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Abstract
In this paper, we introduce a semi-analytical method called the local fractional Laplace
homotopy analysis method (LFLHAM) for solving wave equations with local fractional
derivatives. The LFLHAM is based on the homotopy analysis method and the local fractional
Laplace transform method, respectively. The proposed analytical method was a modification
of the homotopy analysis method and converged rapidly within a few iterations. The nonzero
convergence-control parameter was used to adjust the convergence of the series solutions.
Three examples of non-differentiable wave equations were provided to demonstrate the effi-
ciency and the high accuracy of the proposed technique. The results obtainedwere completely
in agreement with the results in the existing methods and their qualitative and quantitative
comparison of the results.

Keywords Local fractional Laplace homotopy analysis method · Local fractional wave
equations · Local fractional Laplace transform · Homotopy analysis method ·
Numeric and symbolic computations

Mathematics Subject Classification 34K50 · 34A12 · 34A30 · 45A05 · 44A05 · 44A20

1 Introduction

Historically, more than two hundred years many problems in mathematical biology, plasma
physics, analytical chemistry, finance, quantum mechanics, and many other applications in
science and engineering were formulated using the fractional calculus (Losada and Nieto
2015; Caputo and Fabrizio 2015; Atangana and Baleanu 2016; Atangana and Koca 2016;
Algahtani 2016; Raja et al. 2015, 2016; Atangana 2016; Mandelbrot and Van Ness 1968;
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Atangana and Gómez-Aguilar 2017; Jumarie 2001, 2005a, b, 2009; Baleanu et al. 2010)
The origin of fractional calculus was dated back to the work of the German mathematician
Gottfried Wilhelm Leibniz in 1695 (see Oldham and Spanier 1974). The theory of fractional
calculus can easily be used to study the memory effects of dynamic systems, and have the
embedded efficiency to described these systems in the best way. Unfortunately, the concept
of classical fractional calculus cannot be used to study some continuous dynamical systems
with highly irregular surfaces and curves (Kolwankar and Gangal 1998). These dynamics
systems are continuous but nowhere differentiable and arise naturally in many fields of
physical science and engineering (Kolwankar and Gangal 1997). To overcome the limitations
of classical fractional calculus, the concept of local fractional calculus was introduced by
Kolwankar and Gangal (1996). The local fractional calculus is a modification of classical
calculus and is suitable to study the behavior of these dynamics systems with highly irregular
curves and surfaces (non-differentiable).

In recent years, there is a rapid development on the concept of local fractional calculus (see
Yang 2011a, 2012; Yang et al. 2010, 2013a, b, 2014a, b, 2016a, b, c, 2017a, b, c, d, 2018;
Hemeda et al. 2018; Ming-Sheng et al. 2012; Zhao et al. 2017; Wang et al. 2014; Chen et al.
2010; Golmankhaneh et al. 2015; Singh et al. 2016; Liu et al. 2014; Srivastava et al. 2014;
Jafari et al. 2015a; Kumar et al. 2017a, b). Based on the current development, many numerical
and analytical techniques such as local fractional Adomian decomposition method (Yan et al.
2014), the local fractional variational iteration method (Yang et al. 2013c, 2014c; Jafari and
Kamil 2015; Jafari et al. 2015b), the local fractional homotopy perturbation method (Yang
et al. 2015a; Zhang et al. 2015), the local fractional homotopy perturbation Sumudu transform
method (Ziane et al. 2017), and the local fractional Laplace decomposition method (Jassim
2015) have been proposed and successfully applied to various applications.

The main aim of this present paper is to introduce an efficient numerical method which is
a combination of homotopy analysis method (Liao 1995, 2003, 2005, 2010) and the local
fractional Laplace transform (Yang 2011b; Yang et al. 2015b) for solving wave equations
involving local fractional derivatives arising in physical sciences and engineering. The effi-
ciency and the high accuracy of the method are demonstrated. The most significant novel
features of the proposed scheme are as follows:

• The proposed scheme can be applied directly without any linearization, transformations,
discretizations of variables, or taking some restrictive assumptions.

• The LFLHAM reduces the computational size and errors.
• It is a semi-analytical method which provides an exact or approximate solution.
• The LFLHAM avoids the cumbersome steps of some computational methods.
• The proposed technique can easily be applied to nonlinear local fractional partial differ-

ential equations.
• The cornerstone of the LFLHAM is the nonzero convergence-control parameter which

provides us with a convenient way to guarantee the convergence of the series solutions.

The paper is organized as follows. In Sect. 2, some preliminaries of local fractional cal-
culus and local fractional Laplace transform are presented. The basic idea of the homotopy
analysis is presented in Sect. 3. Section 4 described the analysis and convergence of the local
fractional Laplace homotopy analysis method. In Sect. 5 some applications of the LFLHAM
are presented, and finally, in Sect. 6 conclusions of this paper are discussed. In Table 1, we
presented some useful identities of the local fractional calculus.
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Table 1 .

£θ [tkθ ] = Γ (kθ+1)
s(k+1)θ £θ [sinθ (tθ )] = 1

s2θ +1

£θ [cosθ (tθ )] = sθ

s2α+1
£θ [coshθ (tθ )] = sθ

s2θ −1

0 I
(θ)
t

tnθ

Γ (1+nθ)
= t(n+1)θ

Γ (1+(n+1)θ)
dθ

dtθ
tnθ

Γ (1+nθ)
= t(n−1)θ

Γ (1+(n−1)θ)

Eθ (tθ ) = ∑+∞
n=0

tnθ

Γ (1+nθ)
, 0 < θ ≤ 1 dθ

dtθ
Eθ (tθ ) = Eθ (tθ )

sinθ (tθ ) = ∑+∞
n=0(−1)n t2nθ

Γ (1+(2n+1)θ)
, 0 < θ ≤ 1 dθ

dtθ
sinθ (tθ ) = cosθ (tθ )

cosθ (tθ ) = ∑+∞
n=0(−1)n t(2n+1)θ

Γ (1+(2n+1)θ)
, 0 < θ ≤ 1 dθ

dtθ
cosθ (tθ ) = − sinθ (tθ )

2 Preliminaries of local fractional calculus

Definition 1 Let φ : � → ℵ be a function defined on fractal set � of fractal dimension α say
(0 < α < 1). Then a real-valued function on a fractal set � is defined as (Yang 2011a, 2012)

φ(t) = tθ , (1)

where tθ ∈ � and 0 < θ < 1.

Definition 2 The function ξ(t) is local fractional continuous at t = t0 if it is valid for (Yang
2011a, 2012)

|ξ(t) − ξ(t0)| < εθ , 0 < θ ≤ 1, (2)

with |t − t0| < δ, for ε > 0 and ε ∈ R For t ∈ (a, b), the function ξ(t) ∈ Cθ (a, b) is called
local fractional continuous on the interval (a, b).

Definition 3 (Local fractional derivative) The local fractional derivative of the function ξ(t)
of order θ at t = t0 is defined as (Yang 2011a, 2012)

ξ (θ)(t) = dθ ξ

(dt)θ
|t=t0 = lim

t→t0

Δθ(ξ(t) − ξ(t0))

(t − t0)θ
, (3)

where
Δθ(ξ(t) − ξ(t0)) ∼= Γ (1 + θ) [ξ(t) − ξ(t0)] . (4)

Similarly, for any t ∈ (a, b), there exists,

ξ (θ)(t) = D(θ)
t ξ(t), (5)

which is denoted by
ξ(t) ∈ D(θ)

t (a, b). (6)

The local fractional derivatives of higher order is written as (Yang 2011a, 2012)

D(nθ)
t (t) = ξ (nθ)(t) =

n times
︷ ︸︸ ︷

D(θ)
t · · · D(θ)

t ξ(t) . (7)

The local fractional partial derivative of higher order is written as (Yang 2011a, 2012)

∂nθ ξ(t, x)

∂tnθ
=

n times
︷ ︸︸ ︷
∂θ

∂tθ
· · · ∂θ

∂tθ
ξ(t, x) . (8)
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Definition 4 (Local fractional integral) The local fractional integral of the function ξ(t) of
order θ in the interval [α, β] is defined as (Yang 2011a, 2012)

β I
(θ)
α = 1

Γ (1 + θ)

∫ β

α

ξ(τ )(dτ)θ = 1

Γ (1 + θ)
lim
Δ→0

N−1∑

i=0

ξ(τi )(Δτ i )
θ , (9)

where Δτ i = τi+1 − τi , Δτ = max{Δτ0,Δτ1,Δτ2, . . .}, τ0 = α, τN = β, and
{τ0, τ1, . . . , τN } is a partition of the interval [α, β].

Definition 5 (Local fractional Laplace transform) The local fractional Laplace transform of
the function ξ(t) of local fractional order θ is defined as (Yang 2011b; Yang et al. 2015b)

£θ [ξ(t)] = Φθ(s) = 1

Γ (1 + θ)

∫ ∞

0
Eθ

(−sθ tθ
)
ξ(t)(dt)θ , 0 < θ ≤ 1, (10)

where £θ is called the local fractional Laplace transform operator.
The sufficient condition for the convergence of Eq. (10) is given by

1

Γ (1 + θ)

∫ ∞

0
|ξ(t)|(dt)θ < γ < ∞.

Definition 6 The inverse local fractional Laplace transform is defined as

£−1
θ [Φ(s)] = ξ(t) = 1

(2π)θ

∫ ∞

0
Eθ

(
sθ tθ

)
Φ(s)(ds)θ . (11)

Definition 7 The nth derivative of local fractional Laplace transform is defined as (Yang
2011b; Yang et al. 2015b)

£θ [ξ (nθ)(t)] = snθ£θ [ξ(t)] −
n∑

k=0

s(n−k)θ ξ (k−1)θ . (12)

Definition 8 TheRiemann–Liouville fractional integral operator of orderα > 0, of a function
f (t) ∈ Cm

τ , and τ ≥ −1 is defined as (Oldham and Spanier 1974).

I θ f (t) =
{

1
Γ (θ)

∫ t
0 (t − η)θ−1 f (η)dη, θ > 0, t > 0,

f (t), θ = 0.
(13)

Below we list some important properties of I α (see Oldham and Spanier 1974):

(i) If f ∈ Cτ , τ ≥ −1, α, β ≥ 0, and γ > −1, then

I θ t x = Γ (x + 1)

Γ (x + θ + 1)
tθ+x , (14)

I θ I β f (t) = I θ+β, I θ I β f (t) = I β I θ f (t). (15)

(ii) For m − 1 < α ≤ m, m ∈ N and f ∈ Cm
τ , τ ≥ −1, then

Dθ I θ f (t) = f (t), I θ Dθ f (t) = f (t) −
m−1∑

i=0

f k(0+)
tk

k! , t > 0. (16)
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Definition 9 The function f (t) in Caputo fractional derivative is defined as (Oldham and
Spanier 1974).

Dθ f (t) =
{

1
Γ (m−θ)

∫ t
0 (t − η)m−θ−1 f (m)(η)dη,

Im−θ Dm f (t),
(17)

where m − 1 < θ < m, m ∈ N, t > 0.

Definition 10 (Some useful results in fractal space) In Table 1 belowwe defined some impor-
tant identities on fractal space.

In the next section, we illustrate the fundamental idea of the standard HAM.

3 Basic idea of homotopy analysis method

In this section, we illustrate the basic idea of homotopy analysis method. Consider the fol-
lowing nonlinear local fractional partial differential equation

N [u(x, t)] = 0, (18)

where N is the nonlinear operator, x and t denotes the independent variables, and u(x, t)
denotes the local fractional unknown function. For clarity, in this paper we ignore all initial
and boundary conditions, which can be computed in the same way. Based on the fundamental
of the traditional homotopy analysis method proposed by Liao (1995), we construct a convex
non-differentiable homotopy called the zero-order deformation equation

(1 − p)£ [ϕ(x, t; p) − u0(x, t)] = p�H(x, t)N [ϕ(x, t; p)] , (19)

where p ∈ [0, 1] is an embedding parameter, � 
= 0 is the nonzero convergence-control
parameter, and H(x, t) 
= 0 is the local fractional nonzero auxiliary function, ϕ(x, t; p) is
the local fractional unknown function, u0(x, t) is an initial guess of u(x, t), and £ = ∂θ ϕ

∂tθ
is

the linear local fractional operator with the property that

£[C] = 0, (20)

where C is an integral constant. Based on the concept of homotopy analysis method, one has
great freedom to choose the auxiliary linear operator and the initial guess. Obviously, when
p = 1, and p = 0, it holds

ϕ(x, t; 0) = u0(x, t), and ϕ(x, t; 1) = u(x, t), (21)

respectively. Thus, as p increases from 0 to 1, the solution ϕ(x, t; p) varies from the initial
guess u0(x, t) to the solution u(x, t). Expanding ϕ(x, t; p) using Taylor series with respect
to p, we deduce

ϕ(x, t; p) = u0(x, t) +
+∞∑

m=1

um(x, t)pm, (22)

where

um(x, t) =
[
1

m!
∂mϕ(x, t; p)

∂ pm

]

p=0
. (23)
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If the auxiliary linear operator, the initial guess, the auxiliary function, and the
convergence-control parameter are chosen properly, then Eq. (22) converges at p = 1, and

u(x, t) = u0(x, t) +
+∞∑

m=1

um(x, t), (24)

is the solution of the original problemEq. (22). According to Eq. (22), the governing equation
can be deduced from the zero deformation Eq. (19).

Define a local fractional vector

�um = {u0(x, t), u1(x, t), u2(x, t), . . . , um(x, t)} . (25)

Differentiating Eq. (19) m-times with respect to the embedding parameter p and then
setting p = 0 and finally dividing by m!, we obtain the so-called Mth-order deformation
equation

£[um(x, t) − χmum−1(x, t)] = pH(x, t)Rm(um−1, x, t), (26)

where

Rm(um−1, x, t) =
[

1

(m − 1)!
∂(m−1)!N [ϕ(x, t; p)]

∂ p(m−1)

]

p=0

, (27)

and

χm =
{
0 m ≤ 1
1 m > 1.

(28)

Using symbolic computational software such as Mathematica or Maple, we can easily
solve the Mth-order deformation equation.

In the next section, we demonstrate the idea of the LFLHAM.

4 Local fractional Laplace homotopy analysis method

Consider the following nonlinear local fractional partial differential equation

Πθ(ξ(x, t)) + Rθ (ξ(x, t)) = ψ(x, t); θ > 0, m − 1 < θ ≤ m, m ∈ R, (29)

whereΠθξ(x, t) = ∂mθ ξ(x,t)
∂tmθ denotes the linear local fractional differential, Rθ ξ(x, t) denotes

the remaining linear operator, and ψ(x, t) states the non-homogeneous function of x and t
which is the source term.

Computing the local fractional Laplace transform on both sides of Eq. (29), we get

£θ [Πθ(ξ(x, t))] + £θ [Rθ (ξ(x, t))] = £θ [ψ(x, t)] . (30)

Applying Eq. (12) on Eq. (30), we obtain

£θ [ξ(x, t)] −
m∑

k=0

1

skθ
∂kθ ξ(x, 0)

∂tkθ
+ 1

smθ
£θ [Rθ ξ(x, t)] = 1

smθ
£θ [ψ(x, t)] . (31)

Equivalently

£θ [ξ(x, t)] −
m∑

k=0

1

skθ
∂kθ ξ(x, 0)

∂tkθ

+ 1

smθ
(£θ [Rθ ξ(x, t)] − £θ [ψ(x, t)]) = 0. (32)
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We define the nonlinear operator as

N [η(x, t; p)] = £θ [η(x, t; p)] −
m∑

k=0

1

skθ
∂kθη(x, 0)

∂tkθ

+ 1

smθ
(£θ [Rθ η(x, t)] − £θ [ψ(x, t)]) , (33)

where p ∈ [0, 1] is a nonzero auxiliary parameter, and ϑ(x, t; p) is a real-valued function
of x, t, p. We construct a homotopy as follows:

(1 − p)£θ [η(x, t; p) − ξ0(x, t)] = �pH(x, t)N [η(x, t)], (34)

where £θ denotes the local fractional Laplace transform, p ∈ [0, 1] is the embedding param-
eter, H(x, t) denotes a nonzero auxiliary function, � 
= 0 is an auxiliary parameter, ξ0(x, t)
is the initial guess of ξ(x, t), and η(x, t; p) is the unknown function.

The greatest advantage of theLFLHAMis the great freedom to choose auxiliary parameter,
and the initial guess. Obviously, when p = 1, and p = 0 in Eq. (34), the following results
holds

η(x, t; 0) = ξ0(x, t), and η(x, t; 1) = ξ(x, t), (35)

respectively. Thus, as p increases from 0 to 1, the solution η(x, t; p) varies from the initial
guess ξ0(x, t) to the solution ξ(x, t). Expanding η(x, t; p) as a local fractional Taylor series
(Yang 2011a, 2012) with respect to p, we deduce

η(x, t; p) = ξ0(x, t) +
+∞∑

m=1

ξm(x, t)pm, (36)

where

ξm(x, t) =
[

1

Γ (m + 1)

∂mη(x, t; p)
∂ pm

]

p=0
. (37)

The convergence of the series solutions of Eq. (36) is control by the convergence-control
parameter �. If the auxiliary linear operator, the initial guess, the auxiliary parameter �,
auxiliary function are chosen properly, then Eq. (36) converges at p = 1, and

ξ(x, t) = ξ0(x, t) +
+∞∑

m=1

ξm(x, t), (38)

is the solution of the original problemEq. (29). According to Eq. (37), the governing equation
can be deduced from the zero deformation Eq. (34).

Define the vectors

�ξm = {ξ0(x, t), ξ1(x, t), ξ2(x, t), . . . , ξm(x, t)} . (39)

Differentiating Eq. (34) m-times with respect to the embedding parameter p and then
setting p = 0 and finally dividing byΓ (m+1), we have the so-calledMth-order deformation
equation

£θ [ξm(x, t) − χmξm−1(x, t)] = �H(x, t)Rm(ξm−1, x, t), (40)

where

Rm(ξm−1, x, t) =
[

1

Γ (m)

∂(m−1)N [η(x, t; p)]
∂ p(m−1)

]

p=0

, (41)
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and

χm =
{
0 m ≤ 1
1 m > 1.

(42)

Taking the inverse local fractional Laplace transform on both sides of Eq. (40), we get

ξm(x, t) = χmξm−1(x, t) + £−1
θ [�H(x, t)Rm(ξm−1, x, t)]. (43)

And based on Eq. (29), our Rm(ξm−1) is define as

Rm(ξm−1, x, t) = Πθξm−1(x, t) + Rθ ξm−1(x, t) − (1 − χm)ψ(x, t). (44)

Thus, using Eq. (40), we can easily compute vm(x, t) for m ≥ 1, and at Mth-order we
deduce

ξ(x, t) =
+∞∑

m=0

ξm(x, t). (45)

In the next theorem, we study the convergence analysis of the original problem Eq. (29).

Theorem 1 (Convergence of analysis of the LFLHAM) Suppose the series

∞∑

m=0

ξm(x, t) = ξ0(x, t) +
+∞∑

m=1

ξm(x, t), (46)

is converging to ζ(x, t), where ξm(x, t) is obtained through Eq. (40). Then ξ(x, t) must be
the exact solution of Eq. (29).

Proof Since

lim
M→∞

M∑

m=1

ξm(x, t) = ξ0(x, t) + lim
M→∞

M∑

m=1

ξm(x, t) = ζ(x, t). (47)

Then we deduce that limM→∞
∑M

m=1 ξm(x, t) = 0. Thus, using Eq. (40), yields

lim
M→∞

[

�H(x, t)
M∑

m=1

Rm(ξm−1, x, t)

]

= lim
M→∞

[
M∑

m=1

£θ

[
ξm(x, t) − χmξm−1(x, t)

]
]

= £θ

[

lim
M→∞

M∑

m=1

ξm(x, t) − lim
M→∞

M∑

m=1

χmξm−1(x, t)

]

= £θ

[

lim
M→∞

M∑

m=1

ξm(x, t)

]

= 0.

On the other hand, since H(x, t) 
= 0, � 
= 0 and the linearity property of Eq. (34), we
deduce

lim
M→∞

M∑

m=1

Rm(ξm−1, x, t) = 0. (48)

123
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Thus, based on Eq. (44), we get

lim
M→∞

M∑

m=1

Rm(ξm−1, x, t)

= lim
M→∞

M∑

m=1

[Πθvm−1(x, t) + Rθ vm−1(x, t) − (1 − χm)ψ(x, t)]

= lim
M→∞

M∑

m=1

Πθ lim
M→∞

M∑

m=1

ξm−1(x, t) + lim
M→∞

M∑

m=1

Rθ (ξm−1(x, t))

− lim
M→∞

M∑

m=1

(1 − χm)ψ(x, t)

= Πθ(ξ(x, t)) + Rθ (ξ(x, t)) − ψ(x, t) = 0. (49)

Hence, Eq. (49) proved that ζ(x, t) satisfies the solution of the original problem Eq. (29).
�


5 Applications of the LFLHAM

In this section, we illustrate the applications of the local fractional Laplace homotopy analysis
method to show its efficiency and the high accuracy.

Example 1 Consider the following local fractional wave equation

∂2θ ξ(x, t)

∂t2θ
+ ∂2θ ξ(x, t)

∂x2θ
= 0, (50)

subject to the initial conditions

ξ(x, 0) = sinθ (x
θ ),

∂θ ξ(x, 0)

∂tθ
= sinθ (x

θ ), 0 ≤ x ≤ 1. (51)

Applying Eqs. (10) and (12) on both sides of Eq. (50), we deduce

£θ [ξ(x, t)] −
n∑

k=0

1

skθ
∂kθ ξ(x, 0)

∂tkθ
+ 1

s2θ
£θ

[
∂2θ ξ(x, t)

∂x2θ

]

= 0, t > 0. (52)

The nonlinear operator is defined as

N [η(x, t; p)] = £θ [η(x, t)] −
n∑

k=0

1

skθ
∂kθη(x, 0)

∂tkθ
+ 1

s2θ
£θ

[
∂2θ η(x, t)

∂x2θ

]

,

0 ≤ p ≤ 1, t > 0. (53)

Thus

Rm(ξm−1, x, t) = £θ [ξm−1(x, t)] − (1 − χm)

(
1

sθ
+ 1

s2θ

)

sinθ (x
θ )

− 1

s2θ
£θ

[
∂2θ ξm−1(x, t)

∂x2θ

]

, t > 0. (54)
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TheMth-order deformation equation is defined as

£θ [ξm(x, t) − χmξm−1(x, t)] = �H(x, t)Rm(ξm−1, x, t). (55)

Computing the inverse local fractional Laplace transform of Eq. (55), we obtain

ξm(x, t) = χmξm−1(x, t) + £−1
θ [�H(x, t)Rm(ξm−1, x, t)]. (56)

Choosing H(x, t) = 1, we solve Eq. (56) recursively for m ≥ 1 and obtain the following
results:

ξ0(x, t) = sinθ (x
θ )

(

1 + tθ

Γ (θ + 1)

)

ξ1(x, t) = −� sinθ (x
θ )

(
t2θ

Γ (2θ + 1)
+ t3θ

Γ (3θ + 1)

)

ξ2(x, t) = �
2 sinθ (x

θ )

(
t4θ

Γ (4θ + 1)
+ t5θ

Γ (5θ + 1)

)

− �(� + 1) sinθ (x
θ )

(
t2θ

Γ (2θ + 1)
+ t3θ

Γ (3θ + 1)

)

...,

and so on.
Thus, the series solutions of Eq. (50) are given by

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · · (57)

In particular, choosing the convergence-control parameter � = − 1, we obtain

ξ(x, t) = sinθ (x
θ )

(

1 + tθ

Γ (θ + 1)
+ t2θ

Γ (2θ + 1)
+ t3θ

Γ (3θ + 1)
+ · · ·

)

= sinθ (x
θ )Eθ (t

θ ). (58)

The result obtained in Eq. (58) is in complete agreement with the local fractional integral
iterative method and the local fractional new iterative method (Hemeda et al. 2018), local
fractional functional decomposition method (Wang et al. 2014) and (Yang 2011a, 2012).

Using the standard HAM spproach Equation (50) can be written as

∂2θ ξ(x, t)

∂t2θ
= −∂2θ ξ(x, t)

∂x2θ
. (59)

For simplicity, one has

β I
(θ)
η

[
∂2θ ξ(x, t)

∂t2θ

]

=β I (θ)
η

[

−∂2θ ξ(x, t)

∂x2θ

]

, (60)

which yields according to Eq. (16)

ξ(x, t) =
m−1∑

k=0

ξ (k)(x, 0+)
tk

k! +β I (θ)
η

[

−∂2θ ξ(x, t)

∂x2θ

]

. (61)

We obtain the initial guess by neglecting the unknown term in the R.H.S. of Eq. (61) as

ξ0(x, t) = sinθ (x
θ )

(

1 + tθ

Γ (θ + 1)

)

. (62)
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Let the linear operator be £(ϕ) = ∂2θ ξ(x,t)
∂t2θ

.
We define the nonlinear operator as

N [ϕ(x, t; p)] = ∂2θϕ(x, t)

∂t2θ
+ ∂2θϕ(x, t)

∂x2θ
. (63)

According to Eqs. (19) and (20), we deduce

β I
(θ)
η

[
∂2θ ξ(x, t)

∂t2θ

]
[
ξm(x, t) − χmξm−1(x, t)

] = �β I
(θ)
η H(x, t)Rm(ξm−1, x, t), (64)

where

Rm(ξm−1, x, t) = ∂2θ ξm−1(x, t)

∂t2θ
+ ∂2θ ξm−1(x, t)

∂x2θ
. (65)

Then using the property of Eqs. (16) and (51), and setting H(x, t) = 1, we obtain

ξm(x, t) = (χm + �)ξm−1(x, t) + �β I
(θ)
η

[

−∂2θ ξm−1(x, t)

∂x2θ

]

, m > 1. (66)

Finally, using Eqs. (51) and (66), we easily obtain the remaining components as

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · · (67)

Figure 1: The 3D surface solution of Eq. (50) for θ = 1
2 is presented in Fig. 1a. The

surface solution of Eq. (34) for (θ = 1) is depicted in Fig. 1b. The non-differentiable
surface solution is depicted in Fig. 1c. The surface solution behavior of ξ(x, t) for different
values of θ = 1, 1

2 ,
ln(2)
ln(3) is presented in Fig. 1d. The absolute error analysis for 20th-order

approximations of the LFLHAMandHAM is presented in Fig. 1e, f. In Fig. 1g, h, the absolute
error analyses of 20th-order approximations of the non-differentiable problem for θ = ln(2)

ln(3)
are clearly illustrated. The results of the absolute errors are in excellent agreement.

Example 2 Consider the following local fractional wave equation

∂2θ ξ(x, t)

∂t2θ
+ ∂2θ ξ(x, t)

∂x2θ
= sinθ (x

θ ), (68)

subject to the initial conditions

ξ(x, 0) = sinθ (x
θ ),

∂θ ξ(x, 0)

∂tθ
= 0, 0 ≤ x ≤ 1. (69)

Employing Eqs. (10) and (12) on both sides of Eq. (68), we get

£θ [ξ(x, t)] −
n∑

k=0

1

skθ
∂kθ ξ(x, 0)

∂tkθ
− 1

sθ
sinθ (x

θ )

+ 1

s2θ
£θ

[
∂2θ ξ(x, t)

∂x2θ

]

= 0, t > 0. (70)

The nonlinear operator is defined as

N [η(x, t; p)] = £θ [η(x, t)] −
n∑

k=0

1

skθ
∂kθη(x, 0)

∂tkθ
− 1

sθ
sinθ (x

θ )

+ 1

s2θ
£θ

[
∂2θη(x, t)

∂x2θ

]

, 0 ≤ p ≤ 1, t > 0. (71)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1 a Numerical simulation of Eq. (50) for θ = 1
2 , b 3D surface solution for θ = 1, c 3D non-differentiable

surface solution for θ = ln(2)
ln(3) , d 2D approximate solutions for θ = 1, 1

2 and ln(2)
ln(3) , e absolute error

E10(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)|, f absolute error E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)|, g abso-

lute error of LFLHAM E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| when θ = ln(2)
ln(3) , h absolute error of HAM

E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| when θ = ln(2)
ln(3)
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Thus

Rm(ξm−1, x, t) = £θ

[
ξm−1(x, t)

] − (1 − χm)(
1

sθ
+ 1

s2θ
) sin(xθ )

− 1

s2θ
£θ

[
∂2θ ξm−1(x, t)

∂x2θ

]

, t > 0. (72)

TheMth-order deformation equation is defined as

£θ [ξm(x, t) − χmξm−1(x, t)] = �H(x, t)Rm(ξm−1, x, t). (73)

Computing the inverse local fractional Laplace transform of Eq. (73), we deduce

ξm(x, t) = χmξm−1(x, t) + £−1
θ

[
�H(x, t)Rm(ξm−1)

]
. (74)

Choosing H(x, t) = 1, we solved Eq. (74) for m ≥ 1 and obtained the following results:

ξ0(x, t) = sinθ (x
θ )

(

1 + t2θ

Γ (2θ + 1)

)

ξ1(x, t) = − � sinθ (x
θ )

(
t2θ

Γ (2θ + 1)
+ t4θ

Γ (4θ + 1)

)

ξ2(x, t) = �
2 sinθ (x

θ )

(
t6θ

Γ (6θ + 1)
− t2θ

Γ (2θ + 1)

)

− � sinθ (x
θ )

(
t2θ

Γ (2θ + 1)
+ t4θ

Γ (4θ + 1)

)

...,

and so on.
Thus, the series solutions of Eq. (68) is given by

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · · (75)

Setting the convergence-control parameter � = −1, we obtain

ξ(x, t) = sinθ (x
θ )

(

1 + 2t2θ

Γ (2θ + 1)
+ 2t4θ

Γ (4θ + 1)
+ 2t6θ

Γ (6θ + 1)
+ · · ·

)

= sinθ (x
θ )(Eθ (t

θ ) + Eθ (−tθ ) − 1). (76)

The result obtained in Eq. (76) is in complete agreement with the local fractional integral
iterative method and the local fractional new iterative method (Hemeda et al. 2018), local
fractional functional decomposition method (Wang et al. 2014), and (Yang 2011a, 2012).

Figure 2: Surface solution of Eq. (68) for θ = 1
2 is given in Fig. 2a. Surface solution

behavior of Eq. (68) for (θ = 1) is presented in Fig. 2b. The non-differentiable surface
solution behavior is depicted in Fig. 2c. The 2D surface solution behavior for different
values of θ = 1, 1

2 ,
ln(2)
ln(3) is presented in Fig. 2d. The absolute error analysis for 20th-order

approximations of the LFLHAM and HAM is given in Fig. 2e, f. The 20th-order absolute
of the non-differentiable problem for θ = ln(2)

ln(3) is presented in Fig. 2g, h, respectively. The
absolute error analyses of the LFLHAM and HAM were in complete agreement.

Example 3 Consider the following local fractional wave equation:

∂2θ ξ(x, t)

∂t2θ
− ∂2θ ξ(x, t)

∂x2θ
+ ∂θ ξ(x, t)

∂xθ
= − sinθ (x

θ ) sinθ (t
θ ), (77)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 a Numerical simulation of Eq. (68) for θ = 1
2 , b 3D surface solution for θ = 1, c 3D non-differentiable

surface solution behavior for θ = ln(2)
ln(3) , d 2D approximate solutions for θ = 1, 1

2 and ln(2)
ln(3) , e absolute error

E10(ξ(x, t)) = |ξext.(x, t)−ξappr.(x, t)|, f absolute error E20(ξ(x, t)) = |ξext.(x, t)−ξappr.(x, t)|, g absolute
error of the LFLHAM E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| for θ = ln(2)

ln(3) , h absolute error of the HAM

E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| for θ = ln(2)
ln(3)
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subject to the initial conditions

ξ(x, 0) = 0,
∂θ ξ(x, 0)

∂tθ
= cosθ (x

θ ), 0 ≤ x ≤ 1. (78)

Applying Eqs. (10) and (12) on both sides of Eq. (77) yields

£θ [ξ(x, t)] −
n∑

k=0

1

skθ
∂kθ ξ(x, 0)

∂tkθ
− 1

s2θ + 1
sinθ (x

θ )

+ 1

s2θ
£θ

[
∂θ ξ(x, t)

∂xθ
− ∂2θ ξ(x, t)

∂x2θ

]

= 0, t > 0. (79)

The nonlinear operator is defined as

N [η(x, t; p)] = £θ [η(x, t)] −
n∑

k=0

1

skθ
∂kθη(x, 0)

∂tkθ
− sin(xθ )

s2θ + 1

+ 1

s2θ
£θ

[
∂θη(x, t)

∂xθ
− ∂2θη(x, t)

∂x2θ

]

,

0 ≤ p ≤ 1, t > 0. (80)

Thus

Rm(ξm−1, x, t)

= £θ [ξm−1(x, t)] − (1 − χm)

(
1

s2θ
cosθ (x

θ ) + sinθ (x
θ )

(
1

s2θ + 1
− 1

s2θ

))

+ 1

s2θ
£θ

[
∂θ ξm−1(x, t)

∂xθ
− ∂2θ ξm−1(x, t)

∂x2θ

]

, t > 0. (81)

TheMth-order deformation equation is defined as

£θ

[
ξm(x, t) − χmξm−1(x, t)

] = �H(x, t)Rm(ξm−1, x, t). (82)

Computing the inverse local fractional Laplace transform of Eq. (82), we deduce

ξm(x, t) = χmξm−1(x, t) + £−1
θ [�H(x, t)Rm(ξm−1)]. (83)

Choosing H(x, t) = 1, we solved Eq. (83) for m ≥ 1 and obtained the following approx-
imations:

ξ0(x, t) = cosθ (x
θ )

tθ

Γ (θ + 1)
+ sinθ (x

θ )

(

sinθ (t
θ ) − tθ

Γ (θ + 1)

)

ξ1(x, t) = � sinθ (x
θ )

(
tθ

Γ (θ + 1)
+ 2t3θ

Γ (3θ + 1)
− sinθ (t

θ )

)

+ � cosθ (x
θ )

(
tθ

Γ (θ + 1)
− sinθ (t

θ )

)

ξ2(x, t) = −�(� + 1)(cosθ (x
θ ) + sinθ (x

θ )) sinθ (t
θ )

+ �
2 cosθ (x

θ )

(
2t3θ

Γ (3θ + 1)
− 2t5θ

Γ (5θ + 1)
+ tθ

Γ (θ + 1)
− 2

(
tθ

Γ (θ + 1)
− sinθ (t

θ )

))

+ �
2 sinθ (x

θ )

(
2t5θ

Γ (5θ + 1)
− 2t3θ

Γ (3θ + 1)
+ tθ

Γ (θ + 1)

)
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+ � sinθ (x
θ )

(
tθ

Γ (θ + 1)
− 2t3θ

Γ (3θ + 1)

)

+ � cosθ (x
θ )

tθ

Γ (θ + 1)
...,

and so on. Thus, the series solutions of Eq. (77) is given by

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · · (84)

Choosing the convergence-control parameter � = −1, we obtain

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · ·
= sinθ (t

θ ) cosθ (x
θ ). (85)

The result obtained in Eq. (85) is in complete agreement with the local fractional integral
iterative method and the local fractional new iterative method (Hemeda et al. 2018), local
fractional functional decomposition method (Wang et al. 2014; Yang 2011a, 2012).

Figure 3: The surface solution behavior of Eq. (68) for θ = 1
2 is presented in Fig. 3a. Sur-

face solution behavior of Eq. (68) for (θ = 1) is illustrated in Fig. 3b. The non-differentiable
surface solution behavior for θ = ln(2)

ln(3) is depicted in Fig. 3c. 2D surface solutions for dif-

ferent values of θ = 1, 1
2 ,

ln(2)
ln(3) are presented in Fig. 3d. The absolute error analysis for

20th-order approximations of the LFLHAM and HAM are given in Fig. 3e, f, respectively.
The 20th-order absolute error analysis of the non-differentiable problem for θ = ln(2)

ln(3) are
depicted in Fig. 3g, h, respectively. The obtained results were in complete agreement.

Example 4 Consider the following nonlinear local fractional heat equation:

∂2θ ξ(x, t)

∂t2θ
= x2θ

Γ (2θ + 1)

∂θ

∂xθ

(
∂θ ξ(x, t)

∂xθ

∂2θ ξ(x, t)

∂x2θ

)

− x2θ

Γ (2θ + 1)

(
∂2θ ξ(x, t)

∂x2θ

)2

− ξ(x, t), (86)

subject to the initial conditions

ξ(x, 0) = 0,
∂θ ξ(x, 0)

∂tθ
= x2θ

Γ (2θ + 1)
, 0 ≤ x ≤ 1. (87)

Employing Eqs. (10) and (12) on both sides of Eq. (86) yields

£θ [ξ(x, t)] −
n∑

k=0

1

skθ
∂kθ ξ(x, 0)

∂tkθ

+ 1

s2θ
£θ

[
x2θ

Γ (2θ + 1)

[(
∂2θ ξ(x, t)

∂x2θ

)2

− ∂θ

∂xθ

(
∂θ ξ(x, t)

∂xθ

∂2θ ξ(x, t)

∂x2θ

)]

+ ξ(x, t)

]

= 0,

t > 0. (88)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 aNumerical solution of Eq. (85) for θ = 1
2 , b the 3D surface solution for θ = 1, c the non-differentiable

surface solution behavior for θ = ln(2)
ln(3) , d the approximate solutions for θ = 1, 1

2 and ln(2)
ln(3) , e absolute error

E10(ξ(x, t)) = |ξext.(x, t)−ξappr.(x, t)|, f absolute error E20(ξ(x, t)) = |ξext.(x, t)−ξappr.(x, t)|, g absolute
error of the LFLHAM E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| for θ = ln(2)

ln(3) , h absolute error of the HAM

E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| for θ = ln(2)
ln(3)
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The nonlinear operator is defined as

N [η(x, t; p)] = £θ [η(x, t)] −
n∑

k=0

1

skθ
∂kθη(x, 0)

∂tkθ

+ 1

s2θ
£θ

[
x2θ

Γ (2θ + 1)

[(
∂2θ ξ(x, t)

∂x2θ

)2

− ∂θ

∂xθ

(
∂θ ξ(x, t)

∂xθ

∂2θ ξ(x, t)

∂x2θ

)]

+ ξ(x, t)

]

,

0 ≤ p ≤ 1, t > 0. (89)

Thus

Rm(ξm−1, x, t)

= £θ

[
ξm−1(x, t)

] − (1 − χm)

(
1

s2θ
x2θ

Γ (2θ + 1)

)

+ 1

s2θ
£θ

[
x2θ

Γ (2θ + 1)

[
m−1∑

i=0

∂2θ ξi (x, t)

∂x2θ
∂2θ ξm−1−i (x, t)

∂x2θ

−
m−1∑

i=0

∂θ

∂xθ

(
∂θ ξi (x, t)

∂xθ

∂2θ ξm−1−i (x, t)

∂x2θ

)]

− ξ(x, t)

]

, t > 0. (90)

TheMth-order deformation equation is defined as

£θ [ξm(x, t) − χmξm−1(x, t)] = �H(x, t)Rm(ξm−1, x, t). (91)

Computing the inverse local fractional Laplace transform of Eq. (91), we obtain

ξm(x, t) = χmξm−1(x, t) + £−1
θ [�H(x, t)Rm(ξm−1)]. (92)

Setting H(x, t) = 1, we solved Eq. (92) for m ≥ 1 and obtained the following results:

ξ0(x, t) = x2θ

Γ (2θ + 1)

tθ

Γ (θ + 1)

ξ1(x, t) = �
x2θ

Γ (2θ + 1)

t3θ

Γ (3θ + 1)

ξ2(x, t) = �(� + 1)
x2θ

Γ (2θ + 1)

t3θ

Γ (3θ + 1)
+ �

2 x2θ

Γ (2θ + 1)

t5θ

Γ (5θ + 1)
...

and so on. Thus, the series solutions of Eq. (86) is given by

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · · (93)

Choosing the convergence-control parameter � = −1, we obtained the following result:

ξ(x, t) = ξ0(x, t) + ξ1(x, t) + ξ2(x, t) + ξ3(x, t) + · · ·

= x2θ

Γ (2θ + 1)

(
tθ

Γ (θ + 1)
− t3θ

Γ (3θ + 1)
+ t5θ

Γ (5θ + 1)
− · · ·

)

= x2θ

Γ (2θ + 1)
sinθ (t

θ ). (94)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 a Surface solution of Eq. (86) for θ = 1
2 , b 3D surface solution for θ = 1, c non-differentiable

surface solution behavior for θ = ln(2)
ln(3) , d the approximate solutions for θ = 1, 1

2 and ln(2)
ln(3) , e absolute error

E10(ξ(x, t)) = |ξext.(x, t)−ξappr.(x, t)|, f absolute error E20(ξ(x, t)) = |ξext.(x, t)−ξappr.(x, t)|, g absolute
error of the LFLHAM E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| for θ = ln(2)

ln(3) , h absolute error of the HAM

E20(ξ(x, t)) = |ξext.(x, t) − ξappr.(x, t)| for θ = ln(2)
ln(3)
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Figure 4: The surface solution behavior of Eq. (86) for θ = 1
2 is presented in Fig. 4a.

Solution behavior of Eq. (86) for (θ = 1) is presented in Fig. 4b. The non-differentiable
surface solution behavior is illustrated in Fig. 4c. The 2D surface solutions behavior for
different values of θ = 1, 1

2 ,
ln(2)
ln(3) are depicted in Fig. 4d. The absolute error analysis of

20th-order approximations of the LFLHAM and HAM are given in Fig. 4e, f, respectively.
Absolute of the LFLHAM and HAM of 20th-order approximations of the non-differentiable
problem for θ = ln(2)

ln(3) are presented in Fig. 4g, h, respectively. The absolute errors obtained
were in excellent agreement.

6 Conclusion

In this letter, we proposed an efficient computational technique called the local fractional
Laplace homotopy analysis method (LFLHAM) for solving local fractional wave equations
onCantor set. The proposed technique reduces the computational size, and the series solutions
converge rapidly. The greatest advantage of the LFLHAM over the existing techniques is the
freedom of choosing the initial guess and the existence of the nonzero convergence-control
parameter used to adjust and control the convergence of themethod.We discussed the detailed
convergence analysis of the method. Finally, based on the mathematical formulations and
findings of LFLHAM in this paper, we conclude that it is highly efficient and user-friendly.
In further research, one may intend to look for computational heuristic paradigms based on
artificial intelligence algorithms to solve non-differentiable wave equations on Cantor sets.
Besides, the proposed algorithm can also be treated as sequence of small intervals (i.e., step
size) in the future.

Acknowledgements Funding was provided by China Scholarship Council (2017GXZ025381), National Nat-
ural Science Foundation of China (11571206).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

Algahtani OJJ (2016) Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order:
Allen Cahn model. Chaos Solitons Fract 89:552–559

Atangana A (2016) On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion
equation. Appl Math Comput 273:948–956

Atangana A, Baleanu D (2016) New fractional derivatives with non-local and non-singular kernel: theory and
application to heat transfer model. Therm Sci 20(2):763–769

AtanganaA,Gómez-Aguilar JF (2017)Numerical approximationofRiemann–Liouville definitionof fractional
derivative: from Riemann–Liouville to Atangana–Baleanu. Numer Methods Partial Differ Equ. https://
doi.org/10.1002/num.22195

Atangana A, Koca I (2016) Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with
fractional order. Chaos Solitons Fract 89:447–454

Baleanu D, Güvenc ZB, Tenreiro, Machado JA (2010) New trends in nanotechnology and fractional calculuc
applications. Springer, Berlin

Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract
Differ Appl 2:731–85

Chen Y, Yan Y, Zhang K (2010) On the local fractional derivative. J Math Anal Appl 362:17–33
Golmankhaneh AK, Yang XJ, Baleanu D (2015) Einsten field equations within local fractional calculus. Rom

J Phys 60:22–31

123

https://doi.org/10.1002/num.22195
https://doi.org/10.1002/num.22195


Local fractional Laplace homotopy analysis method… Page 21 of 22 65

Hemeda AA, Eladdad EE, Lairje IA (2018) Local fractional analytical methods for solving wave equations
with local fractional derivative. Math Methods Appl Sci. https://doi.org/10.1002/mma.4756

HuM-S, Ravi PA, Yang XJ (2012) Local fractional Fourier series with applications to wave equation in fractal
vibrating string. Abstr Appl Anal 2012:1–15 (article ID: 567401)

Jafari H, Kamil HJ (2015) Local fractional variational iterationmethod for solving nonlinear partial differential
equations within local fractional operators. Appl Appl Math Int J 10(2):1055–1065

Jafari H, Tajadodi H, Johnston SJ (2015a) A decomposition method for solving diffusion equationa via local
fractional time derivative. Therm Sci 19(1):S123–S129

Jafari H, Ünlü C, Moshoa SP, Khalique CM (2015b) Local fractional Laplace variational iteration method for
solving diffusion and wave equations on Cantor sets within local fractional operators. Entropy 2015:1–9
(article ID: 309870)

Jassim HK (2015) Local fractional Laplace decomposition method for nonhomogeneous heat equation arising
in fractal heat flow with local fractional derivative. Int J Adv Appl Math Mech 2:1–7

Jumarie G (2001) Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos
Solitons Fract 12:2577–2587

Jumarie G (2005a) On the solution of the stochastic differential equation of exponential growth driven by
fractional Brownian motion. Appl Math Lett 18:817–826

Jumarie G (2005b) On the representation of fractional Brownian motion as an integral with respect to (dt)a .
Appl Math Lett 18:739–748

Jumarie G (2009) Laplace’s transform of fractional order via Mittag–Leffler function and modified Riemann–
Liouville derivative. Appl Math Lett 22:1659–1664

Kolwankar KM, Gangal AD (1996) Fractional differentiability of nowhere differentiable functions and dimen-
sions. Chaos 6:505–513

Kolwankar KM, Gangal AD (1997) Hölder exponents of irregular signals and local fractional derivatives.
Pramana J Phys 48:49–68

Kolwankar KM, Gangal AD (1998) Local fractional Fokker–Planck equation. Phys Rev Lett 80:214–217
Kumar D, Singh J, Mehmet HB, Bulut H (2017a) An effictive computational approach to local fractional

telegraph equations. Nonlinear Sci Lett A 8(2):200–206
Kumar D, Singh J, BaleanuD (2017b) A hybrid computational approach for Klein–Gordon equations on Canto

sets. Nonlinnear Dyn 87:511–517
Liao SJ (1995) An approximate solution technique not depending on small parameters: a special example. Int

J Non-Linear Mech 30:371–380
Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. CRC Press, Boca Raton
Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl

Math Comput 169(2):1186–1194
Liao SJ (2010)An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun

Nonlinear Sci Numer Simul 362:2003–2016
Liu K, Hu RJ, Cattani C, Xie GN, Yang XJ, Zhao Y (2014) Local fractional Z-transforms with applications

to signals on Cantor sets. Abstr Appl Anal 2013:1–6 (article ID: 638648)
Losada J, Nieto JJ (2015) Properties of the new fractional derivative without singular kernel. Progr Fract Differ

Appl 2(1):87–92
Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM

Rev 10:422–437
Oldham KB, Spanier J (1974) The fractional calculus. Acadamic Press, New York
Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving frac-

tional order Riccati equations using ANN and SQP. Appl Math Model 39(10–11):3075–3093
Raja MAZ, Samar R, Manzar MA, Shah SM (2016) Design of unsupervised fractional neural network model

optimized with interior point algorithm for solving Bagley–Torvik equation. Math Compute Simul.
https://doi.org/10.1016/j.matcom.2016.08.002

Singh J, Kumar D, Nieto JJ (2016) A reliable algorithm for local fractional Tricomi equation arising in fractal
transonic flow. Entropy 18:1–8

Srivastava HM, Golmankhaneh AK, Baleanu D, Yang XJ (2014) Local fractional Sumudu transform with
application to IVPs on Cantor sets. Abstr Appl Anal 2014:1–7 (article ID: 176395)

Wang SQ, Yang YJ, Kamil HJ (2014) Local fractional function decomposition method for solving inhomo-
geneous wave equations with local fractional derivative. Abstr Appl Anal 2014(2014):1–7

Yan SP, Jafari H, Jassim HK (2014) Local fractional Adomian decomposition and function decomposition
methods for Laplace equation within local fractional operators. Adv Math Phys 2014(2014):1–8

Yang XJ (2011a) Local fractional fucntional analysis and its applications. Asian Academic, Hong Kong

123

https://doi.org/10.1002/mma.4756
https://doi.org/10.1016/j.matcom.2016.08.002


65 Page 22 of 22 S. Maitama, W. Zhao

Yang XJ (2011b) Local fractional Laplace transform based on the local fractional calculus. In: Shen G,
Huang X (eds) Advanced Research on computer science and information engineering (communications
in computer and information science, vol 153. Springer, Berlin

Yang XJ (2012) Advance local fractional calculus and its applications. World Science Publisher, New York
Yang XJ, Kang Z, Liu C (2010) Local fractional Fourier’s transform based on local fractional calculus. In:

The 2010 ICECE 2010. IEEE Computer Society, pp 1242–1245
Yang XJ, Baleanu D, ZhongWP (2013a) Approximate solutions for diffusion equations on Cantor space-time.

Proc Rom Acad Ser A 14:127–133
Yang XJ, Srivastava HM, He JH, Baleanu D (2013b) Cantor-type cylindrical-coordinate fractional derivatives.

Proc Rom Acad Ser A 14:127–133
Yang XJ, Baleanu D, Yang XJ (2013c) A local fractional variational iteration method for Laplace equation

within local fractional operators. Abstr Appl Anal 2013:1–6 (article ID: 202650)
Yang AM, Zhang YZ, Cattani C, Xie GN, Rashidi MM, Zhou YJ, Yang XJ (2014a) Application of local

fractional series expansion method to solve Klein–Gordon equations on Cantor sets. Abstr Appl Anal
2014:1–7

Yang XJ, Hristov J, Srivastava HM, Ahmad B (2014b) Modelling fractal waves on shallow water surfaces via
local fractional Korteweg–de Vries equation. Abstr Appl Anal 2013:1–10 (article ID: 278672)

Yang AM, Li J, Srivastava HM, Xie GN, Yang XJ (2014c) Local fractional variational iteration method for
solving linear partial differential equationwith local fractional derivative. DiscreteDynNat Soc 2014:1–8
(article ID: 365981)

Yang XJ, Srivastava HM, Cattani C (2015a) Local fractional homotopy perturbation method for solving
fractional partial differential equations arising in mathematical physics. Rom Rep Phys 67:752–761

Yang XJ, Baleanu D, Srivastava HM (2015b) Local fractional integral transforms and their applications.
Academic Press, New York

Yang XJ, Tenreiro JAM, Baleanu D, Gao F (2016a) A new numerical technique for local fractional diffusion
equation in fractal heat transfer. J Nonlinear Sci Appl 9:5621–5628

Yang XJ, Machado JT, Baleanu D, Cattani C (2016b) On exact traveling-wave solutions for local fractional
Korteweg–de Vries equation. Chaos Interdiscip J Nonlinear Sci 26(8):084312

Yang XJ, Machado JA, Hristov J (2016c) Nonlinear dynamics for local fractional Burgers’ equation arising in
fractal flow. Nonlinear Dyn 84(1):3–7

Yang XJ, Machado JT, Cattani C, Gao F (2017a) On a fractal LC-electric circuit modeled by local fractional
calculus. Commun Nonlinear Sci Numer Simul 47:200–206

Yang XJ, Machado JAT, Baleanu D (2017b) Exact traveling-wave solution for local fractional Boussinesq
equation in fractal domain. Fractals 25(4):1740006, 1-7

YangXJ,GaoF, SrivastavaHM(2017c)Exact travellingwave solutions for the local fractional two-dimensional
Burgers-type equations. Comput Math Appl 73(2):203–210

Yang XJ, Machado JA, Nieto JJ (2017d) A new family of the local fractional PDEs. Fundam Inform 151(1–
4):63–75

Yang XJ, Gao F, Srivastava HM (2018) A new computational approach for solving nonlinear local fractional
PDEs. J Comput Appli Math 339:285–296

Zhang Y, Cattani C, Yang XJ (2015) Local fractional homotopy perturbation method for solving non-
homogeneous heat conduction equations in fractal domains. Entropy 17:6753–6764

ZhaoD, Singh J, KumarD, Rathore S, YangXJ (2017)An efficient computational technique for local fractional
heat conduction equation in fractal media. J Nonlinear Sci Appl 10:1478–1486

Ziane D, Baleanu D, Belghaba K, Cherif M (2017) Local fractional Sumudu decomposition method for linear
partial differential equations with local fractional derivative. J King Saud Univ Sci. https://doi.org/10.
1016/j.jksus.2017.05.002

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.jksus.2017.05.002
https://doi.org/10.1016/j.jksus.2017.05.002

	Local fractional Laplace homotopy analysis method for solving non-differentiable wave equations on Cantor sets
	Abstract
	1 Introduction
	2 Preliminaries of local fractional calculus
	3 Basic idea of homotopy analysis method
	4 Local fractional Laplace homotopy analysis method
	5 Applications of the LFLHAM
	6 Conclusion
	Acknowledgements
	References




