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Abstract
In this paper, we introduce the linear fractional mapping and the contour integral method.
Based on them, we develop a new numerical method to find all eigenvalues of the polynomial
eigenvalue problems in an open half plane. Numerical examples are shown to illustrate the
effectiveness of the proposed method.
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1 Introduction

In this paper, we consider the polynomial eigenvalue problem (PEP)

P(λ)x = 0, (1)
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where P(λ) = λd A0 + λd−1A1 + · · · + λAd−1 + Ad , Ak ∈ Cn×n , 0 ≤ k ≤ m. λ and x ,
known as the eigenvalue and the corresponding eigenvector, respectively, are the variables
to be determined. The problem is very general and includes the standard eigenvalue problem
P(λ) = λI − A (see, e.g., Wilkinson 1965), the generalized eigenvalue problem P(λ) =
λA− B (see, e.g., Dai et al. 2015), the quadratic eigenvalue problem P(λ) = λ2A+λB+C
(see, e.g., Tisseur and Meerbergen 2001) and the cubic eigenvalue problem P(λ) = λ3A0 +
λ2A1 + λA2 + A3 (see, e.g., Hwang et al. 2005).

The PEP arises in a number of various applications, and has received considerable atten-
tion in the last few decades. For example, it is ubiquitous in a wide range of problems,
such as vibration analysis of viscoelastic systems (Adhikari and Pascual 2009), structural
dynamic analysis (Gupta 1976), stability analysis of control systems (Higham and Tisseur
2002), numerical simulation of quantum dots (Hwang et al. 2004) and so on. Considerable
efforts have been devoted to the polynomial eigenvalue problem in the literature. Gohberg
et al. (1982) developed the mathematical theory concerning matrix polynomials. Gohberg
et al. (1979), Dedieu and Tisseur (2003), Higham and Tisseur (2003) and Chu (2003) gave
the perturbation theory for the polynomial eigenvalue problem. Higham et al. (2007), Tis-
seur (2000) and Lawrence and Corless (2015) analyzed backward error of the polynomial
eigenvalue problem.

The classical approach for solving the PEP is linearizing the problem (1) to produce an
equivalent larger generalized eigenvalue problem (see, e.g., Gohberg et al. 1982; Higham
et al. 2006; Mackey et al. 2006a, b), solved by any appropriate eigensolver. However, the
linearization technique will enlarge the size of the original problem, and matrix structures
and spectral properties of the problem (1) will not be preserved, andmost of all, the linearized
eigenvalue problem is more ill-conditioned (Tisseur 2000). In the last few years, lots of
researchers have developed numerical methods that work directly with the original data of
the polynomial eigenvalue problem for avoiding the above disadvantages. In these methods,
the polynomial eigenvalue problem is projected onto a properly chosen low-dimensional
subspace to obtain a new polynomial eigenvalue problemwithmatrix dimension of low order.
Then, the reduced polynomial eigenvalue problem can be solved by the linearization method.
These methods include Jacobi–Davidsonmethod (Bai andMiao 2017a, b; Hwang et al. 2010;
Sleijpen et al. 1996) and Krylov-type subspace method (Hoffnung et al. 2006). Jacobi–
Davidson method targets at one eigenvalue at one time with local convergence. However,
if the desired eigenvalues of the problem (1) form a cluster of nearby eigenvalues, then
Jacobi–Davidson method has difficulties in detecting and resolving such a cluster.

Actually, recent focus in practical engineering, such as stability analysis of control systems,
is how to compute all eigenvalues of the PEP in an open half plane, especially in the open right
half plane. Besides, it is well known that a real symmetric or Hermitian matrix polynomial
has a spectrum that is symmetric with respect to the real axis. Therefore, for the above matrix
polynomials, we just need compute all eigenvalues in the open upper half plane instead of all
eigenvalues of original matrix polynomial in the whole plane. Overall, a numerical method
for computing all eigenvalues of the PEP (1) in an open half plane would be of particular
interest.

The organization of the paper is as follows. In Sect. 2, we give a brief description of the
linear fractional mapping. Through this mapping, the problem to find all eigenvalues of a
PEP in the open half plane can be converted into a new PEP to find all eigenvalues in the open
unit disk. Besides, we present the relation of the eigenvalues for the above eigenproblems. In
Sect. 3, we introduce the contour integral method to compute all eigenvalues in the open unit
disk. In Sect. 4, a novel algorithm to find all eigenvalues of the PEP in an open half plane is
derived. Section 5 is devoted to some numerical experiments.
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For convenience,weuse the followingnotations: I denotes the identitymatrixwith suitable
dimensions; tr(A) and det(A) denote the trace and the determinant of amatrix A, respectively;
Re(λ) and Im(λ) denote the real part and imaginary part of a complex number λ, respectively;
i denotes the imaginary unit.

2 Linear fractional transformation

To compute all eigenvalues of the PEP (1) in the open half plane, we first introduce the linear
fractional transformation (Rudin 1987).

Definition 1 If a1, a2, a3 and a4 are complex numbers and a1a4 − a2a3 �= 0 such that ϕ(λ) :
λ → ω where ω = a1λ+a2

a3λ+a4
, the mapping ϕ(λ) is called a linear fractional transformation.

For the above transformation, every open half plane can be conformally mapped onto an
open disk.

Next, we take the linear fractional mapping ω = λ−1
λ+1 , for example. The following result

characterizes the relationship between all eigenvalues of some polynomial eigenproblem in
one open half plane and all eigenvalues of another corresponding eigenproblem in the open
unit disk.

Theorem 2 For a linear fractional transformation ω = λ−1
λ+1 , the problem to find all eigen-

values of some polynomial eigenproblem P(λ)x = 0 (1) in the open right half plane
(Re(λ) > 0) can be converted into a new problem to find all eigenvalues of another eigen-
problem B(ω)x = 0 in the open unit disk, where B(w) = (w + 1)d Ad + (w + 1)d−1(1 −
w)Ad−1+· · ·+(w+1)(1 − w)d−1A1+(1 − w)d A0. Besides, the corresponding eigenvalues
of the above two eigenproblems follow the equality λ = ω+1

1−ω
.

Proof Substitute λ = ω+1
1−ω

into P(λ)x = 0, then the conclusion holds clearly since ω is a
conformal one-to-one mapping. ��

Motivated by the above idea, we can also find all eigenvalues of a PEP in the open upper
half plane, in the open left half plane or in the open lower half plane. For simplicity, the
corresponding result of finding all eigenvalues of a PEP P(λ)x = 0 in the open upper half
plane is shown as follows.

Theorem 3 For a linear fractional transformation ω = λ−i
λ+i , the problem to find all eigenval-

ues of P(λ)x = 0 (1) in the open upper half plane (Im(λ) > 0) can be converted into a new
problem to find all eigenvalues of B(ω)x = 0 in the open unit disk, and the corresponding
eigenvalues follow the equality λ = ω+1

1−ω
i .

Proof The proof is similar to that of Theorem 2. Hence, it is omitted. ��

3 Computing all eigenvalues of a PEP in the open unit disk

In this section, we will briefly present the algorithm to compute all eigenvalues of a PEP (1)
in the open unit disk, see Asakura et al. (2010) for details.

For a PEP (1), we define a function f (λ) = det(P(λ)), then f (λ) is an analytical function
in λ. As we know, λ is an eigenvalue of a PEP (1) if and only if f (λ) = 0.

Let Γ be the boundary of an open unit disk for the PEP (1). The center and radius of the
open unit disk are denoted as γ and ρ, respectively. Let m (m ≤ n) be a positive integer and
the complex moment u p be
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u p = 1

2π i

∮
Γ

(λ − γ )p
f ′(λ)

f (λ)
dz,

where p = 0, 1, . . . , 2m − 1.
Using these complex moments u p , we define the following two m × m Hankel matrices

Hm =

⎛
⎜⎜⎜⎝

u0 u1 · · · um−1

u1 u2 · · · um
...

...
...

um−1 um · · · u2m−2

⎞
⎟⎟⎟⎠

and

H<
m

=

⎛
⎜⎜⎜⎝

u1 u2 · · · um
u2 u3 · · · um+1
...

...
...

um um+1 · · · u2m−1

⎞
⎟⎟⎟⎠ .

Now, we consider that the integration is evaluated via a trapezoidal rule on the circle Γ .
Let N be the number of sample points on the circle Γ and ν j = γ + ρ exp(2π j i/N )( j =
0, 1, . . . , N −1). According to the trapezoidal rule, the complex moments u p can be approx-
imately obtained by the following formula

u p ≈ û p = 1

N

N−1∑
j=0

(ν j − γ )p+1 f ′(ν j )

f (ν j )
.

Based on the Trace-Theorem of Devidenko (see Davidenko 1960) f ′(λ)
f (λ)

= tr(T−1(λ)T ′(λ)),
û p can be rewritten as

û p = 1

N

N−1∑
j=0

(ν j − γ )p+1tr
(
T−1(ν j )T

′(ν j )
)
. (2)

Using û p (p = 0, 1, . . . , 2m − 1), we form the following two Hankel matrices Ĥ<
m and

Ĥm

Hm ≈ Ĥm =

⎛
⎜⎜⎜⎝

û0 û1 · · · ûm−1

û1 û2 · · · ûm
...

...
...

ûm−1 ûm · · · û2m−2

⎞
⎟⎟⎟⎠ (3)

and

H<
m ≈ Ĥ<

m =

⎛
⎜⎜⎜⎝

û1 û2 · · · ûm
û2 û3 · · · ûm+1
...

...
...

ûm ûm+1 · · · û2m−1

⎞
⎟⎟⎟⎠ . (4)

The numerical algorithm to compute all eigenvalues of the PEP (1) in the open unit disk can
be described as follows.
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Algorithm 1. An algorithm for computing all eigenvalues of the PEP (1) in the open
unit disk

1. Choose the number N of sample points on the circle 
, the center γ and the radius ρ of
the circle 
.

2. Compute ν j = γ + ρ exp(2π i( j)/N ), where j = 0, 1, . . . , N − 1.
3. Compute û p (p = 0, 1, . . . , 2m − 1) with (2).
4. Form two m × m Hankel matrices Ĥm and Ĥ<

m with (3) and (4), respectively.
5. Compute all eigenvalues λk (k = 1, 2, . . . ,m) of Ĥ<

m − λĤm .

Remark 3.1 The low order Ĥ<
m −λĤm may be solved by the QZ method (Moler and Stewart

1973).

According to the Theorem 3.5 in Asakura et al. (2010), the eigenvalues λk (k =
1, 2, . . . ,m) of Ĥ<

m x = λĤmx are the eigenvalues of the PEP (1) in the circle Γ .

4 Computing all eigenvalues of a PEP in an open half plane

For the linear fractional transformation

ω = λ − 1

λ + 1
, (5)

substitute (5) into P(λ)x = 0, then it follows that

B(w) = (w + 1)d Ad + (w + 1)d−1(1 − w)Ad−1 + · · · + (w + 1)(1 − w)d−1A1

+(1 − w)d A0.

Next use Algorithm 1 to compute all eigenvalues ωk of B(ω)x = 0 in the open unit
disk, and then substitute ωk into λ = ω+1

1−ω
. Thus, we compute all eigenvalues λk of original

eigenvalue problem in the open right half plane according to Theorem 1.
From the above results and notations, we can derive the following algorithm to find all

eigenvalues of the PEP in the open right half plane.

Algorithm 2. The algorithm to compute all eigenvalues of a polynomial eigenvalue
problem in the open right half plane

1. Form a new polynomial eigenvalue problem B(ω)x = 0,
where B(ω) = (ω + 1)d Ad + (ω + 1)d−1(1− ω)Ad−1 + · · · + (ω + 1)(1− ω)d−1A1 +
(1 − ω)d A0.

2. Compute all eigenvalues ωk of B(ω)x = 0 in the open unit disk by Algorithm 1.
3. Compute λk = ωk+1

1−ωk
.

Similarly, we can also get the algorithm to find all eigenvalues of a polynomial eigenvalue
problem in the open upper half plane.
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Algorithm 3. The algorithm to compute all eigenvalues of a polynomial eigenvalue
problem in the open upper half plane

1. Form a new polynomial eigenvalue problem B(ω)x = 0,
where B(ω) = (ω + 1)d id Ad + (ω + 1)d−1id−1(1 − ω)Ad−1 + · · · + (ω + 1)i(1 −
ω)d−1A1 + (1 − ω)d A0.

2. Compute all eigenvalues ωk of B(ω)x = 0 in the open unit disk by Algorithm 1.
3. Compute λk = ωk+1

1−ωk
i .

5 Numerical examples

In this section, we report some numerical examples to show the effectiveness of the proposed
algorithms. All computations are carried out in Matlab (2012b). In our examples, λ∗

k and λk
are the kth exact eigenvalue and the kth approximate eigenvalue of the PEP (1), respectively.
All eigenvalues λk are rounded to 10 decimal places in Tables 1, 2, 3 and 4.

Example 1 Consider the generalized eigenvalue problem with

P (λ) x = (λA0 + A1) x = 0,

where A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 · · · 0
0 3 1 0 0 · · · 0
0 0 −1 1 0 · · · 0

0 0 0 −2
. . .

. . .
...

...
...

. . .
. . .

. . .
. . . 0

0 · · · · · · . . . 0 −97 1
0 · · · · · · · · · 0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A0 = I ∈ C100×100.

It is easy to verify that all eigenvalues λ∗
k of this question in the right half plane are 1, 3

and 4.
The numerical results are obtained with the parameters N = 2000, γ = 0 and ρ = 1. The

eigenvalues λk computed by Algorithm 2 are given in Table 1. It shows that the numerical
results are very close to the exact eigenvalues.

Table 1 Numerical results in
Example 1

k λk |λk − λ∗
k |

1 1.0000000000 1.9e−12

2 3.0000000000 1.8e−10

3 4.0000000000 1.8e−10

Table 2 Numerical results in
Example 2

k λk |λk − λ∗
k |

1 1.0000000000 5.8e−15

2 2.0000000000 1.0e−14
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Table 3 Numerical results in
Example 3

k λk |λk − λ∗
k |

1 0.0257024260 + 0.4701394322i 6.5e−16

2 0.4373052984 + 0.9271387105i 9.6e−15

3 2.0226888997 3.2e−14

4 0.4373052984 − 0.9271387105i 7.2e−15

5 0.0257024260 − 0.4701394322i 2.4e−16

Table 4 Numerical results in
Example 4

k λk |λk − λ∗
k |

1 1.4928844738 + 1.2068208717i 1.3e−13

2 0.7671255871 + 0.7267920145i 1.4e−12

3 0.5715381735 + 0.6134359109i 8.1e−13

4 −0.5715381735 + 0.6134359109i 8.3e−13

5 −0.7671255871 + 0.7267920145i 1.6e−12

6 −1.4928844738 + 1.2068208717i 1.8e−13

Example 2 In this example we consider the quadratic eigenvalue problem with

P(λ)x =
((

0 1
−2 3

)
+ λ

(
7 −5
10 −8

)
+ λ2

(
1 0
0 1

))
x = 0.

We can verify that all eigenvalues λ∗
k of P(λ)x = 0 in the open right half plane are 1 and

2.
The numerical results for Algorithm 2 with the parameters N = 20, γ = 0 and ρ = 1 are

shown in Table 2. From Table 2, the numerical results are in good agreement with the exact
eigenvalues.

Example 3 We consider the polynomial eigenvalue problem with

P (λ) x = (
λ3A0 + λ2A1 + λA2 + A3

)
x = 0,

where A3 =
⎛
⎝−16 −4 7

−14 7 13
6 8 7

⎞
⎠ , A2 =

⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠, A1 =

⎛
⎝ 2 −6 1

−2 22 11
7 −1 1

⎞
⎠ and

A0 =
⎛
⎝ −4 3 12

−17 −11 0
1 −1 3

⎞
⎠.

It is easy to verify that all eigenvalues λ∗
k of this question in the right half plane

are 2.02268890, 0.43730530 + 0.92713871i, 0.43730530 − 0.92713871i, 0.02570243 +
0.47013943i, 0.02570243 − 0.47013943i .

The numerical results are obtained with the parameters N = 1000, γ = 0 and ρ = 1.
The computed eigenvalues λk are given in Table 3. It is clearly seen from Table 3 that the
numerical results obtained by Algorithm 2 are very close to the exact eigenvalues.

Example 4 We consider another polynomial eigenvalue problem with

P(λ)x = (
λ4A0 + λ3A1 + λ2A2 + λA3 + A4

)
x = 0,
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where A4 =
⎛
⎝−2 4 11

−5 7 8
6 8 9

⎞
⎠, A3 =

⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠, A2 =

⎛
⎝ 0 5 0
0 4 0
0 3 0

⎞
⎠, A1 =

⎛
⎝ 0 0 0
0 0 0
0 0 0

⎞
⎠ and A0 =

⎛
⎝ 6 −6 1

−2 22 10
7 −1 3

⎞
⎠.

It is not difficult to verify that all eigenvalues λ∗
k in the open upper half plane

are 1.49288447 + 1.20682087i, 0.76712559 + 0.72679201i, 0.57153817 + 0.61343591i,
−0.57153817+0.61343591i,−0.76712559+0.72679201i,−1.49288447+1.20682087i .

The numerical results forAlgorithm3 are given in Table 4 using the parameters N = 1000,
γ = 0 and ρ = 1. From Table 4, we observe that the numerical results coincide with the
exact eigenvalues.

6 Conclusion

In this paper, we have presented a novel method to compute all eigenvalues of the PEP in
an open half plane. This approach first transforms the original PEP into a new PEP via a
linear fractional transformation, then employs the contour integral method to compute all
eigenvalues of the new PEP in the open unit disk, and substitute the above eigenvalues into
the linear fractional transformation to find all eigenvalues of original eigenproblem lastly. Our
numerical results show that the proposed method is very useful and effective for computing
all eigenvalues of the PEP in an open half plane.
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