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Abstract
The physical features of the equatorial envelope Rossby waves including with complete 
Coriolis force and dissipation are investigated analytically. Staring with a potential vor-
ticity equation, the wave amplitude evolution of equatorial envelope Rossby waves is 
described as a nonlinear Schrödinger equation by employing multiple scale analysis and 
perturbation expansions. The equation is more suitable for describing envelope Rossby sol-
itary waves when the horizontal component of Coriolis force is stronger near the equator. 
Then, based on the Jacobi elliptic function expansion method and trial function method, 
the classical Rossby solitary wave solution and the corresponding stream function of the 
envelope Rossby solitary waves are obtained, respectively. With the help of these solutions, 
the effect of dissipation and the horizontal component of Coriolis parameter are discussed 
in detail by graphical presentations. The results reveal the effect of the horizontal compo-
nent of Coriolis force and dissipation on the classical Rossby solitary waves.

Keywords Complete Coriolis force · Rossby solitary waves · Nonlinear Schrödinger 
equation · Jacobi elliptic function methods · The dissipation effect

Mathematics Subject Classification 76M45

1 Introduction

In recent years, equatorial Rossby wave theory has been an important research subject in 
the atmospheric and oceanic dynamics (Boyd 2018; Ching et al. 2015; Puy et al. 2016). 
In 1834, Russell first observed solitary wave. Since then, Rossby waves have attracted 
much more attention as a branch of solitary waves, and many mathematical models are 
constructed to study the generation and evolution of Rossby solitary waves, such as the 
Korteweg-de Vries (KdV), the modified KdV (mKdV) equation, the Zakharov–Kuznetsov 
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equation, the nonlinear Schrödinger equation (NLS), and so on. Meanwhile, some natural 
phenomena related to Rossby waves were explained better with the help of these math-
ematical models.

The KdV equation was firstly obtained by Long (1964) in barotropic fluid, which is 
a famous soliton wave equation. Later, Redekopp (1977) discussed the general theory of 
solitary waves in zonal planetary shear flow and obtained mKdV equation. After these pio-
neer work, the classical Rossby solitary waves theory was formed step by step (Boyd 1980; 
Wadati 1973; Yang et al. 2014). However, the disadvantages of the KdV-type solitons must 
be satisfied the long-wave approximation. For the envelope Rossby solitary waves depicted 
by the NLS equation, it is not need to satisfy the long-wave approximation. Therefore, it is 
more appropriate to describe the Rossby waves contrast to the KdV or mKdV solitary wave 
models. The equation was firstly obtained by Benney (1979) in atmospheric dynamics for 
describing the envelope Rossby solitary waves. Then, Luo (1991) used the NLS equation 
to explain atmospheric vortex pair blocking in the mid-high latitudes. Tan and Boyd (2000) 
derived the dissipative NLS equation and studied the effects of forcing and dissipation on 
the collision interaction of two envelope Rossby solitary waves. Demiray (2003) sought a 
traveling wave solution to the dissipative NLS equation by using of the hyperbolic tangent 
method. Barletti et al. (2018) used the Hamiltonian Boundary Value Methods for solving 
the NLS equation. Fu et al. (2018) derived the time–space fractional (2 + 1)-dimensional 
NLS equation to describe the envelope gravity waves by using the multiple scale and 
obtained the solution of the equation. Recently, a new ZK-BO equation and ZK–ILW equa-
tion are derived to describe the evolution of Rossby solitary waves by Yang et al. (2018) 
and Guo et  al. (2018). However, looking at the above results, none of them considered 
the effects of the horizontal component of Coriolis parameter. It is discarded in the usual 
shallow water equation. The simplifications are known as the ‘traditional approximation’ 
which involves the neglect of the locally horizontal components of the Earth’s rotation vec-
tor (Hua et al. 1997).

For the traditional approximation, it is valid when the vertical length scales are small 
compared with the horizontal length scales. However, it becomes increasingly controver-
sial questions from the dynamical perspective (Kasahara 2003; Philips 1968; Veronis 1968; 
Wangsness 1970) and many researchers indicated that the horizontal component of Corio-
lis parameter neglected has significant effects under the specific circumstances (Raymond 
2000). Meanwhile, White and Bromley (1995) gave a set of “quasi-hydrostatic” mod-
els and examined the importance of the cosine Coriolis terms. They pointed out that the 
cosine Coriolis terms are not neglected in planetary-scale motion and in tropical synoptic-
scale motion. Dellar and Salmon (2005) derived a conserved potential vorticity equation 
including with complete Coriolis force by variational method. In 2010, Stewart and Dellar 
(2010) extended this work and described the flow of multiple superposed layers of invis-
cid, incompressible fluids in a rotating frame. Stewart and Dellar (2012) investigated the 
behavior of linear plane waves with the complete Coriolis force in multilayer shallow water 
equations. Recently, Lu et  al. (2018) constructed time-fractional Boussinesq equation to 
describe Rossby solitary waves from the quasi-geostrophic vorticity equation with dissipa-
tion and complete Coriolis force in stratified fluid.

On the other hand, the solutions of solitary wave models have been extensively investigated 
and many powerful methods have been proposed to solve nonlinear partial differential equa-
tions; for example, traveling wave solutions (Zayed and Gepreel 2009), Jacobi elliptic function 
expansion methods (Liu et al. 2001; Liu and Fan 2005), Bäcklund transformations (Quispel 
et  al. 1984), trial function methods (Belytschko et  al. 1994), homotopy perturbation meth-
ods (He 2003), new homotopy perturbation methods (Biazar and Eslami 2013; Eslami 2014; 
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Eslami and Mirzazadeh 2014), sine–cosine expansion methods (Triki and Wazwaz 2011, 
2014), and so on. In the present paper, we give asymptotic solutions of the new NLS equation 
including with complete Coriolis force and dissipation by using Jacobi elliptic function expan-
sion methods and trial function methods.

Considering all of the above discussions, this paper is organized as follows. From con-
served potential vorticity equation including with complete Coriolis force and dissipation, 
we derive a NLS equation by multiple scale analysis and perturbation expansions in Sect. 2. 
In Sect. 3, the classical Rossby solitary wave solution and the stream function of the enve-
lope Rossby solitary waves are obtained by using Jacobi elliptic function expansion methods 
and trial function methods, respectively. Then, graphical presentations are presented, and the 
effects of the dissipation and the horizontal component of Coriolis parameter are discussed. 
Finally, some conclusions are given in Sect. 4.

2  Basic mathematical model

Based on the potential vorticity equation near the equator with complete Coriolis force and 
turbulent dissipation, it can be written as follows:

where �(x, y) is the total stream function; f = �(y)y is the vertical component of Coriolis 
parameter; fH is the horizontal component of Coriolis parameter, it is constant; B(x, y) is 
the bottom topography; � is the turbulent dissipation parameter; Q denotes the external 
heating source due to the tropical ocean; ∇2 is the two-dimensional Laplace operator.

The boundary conditions are defined by the following:

Here, y = y1, y = y2 denote the southern and northern edges of the zonal flow.
Introducing the dimensionless as

where dimensionless variables are marked by an asterisk.L0 is the zonal characteristic 
length of the mean zonal flow, and H is a vertical characteristic length, respectively; U0 is 
the characteristic velocity.

Substituting of (3) into (1) and (2) gets

and the boundary conditions of nondimensional form is as follows:

(1)
(

�

�t
−

��

�y

�

�x
+

��

�x

�

�y

)[
�2�

�x2
+

�2�

�y2
+ f − fH

�B

�y

]
= −�∇2� + Q,

(2)
��

�x
= 0, y = y1, y = y2.

(3)

(x, y) = L0(x
∗, y∗), t =

L0

U0

t∗,� = L0U0�
∗,B =

U0H

fHL0
B∗, � =

U0

L2
0

�∙,�0 =
U0

L0
�∗,Q =

U2
0

L2
0

Q∗,

(4)
(

�

�t
−

��

�y

�

�x
+

��

�x

�

�y

)[
�2�

�x2
+

�2�

�y2
+ �(y)y − ��

�B

�y

]
= −�∇2� + Q(x, y, t),

(5)
��

�x
= 0, y = 0, y = 1.
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Here, the subscript asterisks have been dropped for simplicity. �� = H
/
L0

 represents fac-
tors of the aspect ratio. To balance the external source and nonlinearity, we introduce a new 
small parameter �,

Here, � is a small parameter characterizing the weakness of the nonlinearity.
Assuming that the total stream function can be decomposed as follows:

where c0 is a constant, U(s) is the basic flow, and the external source balances the diffusion 
of the basic flow (Caillol and Grimshaw 2008). Substituting of (6) and (7) into (4) yields:

where p(y) = d(�(y)y)

dy
− U

��

, J(A,B) =
�A

�x

�B

�y
−

�A

�y

�B

�x
, Q = −�

dU

dy
.

Introducing the slow time and space variables:

The derivative transformations are as follows:

By adopting the transformation, the Eq. (8) becomes

In Eq. (11), further assumptions are as follows:

(6)�� = ��.

(7)�(x, y, t) = −∫
y

0

[U(s) − c0]ds + ��
�

(x, y, t),

(8)

[
�

�t
+
(
U − c0

) �

�x

]
∇2�

�

+ p(y)
��

�

�x
+ �J(�

�

,∇2�
�

) − ��J

(
�

�

,
�B

�y

)

− �
(
U − c0

) �

�x

(
�B

�y

)
= −�∇2�

�

,

(9)T1 = �t, T2 = �2t;X1 = �x,X2 = �2x.

(10)
�

�t
→

�

�t
+ �

�

�T1
+ �2

�

�T2
;
�

�x
→

�

�x
+ �

�

�X1

+ �2
�

�X2

,

(11)

[(
�

�t
+ �

�

�T1
+ �2

�

�T2

)
+ (U − c0)

(
�

�x
+ �

�

�X1

+ �2
�

�X2

)][
∇2�

�
+ 2�

�2�
�

�x�X1

+ �2

(
�2�

�

�X2

1

+ 2
�2�

�

�x�X2

)

+2�3
�2�

�

�X1�X2

+ �4
�2�

�

�X2

2

]
+ �

[(
�

�x
+ �

�

�X1

+ �2
�

�X2

)
�

�

(
�

�y

)
−

��
�

�y

(
�

�x
+ �

�

�X1

+ �2
�

�X2

)]

×

[
∇2�

�
+ 2�

�2�
�

�x�X1

+ �2

(
�2�

�

�X2

1

+ 2
�2�

�

�x�X2

)
+ 2�3

�2�
�

�X1�X2

+ �4
�2�

�

�X2

2

]
− ��

[(
�

�x
+ �

�

�X1

+�2
�

�X2

)
�

� �

�y

(
�B

�y

)
−

��
�

�y

(
�

�x
+ �

�

�X1

+ �2
�

�X2

)(
�B

�y

)]
+ p(y)

(
�

�x
+ �

�

�X1

+ �2
�

�X2

)
�

�

− �(U − c0)

(
�

�x
+ �

�

�X1

+ �2
�

�X2

)
�B

�y
= −�2�

[
∇2�

�
+ 2�

�2�
�

�x�X1

+ �2

(
�2�

�

�X2

1

+ 2
�2�

�

�x�X2

)

+2�3
�2�

�

�X1�X2

+ �4
�2�

�

�X2

2

]
.

(12)
�B

�y
= �D(y),� = �2�.
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Assuming the disturbance stream function can be expanded as follows:

Substituting of (13) into (11), the lowest order equation is as follows:

Assuming that the solution of Eq. (14) is as follows:

where A is a slowly varying envelope amplitude, k is the zonal wave number, � is the fre-
quency of Rossby waves, and c.c. denotes the complex conjugate of the preceding term.

When U − c0 − c ≠ 0,�0 satisfies the following equation:

where c is the really constant. For the o(�), we get the following:

where FI being defined as follows:

Equation (20) becomes

with c1 = c +
2k2(U−c0−c)

2

p(y)
. By eliminating these secular terms, we get the following:

where

where cg is the group velocity of Rossby wave. Equation (18) then reduces to

(13)
�

�

= �0(x, y, t;X1,X2;T1, T2) + ��1(x, y, t;X1,X2;T1, T2) + �2�2(x, y, t;X1,X2;T1, T2) +⋯

(14)o(�0) ∶
[
�

�t
+ (U − c0)

�

�x

]
∇2�0 + p(y)

��0

�x
= 0.

(15)�0 = A(X1,X2;T1, T2)�0(y)e
i(kx−wt) + c.c.,

(16)�
��

0
+

(
p(y)

U − c0 − c
− k2

)
�0 = 0,

(17)�0(0) = �0(1) = 0,

(18)
[
�

�t
+ (U − c0)

�

�x

]
∇2�1 + p(y)

��1

�x
≡ F1,

(19)�1(0) = �1(1) = 0,

(20)

F1 = −

{[
�

�T1
+
(
U − c0

) �

�X1

]
∇2�0 + p(y)

��0

�X1

+ J
(
�0,∇

2�0

)
+ 2

[
�

�t
+ (U − c0)

�

�x

] �2�0

�x�X1

}
.

(21)

F1 =
p(y)�0

U − c0 − c

(
�A

�T1
+ c1

�A

�X1

)
ei(kx−�t) + ik

(
p(y)

U − c0 − c

)

y

�2
0
A2e2i(kx−�t) + c.c.,

(22)
�A

�T1
+ cg

�A

�X1

= 0,

(23)cg = c +
I1

I
, I1 = ∫

1

0

2k2�2
0
dy, I = ∫

1

0

p(y)�2
0

(U − c0 − c)2
dy,

(24)
[
�

�t
+ (U − c0)

�

�x

]
∇2�1 + p(y)

��1

�x
≡ ikA2Q(y)e2i(kx−�t) + c.c.
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Here, Q(y) =
(

p(y)

U−c0−c

)

y
�2

0
.

Assuming that the solution of Eq. (24) is as follows:

By combining (24) with (25), get

In Eq.  (26),A and B are not two independent variables. For simplification, B will be 
taken into the following forms, namely

For

With

Next, Eq. (29) becomes

where □ for other items related to the e±2i(kx−�t), and e±3i(kx−�t).
Eliminating these secular terms ∫ 1

0

�0

U−c−c0
F2dy = 0, we get the following:

Set

(25)�1 = B
(
X1,X2;T1, T2

)
�1e

2i(kx−�t) + c.c.

(26)
[
�

��

1
− 4k2�1 +

p(y)

U − c − c0
�1

]
B = A2Q(y)

1

2(U − c − c0)
.

(27)�1 = A2�1e
2i(kx−�t) + c.c.

(28)o
(
�2
)
∶

[
�

�t
+
(
U − c0

) �

�x

]
∇2�2 + p(y)

��2

�x
= F2,

(29)

F2 = −

{(
�

�t
+
(
U − c0

) �

�x

)( �2�0

�X2

1

+ 2
�2�0

�x�X2

)
+

(
�

�T1
+
(
U − c0

) �

�X1

)
∇2�1 +

(
�

�T1
+
(
U − c0

) �

�X1

)
2
�2�0

�x�X1

+

(
�

�t
+
(
U − c0

) �

�x

)(
2
�2�1

�x�X1

)
+

(
�

�T2
+
(
U − c0

) �

�X2

)
∇2�0 +

��0

�x

�

�y
∇2�1 +

��0

�x

�

�y

(
2
�2�0

�x�X1

)

+
��0

�X1

�

�y
∇2�0 +

��1

�x

�

�y
∇2�0 −

��0

�y

�

�x
∇2�1 −

��0

�y

�

�x

(
2�

�2�0

�x�X1

)
−

��0

�y

�

�X1

∇2�0 −
��1

�y

�

�x
∇2�0

+p(y)
��1

�X1

+ p(y)
��0

�X2

− �
��0

�x

�

�y
D(y) + �

(
�2�0

�x2
+

�2�0

�y2

)}
.

(30)

F2 =
p(y)�0

U − c − c0

[
�A

�T2
+ c1

�A

�X2

+ ik
U − c − c0

p(y)

(
c + 2cg − 3(U − c0)

) �2A
�X2

1

+ ik�
U − c − c0

p(y)
D�(y)A − �A

]
e
i(kx−wt)

− ik|A|2A
[
�0

(
���

1
− 4k2�1

)�
+ 2��

0

(
���

1
− 4k2�1

)
+ 2�1

(
���

0
− k2�0

)�

+�1

(
���

0
− k2�0

)]
e
i(kx−�t) + c.c. +□,

(31)

∫
1

0

p(y)
(
U − c − c0

)2 �
2

0
dy

(
�A

�T2
+ c1

�A

�X2

)
+ ik ∫

1

0

c + 2cg − 3(U − c0)

U − c − c0
�0dy

�2A

�X2

1

+ ik� ∫
1

0

�2

0

U − c − c0
D�(y)dyA − �A

∫
1

0

p(y)�2

0

(U − c − c0)
2
dy + ik|A|2A∫

1

0

�0

U − c − c0

[
�0

2

(
Q(y)

U − c − c0

)

y

+�0�1

(
p(y)

U − c − c0

)

y

+
Q(y)

U − c − c0

d�0

dy

]
dy = 0.
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where

Equation (32) can be rewritten as follows;

Equation  (33) is a nonlinear Schrödinger equation with the horizontal component of 
Coriolis parameter and dissipation. The coefficients �, � are the dispersion coefficient and 
the Landau number which are related to the shear basic flow and generalized beta effect, 
respectively. The term with coefficient � represents the dissipation effect. The term with 
coefficient � denotes that the horizontal components of Coriolis parameter and bottom 
topography are interacting with the equatorial envelop Rossby waves. When the horizontal 
component of the Coriolis parameter is neglected, namely � = 0, the equation deduces to 
the results of Demiray (2003).

3  Asymptotic solution

3.1  Solutions of NLS equation with the horizontal components of Coriolis 
parameter

In this section, we will consider the effects of the horizontal component of the Coriolis 
parameter. For Eq. (33), by adopting the axis transform by Jeffrey and Kawahara (1982) as 
follows:

Equation (33) can be rewritten as follows:

In Eq.  (35), when the coefficient � = 0, � = 0, the equation becomes a standard NLS 
equation obtained by Benney and Newell (1967):

(32)� =
I1

I
, � =

I2

I
, � =

I3

I
, � =

I4

I
,

I = ∫
1

0

p(y)

(U − c − c0)
2
�2

0
dy, I1 = k ∫

1

0

c + 2cg − 3(U − c0)

U − c − c0
�0dy,

I2 = �k ∫
1

0

�2

0

U − c − c0
D�(y)dy, I4 = −�∫

1

0

p(y)�2

0

(U − c − c0)
2
dy.

I3 = k ∫
1

0

�0

U − c − c0

[
�0

2

(
Q(y)

U − c − c0

)

y

+�0�1

(
p(y)

U − c − c0

)

y

+
Q(y)

U − c − c0

d�0

dy

]
dy.

(33)i

(
�A

�T2
+ c1

�A

�X2

)
+ �

�2A

�X2
1

+ �A + �|A|2A + i�A = 0.

(34)T = T2,X =
1

�
(X2 − cgT2) = X1 − cgT1.

(35)i
�A

�T
+ �

�2A

�X2
+ �A + �|A|2A + i�A = 0.

(36)i
�A

�T
+ �

�2A

�X2
+ �|A|2A = 0.
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The single envelope Rossby solitary wave solution of Eq. (36) is as follows:

which the parameter M is the amplitude and k0 is the moving speed of the envelope Rossby 
solitary waves, whose value is determined by the original state of A0(X, T).

Substituting of (37) and (13) into (7) yields

where

In the following discussion, we suppose � ≠ 0, � = 0. Equation (35) becomes

taking the following transformation:

Substituting of (41) into (40), we get the following:

Based on the above discussion, the envelope Rossby solitary wave solution of Eq. (40) 
is as follows:

The behavior of function A(X,T) defined by Eq.  (43) is given in Figs. 1 and 2. Figure 1 
describes the evolution of Rossby solitary wave amplitude A(X, T) changing with time and 
spatial when the dissipation is absent. The amplitude of Rossby solitary waves is not changed 

(37)A0(X, T) =

√
2�

�
M sechM(X − 2�k0T) exp

{
i[k0X − �(k2

0
−M2)T]},

(38)

�0 = −∫
y

[U(s) − c0]ds + �

√
2�

�
M sech �M(x − V0t)�0(y) exp{i[K0x −�0]t},

(39)V0 = cg + 2��k0,K0 = k + �k0,�0 = � + �k0cg + �2�(k2
0
−M2).

(40)i
�A

�T
+ �

�2A

�X2
+ �A + �|A|2A = 0;

(41)A = B exp{i�T}.

(42)i
�B

�T
+ �

�2B

�X2
+ �|B|2B = 0.

(43)A1(X, T) =

√
2�

�
M sechM(X − 2�k0T) exp

{
i[k0X − [�(k2

0
−M2)]T + �T]}.

Fig. 1  The real part and envelope of the solution (43) with parameters chosen as: � = 1, 
� = 1,M = 1, k0 = 2, and � = 1
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with time; it is the idealized solitary wave. Then, we discuss the effects of the horizontal com-
ponent of Coriolis parameter � on the amplitude of solitary wave in the absent of dissipation 
in Figs. 2 and 3; we find that with increasing of the Coriolis parameter � , the amplitude of 
solitary wave decreases when the latitude X = 0.5 and X = 1, and it means that it is more 
beneficial to form the large amplitude solitary wave when the Coriolis parameter � is smaller.

The stream function of envelope Rossby solitary waves in Eq. (40) is as follows:

where
(44)

�1 = −∫
y

[U(s) − c0]ds + �

√
2�

�
M sechM�(x − V1t)�0(y) exp{i[K1x −�1t]},

(45)V1 = cg + 2��k0,K1 = k + �k0,�1 = � + �k0cg + �2�(k2
0
−M2) − �2�.

Fig. 2  The real part of the solution (43) with different parameters chosen as: a � = 1, � = 1,M = 1, k0 = 2, 
and � = 0; b � = 1,� = 1,M = 1, k0 = 2, and � = 2

Fig. 3  The effects of � on the amplitude of Rossby solitary waves when X = 1 and X = 0.5
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Comparing with Eqs. (39) and (45), we find that the carrier frequency �1 is based on �0 
plus a small correction �2� , but the propagation velocity and the carrier wave number have 
nothing to do with the Coriolis parameter. It means that the horizontal component of the 
Coriolis parameter can amend the carrier frequency.

3.2  Solutions of NLS equation with the horizontal components and dissipation

In this section, we mainly find asymptotic solution of Eq. (35) and analyze the dissipation 
effects on the evolution of Rossby solitary waves. We assume the coefficient � ≠ 0, � ≠ 0, 
and 𝜂 << 1 , taking the following transformation:

Substituting of (46) into (35) get

Therefore

By solving Eq. (48), we obtain the following:

substituting of (49) into (48), we get

Because of 𝜂 << 1 , the item of �(X − g(T)) can be omitted in Eq. (50); therefore

The solution of the Eq. (35) is given by the following:

(46)A =
[
a0(T) + a1(T)cn�

]
ei(k(T)−�(T)), � = f (T)(X − g(T)).

(47)

(−�a3
1
+ 2�a1f

2m2)sn2�cn� +

[
i

(
�a1 +

da1

dT

)
+

(
−
dk

dT
a1X − �k2a1 + 3�a2

0
a1 +

d�

dT
a1 + �a3

1
− �a1f

2 + �a1

)]

× cn� + i

(
−a1

df

dT
X + a1

df

dT
g − 2�ka1f + a1f

dg

dT

)
sn�dn� − 3�a0a

2

1
sn2� + i

(
da0

dT
+ �a0

)
+

(
−
dk

dT
a0X

+3�a0a
2

1
+ �a3

0
+

d�

dT
a0 − �k2a0 + �a0

)
= 0.

(48)

− �a3
1
+ 2�a1f

2m2 = 0, �a1 +
da1

dT
= 0,−

dk

dT
a1X − �k2a1 + 3�a2

0
a1 +

d�

dT
a1 + �a3

1
− �a1f

2 + �a1 = 0

− a1
df

dT
X + a1

df

dT
g − 2�ka1f + a1f

dg

dT
= 0,−3�a0a

2
1
= 0,

da0

dT
+ �a0 = 0,

−
dk

dT
a0X + 3�a0a

2
1
+ �a3

0
+

d�

dT
a0 − �k2a0 + �a0 = 0.

(49)

a0 = 0, a1 =

√
2�

�
he−�T , f =

h

m
e−�T , k(T) = k0,� = �

[(
k2
0
−

�

�

)
T +

h2(2m2 − 1)

2�m2
e−2�T

]
;

(50)�(X − g(T)) +

(
dg

dT
− 2�k(T)

)
= 0.

(51)g(T) = 2�k0T .

(52)

A(X, T) =

√
2�

�
he−�Tcn

(
h

m
e−�T (X − 2�k0T)

)
exp

{
i

[
k0X − �

((
k2
0
−

�

�

)
T +

(2m2 − 1)h2

2�m2
e−2�T

)]}
.
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For m → 1, the solution is degenerated as follows:

The behavior of function A(X, T) defined by (53) is given in Figs. 4 and  5.
Figures 4 and 5 show the effects of the horizontal component of Coriolis parameter � and 

the dissipation on the amplitude of solitary waves, and we can obtain the following conclu-
sions. When the dissipation is exist, the wave amplitude is decreasing with time as he−�T , 
where h is the initial amplitude. This is different from the previous results. From Figs. 4 and 
5, with the increasing the Coriolis parameter �, , the amplitude of the solitary waves will 
accelerate decay. There is obvious difference in the absence of the dissipation (Fig. 6).

Corresponding, the stream function of equatorial envelope Rossby solitary waves is as 
follows:

(53)

A =

√
2�

�
he−�T sech [he−�T (X − 2�k0T)] exp

{
i

[
k0X − �

((
k2
0
−

�

�

)
T +

h2

2�
e−2�T

)]}
.

(54)

�0 = −∫
y

[U(s) − c0]ds + �

√
2�

�
he−��

2t sech [�he−��
2t(x − V2t)]�0(y) exp{i[K2x −�2]};

Fig. 4  The real part and envelope of the solution (54) with parameters chosen as: � = 1

� = 1 h = 1 � = 0.15 k0 = 2 � = 1

Fig. 5  The real part of the solution (54) with parameters chosen as: � = 1 � = 1 h = 1 � = 0.15 and k0 = 2
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here

Comparing with Eqs.  (45) and (55), it shows that the dissipation has no effect on the 
propagation velocity and the carrier wave number, but it has certain influence on the carrier 
frequency of equatorial envelope Rossby solitary waves. This conclusion was also obtained 
by Yun-Long et al. (2015)but they have not considered the horizontal component of Corio-
lis parameter. In addition, Eq. (55) reveals that the carrier frequency is equal to frequency 
of linear Rossby waves plus three small corrections, which are related to dispersion and the 
Coriolis horizontal component.

4  Conclusion

In this paper, we investigate the evolution of equatorial envelope Rossby solitary waves 
with complete Coriolis force and dissipation. The evolution of Rossby solitary waves is 
described by a nonlinear Schrödinger equation by means of multiple scale analysis and 
perturbation methods, it is more suitable for describing the equatorial envelope solitary 
Rossby waves. Then, based on Jacobi elliptic function expansion methods and trial func-
tion methods, the asymptotic solutions of the dissipative NLS equation are obtained. With 
the help of these solutions, the effect of dissipation and the horizontal component of Corio-
lis parameter on the evolution of envelope Rossby solitary waves are investigated, respec-
tively. The results indicate that the dissipations influence on the carrier frequency of equa-
torial envelope Rossby solitary waves and accelerate the fragmentation of wave amplitude, 
while it has no effect on the propagation speed.

On the other hand, the wave amplitude is also affected by the horizontal component of 
Coriolis parameter. With the increasing the Coriolis parameter �, the amplitude of Rossby 
solitary waves will accelerate decay. The Coriolis parameter also makes a correction to the 
wave frequency. However, the propagation velocity and the carrier wave number have noth-
ing to do with the Coriolis parameter.

(55)V2 = cg + 2��k0,K2 = k + �k0,�2 = (� + �k0cg + �2�k2
0
− �2�)t +

h2

2�
e−2��t

2

.

Fig. 6  The effects of � on the amplitude of Rossby waves when X = 1 and X = 0.5
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