
Computational and Applied Mathematics (2019) 38:54
https://doi.org/10.1007/s40314-019-0822-8

Numerical simulation of Swift–Hohenberg equation by the
fourth-order compact scheme

Jian Su1 ·Weiwei Fang2 ·Qian Yu1 · Yibao Li1

Received: 9 October 2018 / Revised: 28 January 2019 / Accepted: 18 February 2019 /
Published online: 16 March 2019
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Abstract
A high-order accurate compact scheme for the Swift–Hohenberg equation is presented in
this paper. We discretize the Swift–Hohenberg equation by a fourth-order compact finite
difference formula in space and a backward differentiation with second-order accurate in
time, respectively. A stabilized splitting scheme is presented and a Newton-type iterative
method is introduced to deal with the nonlinear term. Therefore, a large time step can be
used. The resulting discrete systems are solved by a fast and efficient nonlinear multigrid
solver. Adaptive time step method is implemented to reduce the computational cost. Various
numerical simulations including a convergence test of the proposed scheme, comparisonwith
second-order scheme, a test of the stability of the proposed scheme, extension of the adaptive
time step method, comparison with the phase field crystal equation, a study of the effect
of computational domain and boundary condition, and an evolution of Swift–Hohenberg
equation in three dimensions, are performed to demonstrate the efficiency of our proposed
method.

Keywords Swift–Hohenberg equation · Fourth-order compact scheme · Nonlinear
stabilized splitting scheme · Adaptive time step method

Mathematics Subject Classification 65M06 · 65M55 · 35G20

1 Introduction

The Swift–Hohenberg equation is an evolutive nonlinear equation with four order derivatives
in space. It was first proposed by J. B. Swift and P. C. Hohenberg to study the effects of
thermal fluctuations on the Rayleigh–Bénard instability Swift and Hohenberg (1977). The
Swift–Hohenberg equation is derived from the following free energy functional:
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E(φ) =
∫

Ω

(
1

4
φ4 + 1 − ε

2
φ2 − |∇φ|2 + 1

2
(�φ)2

)
dx,

where the phase field φ(x, t) approximates the number density of atoms in a binary mixture
in the domain Ω = Πd

i=1(0, Li ) ⊂ R
d (d = 2 or 3). � is the Laplacian operator and the

temperature-related parameter ε is constant. For simplicity of exposition, here we consider
the periodic boundary condition for the density field. Then, under the constrained gradient
flow in a L2 space, the Swift–Hohenberg equation can be written by:

∂φ

∂t
(x, t) = − δE

δφ
= −φ3(x, t) − (1 − ε)φ(x, t)

− 2�φ(x, t) − �2φ(x, t), x ∈ Ω, 0 < t ≤ T , (1)

where δE/δφ denotes the variational derivative of E with respect to the variation φ. Taking
the derivative of E(φ) with respect to t , we obtain

d

dt
E(φ) =

∫
Ω

(φ3φt + (1 − ε)φφt − 2∇φ · ∇φt + �φ�φt )dx

=
∫

Ω

− δE
δφ

φtdx =
∫

Ω

−φ2
t dx,

which leads to the inequality,

d

dt
E(φ) ≤ 0.

The review by Cross and Greenside (2009) outlined a wide range of applications of the
Swift–Hohenberg equation including but not limited to biology, sociology, crystallography,
and of course fluid. As the Swift–Hohenberg equation is a nonlinear partial differential
equation, we can not generally obtain the analytic solution for the arbitrary initial conditions.
Therefore, it is very important to develop an accurate and efficient numerical scheme to solve
the Swift–Hohenberg equation.

Up to now, there are many schemes proposed to study the Swift–Hohenberg equation (Xi
et al. 1991; Viñals et al. 1991; Elder et al. 1992; Christov et al. 1997; Staliunas and Sánchez-
Morcillo 1998; Lloyd et al. 2008; Cheng and Warren 2008; Zhao et al. 2016a, b; Yang and
Han 2017; Li et al. 2017; Abbaszadeh et al. 2019; Nikolay 2016; Dehghan and Abbaszadeh
2017; Christov and Pontes 2002; Gomez and Nogueira 2012; Lee 2017). A challenge is how
to increase the stability and the accuracy of the numerical approximation for the solution.
For instance, to ensure the stability of the discrete numerical scheme, the time step size (�t)
in Euler method is required �t ∼ O(h4), where h is the mesh size in space. Therefore,
the Euler method for the Swift–Hohenberg equation is very expensive to calculate the long
time interval in practice (Cheng andWarren 2008; Gomez and Nogueira 2012). Christov and
Pontes (2002) developed a computationally efficient second order in time implicit difference
scheme which allowed strict implementation of a discrete approximation of the Lyapunov
functional. Gomez and Nogueira (2012) proposed a new fully discrete algorithm for the
Swift–Hohenberg equation which inherits the nonlinear stability property of the continuum
equation irrespective of the time step. Lee presented semi-analytical Fourier spectral methods
based on the operator splitting method for solving the Swift–Hohenberg equation to achieve
high-order time accuracy (Lee 2017). However, most of the existing approaches proposed in
the literature are with first-/second-order accurate in time and space. In recent years, high-
order compact difference methods have been developed for simulating the diffusion equation
(Dehghan andMohammadi 2015; Mohammadi and Dehghan 2010; Mohammadi et al. 2009;
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Mohebbi and Dehghan 2010; Zouraris 2018). We are not aware of any results on fourth-order
space and second-order time discretization for the Swift–Hohenberg equation.

This paper is focused on developing the compact finite-difference scheme, which is
second-order accurate in time and fourth-order accurate in space with good stability. An
adaptive time step method is adopted to improve the efficiency of the proposed scheme. This
is motivated by the successful application of the compact finite difference scheme in Cahn–
Hilliard equation (Lee et al. 2014; Li et al. 2016) and the phase field crystal equation (Li and
Kim 2017). A nonlinearly stabilized splitting scheme constructed by the Newton-type itera-
tivemethod is used so that our proposed scheme could allow large time step. Furthermore, the
multigrid technique (Trottenberg et al. 2001; Kim et al. 2004) is added to accelerate the con-
vergence of the resulting linear system. Several numerical examples including a convergence
test of the proposed scheme, comparison with second-order scheme, a test of the stability of
the proposed scheme, extension of the adaptive time step method, comparison with the phase
field crystal equation, a study of the effect of computational domain and boundary condition,
crystal growth in a supercooled liquid, and an evolution of Swift–Hohenberg equation in
three dimensions, will be performed to verify the accuracy, stability and efficiency of our
proposed method.

The remainder of this paper is organized as follows. In Sect. 2, we derive the fourth-order
compact finite difference scheme. Section 3 presents some numerical experiment results.
Finally, a short conclusion is given in Sect. 4.

2 Numerical solution

Let Ω = (0, Lx )× (0, Ly), we denote a discrete computational domain by Ωh = {(xi , y j ) :
xi = (i−0.5)h, y j = ( j−0.5)h, 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny}, where Nx and Ny are positive
even integers and h = Lx/Nx = Ly/Ny is the space size. Let φi j be the approximation of
φ(xi , y j ). We define the 9-point discrete Laplacian operator �c (Lee et al. 2014) as:

�cφi j = 4(φi−1, j + φi+1, j + φi, j−1 + φi, j+1)

6h2

+ φi−1, j−1 + φi−1, j+1 + φi+1, j−1 + φi+1, j+1 − 20φi j

6h2
. (2)

Similarly, the 27-point discrete Laplacian operator in 3-dimensional space (Li et al. 2016) is
defined as:

�cφi jk = [14(φi+1, j,k + φi−1, j,k + φi, j+1,k + φi, j−1,k + φi, j,k+1 + φi, j,k−1)

+ 3(φi+1, j+1,k + φi+1, j−1,k + φi+1, j,k+1 + φi+1, j,k−1 + φi−1, j+1,k + φi−1, j−1,k

+φi−1, j,k+1 + φi−1, j,k−1 + φi, j+1,k+1 + φi, j−1,k−1 + φi, j+1,k−1 + φi, j−1,k+1)

+φi−1, j+1,k+1 + φi−1, j−1,k−1 + φi−1, j+1,k−1 + φi−1, j−1,k+1 + φi+1, j+1,k+1

+φi+1, j−1,k−1 + φi+1, j+1,k−1 + φi+1, j−1,k+1 − 128φi, j,k ]/(30h2). (3)

Then using the Taylor series, we obtain

�φi j =
(

∂2φ

∂x2
+ ∂2φ

∂ y2

)
i j

= �cφi j − h2

12
�2φi j + O(h4), (4)

and

�φi jk =
(

∂2φ

∂x2
+ ∂2φ

∂ y2
+ ∂2φ

∂z2

)
i jk

= �cφi jk − h2

12
�2φi jk + O(h4), (5)
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for two-dimensional and three-dimensional spaces, respectively. Here �2φ = �(�φ) is
the biharmonic operator. Now, we derive the fourth-order spatially accurate compact finite
difference scheme for Swift–Hohenberg equation. Before that, we rewrite Eq. (1) as:

φt = −φ3 − (1 − ε)φ − �κ, (6)

κ = 2φ + �φ. (7)

Here, κ holds the periodic boundary condition, because we assumed this condition for φ. Let
φn and κn be the approximations of φ(·, n�t) and κ(·, n�t), respectively. We can discretize
Eq. (6) as:

φt = −φ3 − (1 − ε)φ − �κ = −φ3 − (1 − ε)φ − �cκ + h2

12
�2κ + O(h4). (8)

Here, Eqs. (4) and (5) are used for two- and three-dimensional space, respectively. By replac-
ing �κ as −φ3 − (1 − ε)φ − φt in Eq. (8), we get:

φt = −φ3 − (1 − ε)φ − �cκ + h2

12
�(−φt − φ3 − (1 − ε)φ) + O(h4)

= −φ3 − (1 − ε)φ − �cκ + h2

12
�c(−φt − φ3 − (1 − ε)φ) + O(h4). (9)

To obtain a second-order accuracy in time scheme, we use a backward differentiation formula
time for Eq. (9):

3φn+1 − 4φn + φn−1

2�t
= − (φn+1)3 − (1 − ε)φn+1 − �κn+1

−h2

12
�c

(3φn+1 − 4φn + φn−1

2�t
+ (φn+1)3 + (1 − ε)φn+1

)
+ O(�t2 + h4), (10)

with φ−1 = φ0. It is difficult to solve �c(φ
n+1)3, which is a Laplacian for the nonlinear

term (φn+1)3. Therefore, we replace �c(φ
n+1)3 by �c(φ̃

n+1)3, retaining the second-order
accuracy in time:

3φn+1 − 4φn + φn−1

2�t
= −(φn+1)3 − (1 − ε)φn+1 − �κn+1

−h2

12
�c

(3φn+1 − 4φn + φn−1

2�t
+ (φ̃n+1)3 + (1 − ε)φn+1

)
+ O(�t2 + h4). (11)

Here, the one-time value φ̃n+1 is calculated using an extrapolation from the previous two
values, i.e., φ̃n+1 = 2φn − φn−1.

To obtain a high-order stable scheme, we use an implicit scheme for Eq. (7) as:

κn+1 = 2φ̃n+1 + �cφ
n+1 − h2

12
�2φn+1 + O(h4)

= 2φ̃n+1 + �cφ
n+1 − h2

12
�c(κ

n+1 − 2φ̃n+1) + O(h4). (12)
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Finally, our proposed schemes are written as:

3φn+1 − 4φn + φn−1

2�t
= −(φn+1)3 − (1 − ε)φn+1 − �κn+1

− h2

12
�c

(3φn+1 − 4φn + φn−1

2�t
+ (φ̃n+1)3 + (1 − ε)φn+1

)
, (13)

κn+1 = 2φ̃n+1 + �cφ
n+1 − h2

12
�c(κ

n+1 − 2φ̃n+1). (14)

We use a nonlinear multigrid method (Trottenberg et al. 2001; Kim et al. 2004) to solve the
nonlinear discrete system (13, 14) at the implicit time level. Since (φn+1)3 is nonlinear with
respect to φn+1, we use the Newton-type iterative method (Li and Kim 2017) to linearize
(φn+1)3. Despite it being difficult to exactly prove that our proposed method has a good
stability property, the results of the numerical tests presented in Sect. 3 indicate that our
proposed scheme allows much larger time steps.

3 Numerical results

3.1 Convergence test

We verify the convergence predicted by our proposed method by evolving the same initial
condition as a function of time with increasingly finer values for both time spacing and grid
spacing. The initial profile of the density field is given by:

φ(x, y, 0) = 0.01(cos(πx) + cos(π y) + cos(0.25πx) + cos(0.25π y)). (15)

on the domain (0, 50) × (0, 50). The simulation is evolved to time t = 100 with ε = 0.2. To
obtain the convergence rate for temporal discretization, we consider the same test by fixing
the space step size as h = 1 and choosing a set of decreasing time steps �t = 0.25, 0.125,
. . ., and 0.078125. Since there is no closed-form analytical solution for this problem, we
use the Cauchy Error to measure the error without knowing the exact solution. The Cauchy
error of a grid is defined as the difference between the numerical solutions obtained using the
time step �t and the next finer time space �t/2. To obtain the convergence rate for spatial
discretization, we use the grid sizes as 16 × 16, 32 × 32, . . ., and 512 × 512. The time step
�t = 2h2 is fixed.We define theCauchy error between the numerical solutionφh and the next

finer grid cells covering it to be: e
h/ h

2
i j = φh

i j − (φ
h/2
2i,2 j +φ

h/2
2i−1,2 j +φ

h/2
2i,2 j−1 +φ

h/2
2i,2 j )/4. The

errors of temporal and spatial refinements are given Tables 1 and 2, respectively. The results
indicate the convergence of the results under spatial and temporal refinements is evident.

To demonstrate the convergence rate, we show the fitting plots together in Fig. 1a, b. The
data define a straight line with slopes 2.048 and 3.922, respectively. From these results, we

Table 1 L2 errors with various time steps

�t 0.25–0.125 0.125–0.0625 0.0625–0.03125 0.03125–0.015625 0.015625–0.078125

Error 7.984E−2 1.717E−2 3.522E−3 1.065E−3 2.643E−4
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Table 2 L2 errors with various mesh grids

h 162–322 322–642 642–1282 1282–2562 2562–5122

Error 7.146E−1 4.027E−2 2.503E−3 9.984E−5 1.188E−5

10-2 10-1 100
10-4

10-3

10-2

10-1

Numerical data
Fitting plot

(a)

100
10-5

10-4

10-3

10-2

10-1

100

Numerical data
Fitting plot

(b)

Fig. 1 a The L2 normal errors of temporal refinement. b The L2 normal errors of spatial refinement

can see that our proposed numerical scheme is second-order accurate with respect to time
and fourth-order accurate with respect to space.

3.2 Comparison with second-order scheme

It is not difficult to present a second-order accurate (in time and space) finite-difference
nonlinear scheme as:

3φn+1 − 4φn + φn−1

2�t
= −(φn+1)3 − (1 − ε)φn+1 − �cκ

n+1, (16)

κn+1 = 2φ̃n+1 + �cφ
n+1. (17)

There are other well-established methods (Gomez and Nogueira 2012), which are second-
order accurate in time and space. The performance of our time discretization, that is, backward
differentiation, is with second-order accuracy which has been widely superior to numerical
simulation. For this reason, we will focus on the space discretization method. In this section,
we will compare the performance of our proposed numerical scheme with the second-order
schemes (16) and (17). The initial condition is set as:

φ(x, y, 0) = 0.1 + 0.02 cos

(
πx)

100

)
sin

( π y

100

)
+ 0.05 sin

(πx

20

)
cos

(π y

20

)
. (18)

on the domain (0, 100) × (0, 100). The calculation is run until t = 50 with the time step
�t = 1 and ε = 0.2.

Figure 2a, b show the solutions obtained by our proposed fourth-order scheme and second-
order scheme, respectively. From left to right, they are the results obtained with the grid sizes
64× 64, 128× 128, 256× 256, and 512× 512, respectively. From these results, we can find
that to get similar numerical solutions obtained by fourth-order scheme, more mesh grids
should be used in the second-order scheme.
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Fig. 2 The solutions with our proposed fourth-order scheme (a) and second-order scheme (b). From left to
right, the grid sizes 64 × 64, 128 × 128, 256 × 256, and 512 × 512 are used, respectively

Table 3 Average CPU times (in s) versus the number of mesh grid (Nx Ny )

Mesh size 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

Second-order scheme: CPU time 0.0069 0.0421 0.3317 1.3669 5.7586

Fourth-order scheme: CPU time 0.0084 0.0505 0.3513 1.5610 5.8257

Here, the averaged CPU time is defined as the total CPU time over all time iterations

Fig. 3 Logarithm of averaged
CPU time versus number of mesh
gird (Nx Ny ) in multigrid solver

103 104 105 106
10-3

10-2

10-1

100

101

Numerical data: Second order scheme
Numerical data: Fourth order scheme
Fitting plot: Second order scheme
Fitting plot: Fourth order scheme

Table 3 shows the averaged CPU times versus the number of mesh grid (Nx Ny). The
CPU time is recorded on a 3.4 GHz PC with 16G main memory. The result suggests that the
difference of used CPU time for the two mentioned schemes is not significant.

The straight fitting plot shown in Fig. 3 implies that the multigrid solver achieves the
O(Nx Ny) efficiency for the mentioned two cases.

3.3 Stability of the proposed scheme

In this section, wewill examine the stability of our proposed schemewith the initial condition
φ(x, y, 0) = 0.05 + 0.05rand(x, y) on a square domain (0, 128) × (0, 128) with the mesh
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Fig. 4 Evolution of the Swift–Hohenberg equation with much larger time step �t = 100

grid 128 × 128, where rand() is a random number between − 1 and 1. Figure 4 shows the
evolution of the Swift–Hohenberg equation with much larger time step �t = 100. Here,
ε = 0.2 is used. As can be seen, the numerical solutions do not blow up and the energy is
decreasing, which confirms that our proposed scheme can use large time steps. However,
although a larger time step can be used, the evolution is less accurate, i.e., the energy with
�t = 100 is increasing for some time (see Fig. 4). To verify the evolving patterns with the
small time steps, a set of different time steps�t = 0.5, 1, 2, and 4 are considered. Figure 5a–d
shows the numerical solutions with different time steps at time t = 2000. Figure 5e shows
energy evolutions with four different time steps. The accuracy is observed to increase as the
time step is decreased, while the difference tends to be obvious for large time steps (see the
box region in Fig. 5). Therefore, a high accurate numerical solution would require a smaller
time step. While, the stability of numerical scheme is useful. Owning to the good stability,
we can develop an efficient adaptive time step algorithm to reduce the computational cost.

3.4 Adaptive time stepmethod for the Swift–Hohenberg equation

Observing all the cases in Sect. 3.3, we can see that when the early-time dynamics are cap-
tured with a small time step, the accuracy of the numerical results will be better compared
with those obtained with larger time steps. On the other hand, because the long-time sim-
ulation converges to the steady-state solution, a large time step should be used to reduce
the computational cost. The use of a large time step is possible because of the good stabil-
ity of our proposed scheme. This suggests that performance of our proposed scheme could
be enhanced by using an adaptive time step. We previously proposed a similar method (Li
et al. 2017), which has a computationally efficient adaptive time step for the Cahn–Hilliard
equation. The adaptive time-step strategy is realized using the following procedure. Set the
minimum and maximum time step sizes, �tmin and �tmax, respectively. Let �t0 be an initial
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(a) (b) (c) (d)

(e)

Fig. 5 a–d Numerical solutions with different time steps at time t = 2000. e Energy evolutions with four
different time steps

time step (here we set �t0 = �tmin). Then, for n = 1, 2, . . . , we define the next time step
to be

�tn =
{

�tmin, if t < t0,

min
[
max

(
λ

‖φn−φn−1‖∞ ,�tmin

)
,�tmax

]
, otherwise.

(19)

where ‖φn − φn−1‖∞ is the maximum value of ‖φn − φn−1‖ and λ is a tolerance to choose
a suitable time step. Next, we study the effectiveness of the adaptive time step strategy by
comparing the numerical solutions with uniform time step and adaptive time step. The initial
condition is the same as those in Sect. 3.3. In this test, we chose t0 = 100, �tmin = 0.5,
�tmax = 50, and λ = 0.4. The simulation is run up to T = 20,000. To compare the results
obtained by the adaptive time step,we run the computationwith a uniform time step�t = 0.5.

Figure 6 shows the comparison of the numerical results obtained using uniform time step
and adaptive time step.We notice that the density fields obtained by two cases are qualitatively
similar. For the CPU times, the taken CPU times are 148.95 min and 10.05 min for uniform
time step and adaptive time step, respectively, which implies that the computational cost can
be significantly reduced using the adaptive time step.

3.5 Comparison with the phase field crystal equation

The phase field crystal model (PFC), which is related to the dynamic density functional
theory of freezing (Elder and Grant 2004; Marconi and Tarazona 1999), has an important
advantage over many atomistic models in that the characteristic time is determined by the
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Fig. 6 Energy evolutions with uniform time step and adaptive time step. The inscribed small figures are the
density field φ computed with uniform time step (top) and adaptive time step (bottom)

Fig. 7 The density field at time t = 1000 with two different values of φave for Eqs. (1) and (20). a, b Results
obtained by Eq. (20). c, d Results obtained by Eq. (1)

diffusion time scale and not by that of the atomic vibrations. The phase field crystal model
can be derived from the mass-constrained gradient flow in a H−1 Hilbert space of a free
energy functional of the Swift–Hohenberg type as:

∂φ

∂t
= �

δE
δφ

= �(φ3 + (1 − ε)φ + 2�φ + �2φ). (20)

There are many schemes proposed to study the phase field crystal equation (Cheng and
Warren 2008; Wise et al. 2009; Lee et al. 2015; Vignal et al. 2015; Clayton and Knap 2016;
Li et al. 2019), since both Eqs. (1) and (20) are derived from the same energy functional in the
different space, wewill compare the dynamics of these two equations. Equation (20) is solved
by a fourth-order spatially accurate and practically stable compact finite-difference scheme
(Li and Kim 2017). The same initial condition φ(x, y, 0) = φave +0.05rand(x, y) is used on
a square domain (0, 128) × (0, 128) with a mesh grid 256× 256. The time step �t = 1 and
ε = 0.2 are chosen. Since the phase field crystal model satisfies mass conservation, we can
consider this problem by performing a numerical experiment with different initial conditions
φave = 0.05 and 0.15. The density field at time t = 1000 with two different values of φave

for Eqs. (1) and (20) is shown in Fig. 7. The results show that, depending on the value of the
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Fig. 8 Evolution of a mass(
∑ ∑

φn/
∑ ∑

φ0) and b energy using φave for Eqs. (1) and (20)

(a) (b) (c)

Fig. 9 The density field at time t = 1000 with different values of ε. Here, only Eq. (1) is considered

initial average φave, different patterns for Eq. (20) are produced, e.g., hexagonal (Fig. 7a) and
striped (Fig. 7b). While as can be seen in Fig. 7c, d, Eq. (1) produces the striped patterns.

Figure 8a, b show the time evolution of the scaled total energy mass (
∑ ∑

φn/
∑ ∑

φ0)
and energy, respectively. The discrete mass for Eq. (20) is observed to be conserved and
Eq. (1) does not hold the mass conservation. The discrete energies for Eqs. (1) and (20) are
observed to be non-increasing from one time step to the next conserved to be some constant
energy level. Furthermore, we can see that by Eq. (1), the energy is decreasing faster and
conserved at a lower energy level compared to using Eq. (20).

Figure 9 shows the density field at time t = 1000 with different values of ε = 0.01, 0.1,
and 0.5. Here, only Eq. (1) is considered. The same initial conditions are used as the above
test. Here, φave = 0.05 is fixed. The results show that, depending on the value of parameter
ε, striped and hexagonal patterns can be produced.

3.6 Effect of computational domain and boundary conditions

The length of the chosen computational domain andboundary condition can affect the patterns
of density field. To investigate the effect of computational domain and boundary condition
on pattern formation, we simulate our scheme with the same random initial conditions on
a square domain Ω = (0, 100) × (0, 100) and Ω = (0, 200) × (0, 200). The parameters
�t = 1, ε = 0.2, and h = 100/64 are used. Here,we also consider the periodic andNeumann
boundary conditions. Note that using the ghost cells, different boundary conditions in the
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Fig. 10 a, bThe density field with periodic boundary condition. c, d The density field with Neumann boundary
condition. From top to bottom, they are the results at t = 1000 and t = 3000, respectively

finite difference framework are easily satisfied. Figure 10 shows the density fieldwith periodic
boundary condition andNeumann boundary condition. The results suggest that as the domain
size increases, we have more complex striped pattern and need more computational time to
get a conserved result. Furthermore, we can see that with the periodic boundary condition,
the phases interact across the boundary. And with the Neumann boundary, the phases are
perpendicular to the domain boundary.

3.7 Crystal growth in a supercooled liquid

Next, we consider the growth of a polycrystal in a supercooled liquid. Similar numerical
examples can be found in Li and Kim (2017) and Elder and Grant (2004). We start our
simulation with a constant density field φave = 0.285 on a domain Ω = (0, 500) × (0, 500)
with a 512 × 512 mesh grid. As seeds for nucleation, we place three random perturbations
on three small square patches with the following expression:

φ(x, y) = φave + Arand(x, y).

Here A is amplitude. The centers of four small square patches are located at (375, 125),
(375, 375), and (125, 250) and the length of each square is 10. The amplitudes are chosen
as A = 0.1, 0.2, and 0.4 in turn. The parameters are set to be �t = 1 and ε = 0.25. In this
test, the boundary conditions are chosen as be homogeneous Neumann boundaries for φ and
κ . Figure 11 shows snapshots of the crystal microstructure at several times. Three different
crystal grains grow and eventually become large enough to form grain boundaries.

3.8 Swift–Hohenberg equation in three dimensions

This example deals with the numerical simulation of Swift–Hohenberg equation in three
dimensions. The initial condition is chosen as φ(x, y, z, 0) = 0.05 + 0.05rand(x, y, z) on
the computational domain (0, 128)×(0, 128)×(0, 128). Here,we assume periodic boundary
conditions in all directions. The computation is run up to t = 1000 with the time step�t = 1.
The parameters ε = 0.2 and h = 1 are used. Figure 12 shows the time evolution of the energy
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Fig. 11 Growth of a polycrystal in a supercooled liquid. The computational time is listed below each figure

functional and the density field. It can be observed that our proposed scheme can work well
in three dimensions. The energy decreases at all times, which suggests that our method has
a good stability property.

4 Conclusions

In this paper, we presented a high-order accurate compact scheme for the Swift–Hohenberg
equation. We discretized this equation by a fourth-order compact finite-difference formula
in space and a backward differentiation with second-order accurate in time, respectively. A
stabilized splitting schemewas presented and aNewton-type iterativemethodwas introduced
to deal with the nonlinear term. The resulting discrete systems were solved by a fast and
efficient nonlinear multigrid solver. Adaptive time step method was implemented to reduce

123



54 Page 14 of 15 J. Su et al.

Fig. 12 Evolution of Swift–Hohenberg equation in three dimensions

the computational cost. Various numerical simulations including a convergence test of the
proposed scheme, comparisonwith second-order scheme, a test of the stability of the proposed
scheme, extension of the adaptive time step method, comparison with the phase field crystal
equation, a study of the effect of computational domain and boundary condition, and an
evolution of Swift–Hohenberg equation in three dimensions, were performed to demonstrate
the efficiency of our proposed method.
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