code with parameters
[
q2−1
4 ,

q2−1
4 − d + 1, d

]

q2
,whered = 3q+7

4 +λ+δ. In this case, since
∣
∣−qZλ,δ ∩ Zλ,δ

∣
∣ = 4,

by Theorem 2 and Proposition 2, for each 3q+7
4 ≤ d ≤ 5q+1

4 , we get an EAQECC having the

parameters
�
q2−1
4 ,

q2−1
4 − 2d + 6, d; 4

�

q
. Since EA singleton bound is attained, EAQECCs

that are constructed are MDS. ��

We list parameters of some EAQMDSCs obtained via Theorem 6 in Table 4.

4 Conclusion

We derive four new families of EAQMDSCs from constacyclic codes over Fq2 for lengths

q2 + 1 and q2−1
4 . The EAQMDSCs with length q2 + 1 are of minimum distance more

greater than q + 1. When compared to quantum MDS codes existing in the literature, the

EAQMDSCswith length q2−1
4 have largeminimumdistances. For instance, while �12, 8, 3�7,

�12, 6, 4�7, and �12, 4, 5�7 quantum codes are obtained via the construction in Zhang and
Chen (2014), for same length and dimensions, we get �12, 8, 4; 2�7, �12, 6, 5; 2�7, and
�12, 4, 6; 2�7 EAQMDSCs of larger minimum distance via Theorem 5. We present Table 5
to indicate this comparison.
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Table 5 List of comparisons between EAQMDSCs and quantum MDS codes

EAQMDSCs Quantum MDS codes Reference

�
q2−1
4 ,

q2−1
4 − 2d + 4, d; 2

�

q

�
q2−1
4 ,

q2−1
4 − 2d + 2, d

�

q
Zhang and Chen (2014)

q+9
4 ≤ d ≤ q 2 ≤ d ≤ 3q−1

4
q ≡ 3 (mod4), q > 3
�
q2−1
4 ,

q2−1
4 − 2d + 6, d; 4

�

q

�
q2−1
4 ,

q2−1
4 − 2d + 2, d

�

q
Zhang and Chen (2014)

3q+7
4 ≤ d ≤ 5q+1

4 2 ≤ d ≤ 3q−1
4

q ≡ 3 (mod4), q > 3

Table 6 List of comparisons for EAQMDSCs between us and Liu et al. (2018)

EAQMDSCs Us Liu et al. (2018)

�
q2−1
4 ,

q2−1
4 − 2d + 4, d; 2

�

q

q+9
4 ≤ d ≤ q 3(q+1)

4 ≤ d ≤ q

�
q2−1
4 ,

q2−1
4 − 2d + 6, d; 4

�

q

3q+7
4 ≤ d ≤ 5q+1

4 q + 1 ≤ d ≤ 5q+1
4

Recently, Lu et al. (2018) derived EAQMDSCs with length q2−1
at , where q = atm + 1, a

is even or a is odd and t is even. We remark that this class of EAQMDSCs does not include

our construction of EAQMDSCs with length q2−1
4 since q ≡ 3 (mod4) for our construction,

but q = 4m + 1 for the construction given in Lu et al. (2018).
Chen et al. (2017) constructed EAQMDSc with c = 4 and length λ (q + 1), where λ ≥ 3

is an odd integer dividing q − 1. Since q ≡ 3 (mod4) in our construction given in Theo-
rem 6, their construction does not include ours. Moreover, they also constructed a class of
EAQMDSCs of length q2+1 for odd prime power q ≡ 1 (mod4). However, the construction
given in Theorems 3 and 4 is different from their construction, since q ≡ 3 (mod4) for our
construction.

Liu et al. (2018) derived two classes of EAQMDSCs with the parameters�
q2−1
4 ,

q2−1
4 − 2d + 4, d; 2

�

q
, 3(q+1)

4 ≤ d ≤ q and
�
q2−1
4 ,

q2−1
4 − 2d + 6, d; 4

�

q
, q+1 ≤

d ≤ 5q+1
4 . However, our constructions in Theorems 5 and 6 give us larger classes than

ones in Theorem 10 of Liu et al. (2018) since q+9
4 ≤ 3(q+1)

4 and 3q+7
4 ≤ q + 1. For

instance, letting q = 11, we get EAQMDSCs having the parameters �30, 34 − 2d, d; 2�11,
5 ≤ d ≤ 11 and �30, 36 − 2d, d; 4�11, 10 ≤ d ≤ 14, while EAQMDSCs with parameters
�30, 34 − 2d, d; 2�11, 9 ≤ d ≤ 11 and �30, 36 − 2d, d; 4�11, 12 ≤ d ≤ 14 are obtained via
the construction in Liu et al. (2018). We give Table 6 to indicate this comparison.

For future studies, the construction of EAQECCs which are both maximal entanglement
and MDS with respect to entanglement-assisted singleton bound is an open and attractive
problem. While Guenda et al. (2018) obtained such EAQECCs from linear complementary
dual (LCD) codes and Reed–Solomon codes based on the hull of classical linear codes, this
problem is not solved completely.
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