
Computational and Applied Mathematics (2019) 38:32
https://doi.org/10.1007/s40314-019-0776-x

An inverse problem for an inhomogeneous time-fractional
diffusion equation: a regularization method and error
estimate

Nguyen Huy Tuan1 · Luu Vu Cam Hoan2,3 · Salih Tatar4

Received: 21 March 2018 / Revised: 10 September 2018 / Accepted: 15 November 2018 /
Published online: 5 March 2019
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Abstract
In this paper, we study an inverse problem for an inhomogeneous time-fractional diffusion
equation in the one-dimensional real-positive semiaxis domain. Such a problem is obtained
from the classical diffusion equation by replacing the first-order time derivative by the Caputo
fractional derivative. After we show that the inverse problem is severely ill posed, we apply
a modified regularization method based on the solution in the frequency domain to solve the
inverse problem. A convergence estimate is also derived.We present two numerical examples
to show the efficiency of the method.
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1 Introduction

In this paper, we consider the problem of recovering the temperature from the following
inverse problem:

⎧
⎨

⎩

−aux (x, t) =0 Dγ
t u(x, t) + F(x, t, u(x, t)), x > 0, t > 0,

u(1, t) = g(t), t ≥ 0,
u(x, 0) = limx→+∞ u(x, t) = 0,

(1)

where a is the constant diffusivity coefficient, F(x, t, u(x, t)) is the nonlinear source term
and 0D

γ
t u(x, t) is the Caputo time fractional derivative of order 0 < γ < 1 defined by

0D
γ
t u(x, t) := 1

�(1 − γ )

∫ t

0
(t − τ)−γ ∂

∂τ
u(x, τ ) dτ, (2)

where � is the Gamma function. This was intended to properly handle initial values (Caputo
1967; Chen et al. 2012; Eidelman et al. 2004) since its Laplace transform(LT) sβ f̃ (s) −
sβ−1 f (0) incorporates the initial value in the same way as the first derivative. Here, f̃ (s)
is the usual Laplace transform. It is well known that the Caputo derivative has a continuous
spectrum (Chen et al. 2012), with eigenfunctions given in terms of theMittag-Leffler function

Eβ(z) :=
∞∑

k=0

zk

�(1 + βk)
.

In fact, it is easy to see that f (t) = Eβ(−λtβ) solves the eigenvalue equation

∂β f (t)

∂tβ
= −λ f (t), f (0) = 1

for any λ > 0. This is easily verified by differentiating term-by-term and using the fact that
t p has Caputo derivative t p−β �(p+1)

�(p+1−β)
for p > 0 and 0 < β ≤ 1. 0 < β < 1 is taken

for slow diffusion, and is related to the parameter specifying the large-time behavior of the
waiting-time distribution function, see Podlubny (1999) and some of the references cited
therein.

Recently, there has been a growing interest in inverse problems and regularizationmethods
with fractional derivatives. For example, in Murio (2007), the authors studied the following
inverse problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ux (x, t) = −a− 1
2

(
RL
0 D

1
2
t u(x, t)

)

+ u∞(πat)− 1
2 , x > 0, t ≥ 0,

u(1, t) = f (t), t > 0,
u(0, t) = g(t), t > 0,
−ux (0, t) = h(t), t > 0,

(3)

where a is the diffusivity coefficient, u∞ = u(x, 0) = limx→∞ u(x, t) = 0, f (t) is a mea-
sured data, q(t) and h(t) are unknown functions. After it is proved that inverse problem (3)
is ill posed, they use the mollification method to stabilize the inverse problem. A simple
algorithm based on space marching mollification techniques is introduced for the numeri-
cal solution of the discrete problem. Stability bounds, error estimates and some numerical
examples are also presented. In Zheng and Wei (2011c), the authors studied the following
inverse problem:
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⎧
⎨

⎩

−aux (x, t) = 0D
γ
t u(x, t), x > 0, t > 0,

u(1, t) = f (t), t ≥ 0,
limx→+∞ u(x, t) = u(x, 0) = 0, t ≥ 0.

(4)

In this inverse problem, the temperature and heat flux are sought from ameasured temperature
history at a fixed location inside the body. The difference of inverse problem (4) from (3) is
that the order of the time fractional derivative is taken to be γ , not 1

2 but no source term is
considered. After they showed that inverse problem (4) is ill posed, they applied a spectral
regularization method to solve the inverse problem using the solution given by the Fourier
method. Convergence estimates are also presented under a priori bound assumptions for the
exact solution. Inverse problem (4) is also studied in Cheng and Fu (2012) for a = 1. In this
paper, the authors give a new iteration regularization method to deal with this problem, and
error estimates are obtained for a priori and a posteriori parameter choice rules, respectively.
In Li et al. (2014), the authors study the same problem as in Cheng and Fu (2012). They give
a new dynamic method for choosing a regularization parameter. Using the spectral methods,
some convergence rates on the temperature and heat flow are also given.

We now motivate the use of the governing equation in (4) for γ = 1
2 . We refer the readers

to Oldham and Spanier (1972) for details. Consider the following diffusion equation

ut (ξ, η, ζ, t) = a∇2u(ξ, η, ζ, t), (5)

with

u(ξ, η, ζ, 0) = u∞, (6)

where∇2 is the Laplacian operator. Three geometries of the boundary allow a reduction from
three to one in the number of spatial coordinates for the diffusion equation. Three different
values of a geometric factor β are used to characterize these geometries: β = 1

2 for infinite
planes, β = 0 for infinitely long cylinders and β = − 1

2 for spheres. These geometries
simplify the Laplacian operator so that (5) becomes

ut (x, t) = auxx (x, t) + a
(
1 − 2β

)

x + R
ux (x, t), (7)

and (6) becomes

u(x, 0) = lim
x→+∞ u(x, t) = u∞, (8)

where x is the spatial coordinate, R is the radius of the surface in the case of cylindrical and
spherical coordinates and without significance in planar case. It is now proved that (7) and
(8) are represented by

ux (x, t) = −a− 1
2

(
RL
0 D

1
2
t u(x, t)

)

+ u∞(πat)−
1
2 −

1
2 − β

x + R
(u(x, t) − u∞), (9)

where RL
0 Dγ

t u(x, t) is the Riemann–Liouville time fractional derivative of order 0 < γ < 1
defined by

RL
0 Dγ

t u(x, t) = 1

�(1 − γ )

d

dτ

∫ t

0

u(x, τ )

(t − τ)γ
dτ.

We note that the Riemann–Liouville and Caputo fractional derivatives agree when the initial
condition is zero. Podlubny (1999) and Kilbas et al. (2006) can be referred for further prop-
erties of the Caputo and Riemann–Liouville fractional derivatives.
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We note that a very similar inverse problem to (4) is studied in Xiong et al. (2012) for
the two-dimensional case. Based on an a priori assumption, the authors derive a conditional
stability result. Somenew regularizationmethods are constructed for solving the inverse prob-
lem and the corresponding error estimates are also proved in this paper. In many phenomena,
diffusion progresses occur in spatially inhomogeneous environments or the slow diffusion
progresses require models containing an inhomogeneous or a nonlinear source term. As it is
mentioned above, if the geometry of the body is an infinitely long cylinder or a sphere, the
nonlinear term on the right-hand side of (9) must be taken into consideration. The inverse
problem (1) is studied in Tuan et al. (2016) for just a linear source term. Motivated by this
reason, in this paper, we study inverse problem (1). We note that the source term in (1) is
a general source term. From this point of view, we generalize Eq. (9) in terms of both the
order of the fractional time derivative and source function. As it is known, solving nonlinear
problems require many difficult techniques and new ideas to deal the fractional and nonlinear
terms. The techniques and methods used for homogeneous case cannot be applied directly
to solve problem (1). The exact solution of a nonlinear problem can be represented by a
nonlinear integral equation containing some instability terms, see Eq. (11). The leading idea
of the method presented in this paper is to find a suitable integral equation for approximating
the exact solution. Then we replace instability terms by regularization terms and show that
the solution of regularized problem converges to the exact solution. In the homogeneous
problem, we have many choices of stability term for regularization. However, in nonlinear
problem, the solution u is expressed in complex terms and defined by an integral equation
whose right-hand side depends on u. That is why studying with nonlinear problems is very
difficult. In this paper, we develop some new techniques to overcome these difficulties.

This paper is organized as follows: in the next section, it is proved that the considered
inverse problem is severely ill posed. A regularization method and error estimates are also
given. In Sect. 3, we present two numerical examples to show the efficiency of the method.

2 Regularization and error estimate

To use Fourier transform, we extend the functions u(x, .) and g(.) to the whole line −∞ <

t < +∞ by defining them to be zero for t < 0. The Fourier transform of a function
f (t) ∈ L2(R) is defined by

f̂ (ω) = 1√
2π

+∞∫

−∞
f (t)e−iωtdt, −∞ < ω < +∞.

Since the measurements usually contain an error, we assume that the measured data function
gα(t) ∈ L2(R) satisfies ‖gα − g‖L2(R) ≤ α, where α > 0 is a bound on the measurement
error. If we take Fourier transformation in (1) with respect to t , by Podlubny (1999), we have

⎧
⎪⎨

⎪⎩

ûx (x, ω) + (iω)γ

a û(x, ω) = 1
a F̂(x, ω, u(x, ω)), x > 0, ω ∈ R,

û(1, ω) = ĝ(ω), ω ≥ 0,

limx→+∞ û(x, ω) = 0, ω ≥ 0,

(10)

where

(iω)γ = |ω|γ cos
γπ

2
+ i |ω|γ sign(ω) sin

γπ

2
,
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and F̂(x, ω, u(x, ω)) = 1√
2π

∫ +∞
−∞ F(x, t, u(x, t))e−iωtdt . By solving problem (10), the

solution of problem (1) is obtained as follows, see Tuan et al. (2016):

u(x, t) = 1√
2π

+∞∫

−∞

[

exp

(
(iω)γ (1 − x)

a

)

ĝ(ω)

− 1

a

1∫

x

exp

(
(iω)γ (z − x)

a

)

F̂(z, ω, u(z, ω))dz

⎤

⎦ eiωt dω. (11)

By (11) and noting that (iω)γ has the positive real part |ω|γ cos γπ
2 , we conclude that both

exp
(

(iω)γ (1−x)
a

)
and exp

(
(iω)γ (z−x)

a

)
increases exponentially for 0 ≤ z < x < 1 as ω →

+∞. So the small distribution for the data g(t) will be amplified infinitely by this factor and
lead to blow-up in (11). Therefore, recovering the temperature u(x, t) from the measured
data gα(t) is severely ill posed. We must use some regularization methods to deal with this
problem, for example, see Zheng and Wei (2010a, b, 2011a). To regularize the problem,

we have to replace the terms exp
(

(iω)α(1−x)
a

)
and exp

(
(iω)α(z−x)

a

)
by other terms. For

this purpose, we define a regularized solution uα
ε (x, t) whose Fourier transform satisfies the

following problem:

⎧
⎪⎨

⎪⎩

(̂uα
ε )x (x, ω) + (iω)γ

a ûα
ε (x, ω) = P(ε,ω)

a F̂(x, ω, uα
ε (x, ω)), (x, ω) ∈ (0,+∞) × (0,+∞),

ûα
ε (1, ω) = P(ε, ω)ĝα(ω), ω ∈ (0,+∞),

limx→+∞ ûα
ε (x, ω) = 0, (x, ω) ∈ (0,+∞) × (0,+∞),

(12)
where ε = ε(α) is a regularization parameter satisfies limα→0 ε(α) = 0 and P(ε, ω) =

1

1+ε exp
(
1
a |ω|γ cos γπ

2

) . Following a similar procedure as above gives the formal solution of

problem (12) as

uα
ε (x, t) = 1√

2π

+∞∫

−∞

exp
(

(iω)γ (1−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) ĝα(ω)eiωt dω

− 1

a
√
2π

+∞∫

−∞

1∫

x

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) F̂(z, ω, uα
ε (z, ω))eiωt dz dω. (13)

Now, we state and prove the main result of the paper.

Theorem 1 Let F : R × [0, 1] × R → R. If F satisfies F(x, t, 0) = 0 and

|F(x, t, u1) − F(x, t, u2)| ≤ K |u1 − u2|, (14)

for a constant K > 0 independent of x, t, u1, u2, then problem (12) has a unique solution
uα

ε ∈ C([0, 1]; L2(R)),where the spaceC([0, 1]; L2(R)) comprises all continuous functions
u : [0, 1] → L2(R). Suppose that problem (1) has a unique solution u ∈ C([0, 1]; L2(R))

that satisfies

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω < ∞. (15)
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Choose ε := ε(α) such that

lim
α→0

ε = lim
α→0

εα−1 = 0. (16)

Then the following estimate holds for every x ∈ (0, 1):

‖u(x, .) − uα
ε (x, .)‖L2(R) ≤ √

3 exp

(
3(1 − x)2K 2

2a2

)

×
⎡

⎢
⎣

√
√
√
√
√ sup

0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2dω + ε−1α

⎤

⎥
⎦ εx . (17)

Before we prove Theorem 1, we prove the following useful lemma.

Lemma 1 Let γ ∈ (0, 1), x ∈ [0, 1] and ω ∈ R. If z ∈ [x, 1], then we have:
∣
∣
∣
∣
∣
∣

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣
∣
∣
≤ εx−z,

∣
∣
∣
∣
∣
∣

exp
(

(iω)γ (1−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣
∣
∣
≤ εx−1. (18)

Proof Since the modulus of the complex number exp
(

(iω)γ (z−x)
a

)
is exp

( z−x
a |ω|γ cos γπ

2

)
,

by simple calculations, we obtain

∣
∣
∣
∣
∣
∣

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣
∣
∣
= exp

( z−x−1
a |ω|γ cos γπ

2

)

ε + exp
(− 1

a |ω|γ cos γπ
2

)

=
(

1

ε + exp
(− 1

a |ω|γ cos γπ
2

)

)z−x (
exp

(− 1
a |ω|γ cos γπ

2

)

ε + exp
(− 1

a |ω|γ cos γπ
2

)

)1−z+x

.

Since 1

ε+exp
(
− 1

a |ω|γ cos γπ
2

) ≤ 1
ε
and

exp
(
− 1

a |ω|γ cos γπ
2

)

ε+exp
(
− 1

a |ω|γ cos γπ
2

) ≤ 1, we deduce that

∣
∣
∣
∣
∣
∣

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣
∣
∣
≤ εx−z .

By letting z = 1 in the above inequality, we obtain the second inequality. The proof is
complete. 
�

Proof of Theorem 1 We divide the proof into two steps:

Step 1 First, we prove that problem (12) has a unique solution uα
ε ∈ C([0, 1]; L2(R)). For

this purpose, we define the following function for W ∈ C([0, 1]; L2(R)):
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G(W )(x, t) = 1√
2π

+∞∫

−∞

exp
(

(iω)γ (1−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) ĝα(ω)eiωt dω

− 1

a
√
2π

+∞∫

−∞

1∫

x

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) F̂(z, ω,W (z, ω))eiωt dz dω.

(19)

By F(x, t, 0) = 0 and (14), we have G(W ) ∈ C([0, 1]; L2(R)) for every W ∈
C([0, 1]; L2(R)). Now, we show that if W1,W2 ∈ C([0, 1]; L2(R)), then the following
estimate holds for m ≥ 1:

‖Gm(W1)(x, .) − Gm(W2)(x, .)‖2L2(R)
≤

(
K

aε

)2m
(1 − x)m

m! |||W1 − W2|||2, (20)

where ‖|.‖| is the sup norm in C([0, 1]; L2(R)) defined by

‖w‖C([0,1];L2(R)) = sup
0≤x≤1

‖w(x, .)‖L2(R). (21)

We prove (20) by induction. For m = 1, by (14) and Parseval equality, we obtain

‖G(W1)(x, .) − G(W2)(x, .)‖2L2(R)
= ‖Ĝ(W1)(x, .) − Ĝ(W2)(x, .)‖2L2(R)

= 1

a2

+∞∫

−∞

∣
∣
∣
∣

1∫

x

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)
(
F̂(z, ω,W1) − F̂(z, ω,W2)

)
dz

∣
∣
∣
∣

2

dω

≤ 1

a2

+∞∫

−∞

( 1∫

x

∣
∣
∣
∣

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣

2

dz
∫ 1

x

∣
∣
∣F̂(z, ω,W1) − F̂(z, ω,W2)

∣
∣
∣
2
dz

)

dω

≤ 1 − x

(aε)2

1∫

x

‖F̂(z, .,W1(z, .)) − F̂(z, .,W2(z, .))‖2L2(R)
dz ≤ K 2(1 − x)

(aε)2
|||W1 − W2|||2.

(22)

Assuming that (20) holds for m ∈ Z
+, it can easily be proven that (20) holds for m + 1.

Since this procedure is quite similar to the case m = 1, we omit the details. We consider
G : C([0, 1]; L2(R)) → C[0, 1]; L2(R)). Since (20), we obtain

‖Gm(W1)(x, .) − Gm(W2)(x, .)‖2L2(R)
≤

(
K

aε

)2m 1

m! |||W1 − W2|||2. (23)

Noting that the right-hand side of (23) does not depend on x , we deduce that

|||Gm(W1) − Gm(W2)|||2 = sup
0≤x≤1

‖Gm(W1)(x, .) − Gm(W2)(x, .)‖2L2(R)

≤
(
K

aε

)2m 1

m! |||W1 − W2|||2. (24)

Since limm→∞
√
( K
aε

)2m 1
m! = 0, there exists a positive integer m0 such that Gm0 is a

contraction. It follows that Gm0(W ) = W has a unique solution uα
ε ∈ C([0, 1]; L2(R)). We
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claim that G(uα
ε ) = uα

ε . In fact, one has G(Gm0(uα
ε )) = G(uα

ε ). Hence, Gm0(G(uα
ε )) =

G(uα
ε ). By the uniqueness of the fixed point of Gm0 , one has G(uα

ε ) = uα
ε , i.e, the equation

G(uα
ε ) = uα

ε has a unique solution uα
ε ∈ C([0, 1]; L2(R)).

Step 2 We estimate the error ‖uα
ε − u‖L2(R). By (11) and (13), we deduce that

û(x, .) − ûα
ε (x, .)

=
⎡

⎣exp

(
(iω)γ (1 − x)

a

)

−
exp

(
(iω)γ (1−x)

a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

⎤

⎦ ĝ(ω)

+
exp

(
(iω)γ (1−x)

a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) (ĝ(ω) − ĝα(ω))

− 1

a

1∫

x

exp

(
(iω)γ (z − x)

a

)

F̂(z, ω, u(z, ω)) dz

+ 1

a

1∫

x

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) F̂(z, ω,wα
ε (z, ω)) dz

= ε exp
( 1
a |ω|γ cos γπ

2

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

[

exp

(
(iω)γ (1 − x)

a

)

ĝ(ω)

− 1

a

1∫

x

exp

(
(iω)γ (z − x)

a

)

F̂(z, ω, u(z, ω)) dz

⎤

⎦

+ 1

a

1∫

x

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)
(
F̂(z, ω,wα

ε (z, ω)) − F̂(z, ω, u(z, ω))
)
dz

+
exp

(
(iω)γ (1−x)

a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) (ĝ(ω) − ĝα(ω)). (25)

By Parseval equality, we have

‖u(x, .) − uα
ε (x, .)‖2L2(R)

=
+∞∫

−∞
|̂u(x, .) − ûα

ε (x, .)|2 dω

≤ 3

+∞∫

−∞

∣
∣
∣
∣

ε exp
( 1
a |ω|γ cos γπ

2

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣

2[

exp

(
(iω)γ (1 − x)

a

)

ĝ(ω) − 1

a

1∫

x

exp

(
(iω)γ (z − x)

a

)

F̂(z, ω, u(z, ω)) dz

]2

dω

︸ ︷︷ ︸

:= J̃1(x)

+ 3

a2

+∞∫

−∞

∣
∣
∣
∣

1∫

x

exp
(

(iω)γ (z−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)
(
F̂(z, ω, wα

ε (z, ω)) − F̂(z, ω, u(z, ω))
)
dz

∣
∣
∣
∣

2

dω

︸ ︷︷ ︸

:= J̃2(x)

+ 3

+∞∫

−∞

∣
∣
∣
∣

exp
(

(iω)γ (1−x)
a

)

1 + ε exp
( 1
a |ω|γ cos γπ

2

) (ĝα(ω) − ĝ(ω))

∣
∣
∣
∣

2

dω

︸ ︷︷ ︸

:= J̃3(x)

= J̃1(x) + J̃2(x) + J̃3(x). (26)
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We now estimate J̃1(x), J̃2(x) and J̃3(x). J̃1(x) is estimated as follows:

J̃1(x) = 3

+∞∫

−∞

∣
∣
∣
∣
ε exp

( 1
a |ω|γ cos γπ

2 (1 − x)
)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

∣
∣
∣
∣

2

exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω

≤ 3ε2x sup
0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω, (27)

where we have used the facts that

û(x, ω) = exp

(
(iω)γ (1 − x)

a

)

ĝ(ω) − 1

a

1∫

x

exp

(
(iω)γ (z − x)

a

)

F̂(z, ω, u(z, ω)) dz,

and
∣
∣
∣
∣exp

(
1

a
|ω|γ cos

γπ

2

)∣
∣
∣
∣ =

∣
∣
∣
∣exp

(
1

a
|ω|γ cos

γπ

2
(1 − x)

)∣
∣
∣
∣ exp

(
1

a
|ω|γ cos

γπ

2
x

)

.

By Holder’s inequality and noting that
∣
∣
∣ exp

(
(iω)γ (z−x)

a

) ∣
∣
∣ = exp

( 1
a |ω|γ cos γπ

2 (z − x)
)
,

we estimate J̃2(x) as follows:

J̃2(x) ≤3(1 − x)

a2

+∞∫

−∞

1∫

x

∣
∣
∣
∣
exp

( 1
a |ω|γ cos γπ

2 (z − x)
)

1 + ε exp
( 1
a |ω|γ cos γπ

2

)

×
(
F̂(z, ω,wα

ε (z, ω)) − F̂(z, ω, u(z, ω))
)
dz

∣
∣
∣
∣

2

dω

≤3(1 − x)K 2

a2

+∞∫

−∞

1∫

x

ε2x−2z‖uα
ε (z, .) − u(z, .)‖2 dz dw. (28)

By Lemma 1, J̃3(x) is estimated as follows:

J̃3(x) ≤ 3ε2(x−1)

+∞∫

−∞
|ĝα(ω) − ĝ(ω)|2 dω ≤ 3ε2(x−1)‖gα − g‖2L2(R)

≤ 3ε2(x−1)α2. (29)

Combining (26)–(29), we conclude that

‖u(x, .) − uα
ε (x, .)‖2L2(R)

≤ 3ε2(x−1)α2

+ 3ε2x sup
0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω

+ 3(1 − x)K 2

a2

+∞∫

−∞

1∫

x

ε2x−2z‖uα
ε (z, .) − u(z, .)‖2 dz dw. (30)
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The last inequality implies that

ε−2x‖u(x, .) − uα
ε (x, .)‖2L2(R)

≤ 3ε−2α2 + 3 sup
0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω

+ 3(1 − x)K 2

a2

+∞∫

−∞

1∫

x

ε−2z‖uα
ε (z, .) − u(z, .)‖2 dz dw

= 3ε−2α2 + 3 sup
0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω

+ 3(1 − x)K 2

a2

1∫

x

ε−2z‖uα
ε (z, .) − u(z, .)‖2L2(R)

dz, (31)

where we applied Fubini’s theorem to get

+∞∫

−∞

1∫

x

ε−2z‖uα
ε (z, .) − u(z, .)‖2 dz dw =

1∫

x

ε−2z‖uα
ε (z, .) − u(z, .)‖2L2(R)

dz.

Using the Gronwall’s inequality in (31), we obtain that

ε−2x‖u(x, .) − uα
ε (x, .)‖2L2(R)

≤ 3 exp

(
3(1 − x)2K 2

a2

)
⎡

⎣ε−2α2 + sup
0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω
⎤

⎦ .

(32)

Multiplying both sides of (32) by ε2x and using the inequality
√
a1 + a2 ≤ √

a1 + √
a2 for

any nonnegative real numbers a1, a2, we complete the proof. 
�
Remark 1 The solution to Problem 1 for the homogeneous source, i.e F(x, t, u) = 0 is given
by

u(x, t) = 1√
2π

+∞∫

−∞

[

exp

(
(iω)γ (1 − x)

a

)

ĝ(ω)

]

eiωt dω· (33)

To regularize solution (33), we give a general regularized solution by finding the term
Rα(ε, ω, x) such that

• there exists a function�(α) > 0 such that limα→0 �(α) = +∞ andRα(ε, ω, x) ≤ �(α);

• limε→0 Rα(ε, ω, x) = exp
(

(iω)γ (1−x)
a

)
.

Then define the following regularized solution:

Wα
ε (x, t) = 1√

2π

+∞∫

−∞
[Rα(ε, ω, x)ĝα(ω)]eiωt dω· (34)
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• We obtain the regularized solution found in this paper for R(1)
α (ε, ω, x) =

exp
(

(iω)γ (1−x)
a

)

1+ε exp
(
1
a |ω|γ cos γπ

2

) .

• We obtain another regularized solution found in Zheng andWei (2011b) forR(2)
α (ε, ω, x)

= exp
(
1
a

(iω)γ (1−x)
1+εω2

)
.

• We obtain another regularized solution found in Zheng andWei (2011c) forR(3)
α (ε, ω, x)

= exp
(

(iω)γ (1−x)
a

)
χmax, where χmax is the characteristic function of the interval

[−ωmax, ωmax].
We obtain the regularized solution to problem (1) using Rα(ε, ω, x) as follows:

Uα
ε (x, t) = 1√

2π

+∞∫

−∞
Rα(ε, ω, x)ĝα(ω)eiωt dω

− 1

a
√
2π

+∞∫

−∞

1∫

x

Rα(ε, ω, z)F̂(z, ω,Uα
ε (z, ω))eiωt dz dω·

We note that the analysis presented in this paper for the inhomogeneous problem is based
on Lemma 1. However, some terms in Rα(ε, ω, x) may not generally satisfy Lemma 1. This
implies that the method for the homogeneous problem cannot be applied for the inhomoge-
neous problem.

Remark 2 Convergence estimate (17) is a Hölder-type estimate and it is proved for x ∈ (0, 1).
We note thatwe have a faster convergence rate for x > 1. If x = 0,we also need a convergence
estimate. For this purpose, we assume that

sup
0≤z≤1

‖uz(z, .)‖L2(R) = P < ∞, P > 0.

Using (17), we have

‖u(0, .) − uα
ε (x, .)‖L2(R) ≤ ‖u(0, .) − u(x, .)‖L2(R) + ‖u(x, .) − uα

ε (x, .)‖L2(R)

≤ x sup
0≤z≤1

‖uz(z, .)‖L2(R) + Qεx ≤ Px + Qεx ,

where

Q = √
3 exp

(
3(1 − x)2K 2

2a2

)

×
⎡

⎢
⎣

√
√
√
√
√ sup

0≤x≤1

+∞∫

−∞
exp

(
2

a
|ω|γ cos

γπ

2
x

)

|̂u(x, ω)|2 dω + ε−1α

⎤

⎥
⎦ .

Following exactly the method given in Trong et al. (2007), we conclude that

‖u(0, .) − uα
ε (xε, .)‖L2(R) ≤ (P + Q)

√
1

ln
( 1

ε

) .
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Table 1 The relative errors for
γ = 0.1

x , α α = 0.1086 α = 0.05 α = 0.01

x = 0.15 1.16E+00 9.20E−01 7.55E−01

x = 0.25 1.04E+00 8.14E−01 6.60E−01

x = 0.35 9.20E−01 7.08E−01 5.63E−01

x = 0.45 8.08E−01 6.09E−01 4.74E−01

x = 0.55 7.01E−01 5.15E−01 3.89E−01

x = 0.65 6.12E−01 4.37E−01 3.18E−01

x = 0.75 5.41E−01 3.75E−01 2.62E−01

x = 0.85 4.99E−01 3.38E−01 2.28E−01

x = 0.95 4.89E−01 3.29E−01 2.20E−01

3 Numerical experiments

In this section, we examine the regularization method given in this paper with two problems.
Both examples are considered in the following form:

⎧
⎨

⎩

−aux (x, t) =0 Dγ
t u(x, t) + u + G(x, t), x > 0, t > 0,

u(1, t) = g(t), t ≥ 0,
u(x, 0) = limx→+∞ u(x, t) = 0.

(35)

The examples are solved for x ∈ (0, 1), t ∈ (0, 2π) and a = 1.2. We form the noisy data in
the following way:

gα(t) = g(t) + α (2 rand(size(.) − 1),

where α is the error level and rand(size(.)) is a random number in [−1, 1]. We generate
spatial and temporal discretizations by xi = i�x,�x = 1

M , i = 0, M and t j = j�t,�t =
2π
N , j = 0, N , respectively. We take M = N = 256 and a = 1.2 in the numerical examples
below. The discrete Fourier method is used to find the approximation of the regularized
solution. We also note that the nonlinear term in the regularized solution is controlled by
using Gauss–Legendre quadrature method given in Press et al. (1996). Errors between the
exact and its regularized solutions are estimated by the relative error estimation defined by

E(x) =
(∑N

j=0 |U ε(:, t j ) − u(:, t j )|2
)1/2

(∑N
j=0 |u(:, t j )|2

)1/2 .

Example 1 Consider inverse problem (35) for
{
G(x, t) = ax2 exp

(
− x3

3

)
t4 − exp

(
− x3

3

)
24t4−γ

�(5−γ )
− exp

(
− x3

3

)
t4,

g(t) = exp
(− 1

3

)
t4.

(36)

By noting G(x, t) = −aux (x, t) −0 Dγ
t u(x, t) − u, 0D

γ
t t

4 = 24t4−γ

�(5−γ )
and ux (x, t) =

−x2t4 exp(− x3
3 ), it is easy to check that u(x, t) = t4 exp(− x3

3 ) is the solution of (35) for
G(x, t) and g(t) given in (36). Tables 1, 2 and 3 show the relative errors for γ = 0.1, γ = 0.45
and γ = 0.9, respectively. It is very clear that the regularized solution converges to the exact
solution with different values of γ . The numerical results are also shown in Figs. 1, 2, 3, 4,
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Table 2 The relative errors for
γ = 0.45

x , α α = 0.1086 α = 0.05 α = 0.01

x = 0.15 1.29E+00 1.01E+00 8.18E−01

x = 0.25 1.13E+00 8.77E−01 7.05E−01

x = 0.35 9.77E−01 7.49E−01 5.93E−01

x = 0.45 8.37E−01 6.31E−01 4.91E−01

x = 0.55 7.06E−01 5.22E−01 3.96E−01

x = 0.65 6.00E−01 4.33E−01 3.19E−01

x = 0.75 5.17E−01 3.63E−01 2.59E−01

x = 0.85 4.67E−01 3.22E−01 2.24E−01

x = 0.95 4.54E−01 3.13E−01 2.16E−01

Table 3 The relative error for
γ = 0.9

x , α α = 0.1086 α = 0.05 α = 0.01

x = 0.15 9.71E−01 8.34E−01 7.41E−01

x = 0.25 8.76E−01 7.47E−01 6.59E−01

x = 0.35 7.70E−01 6.49E−01 5.67E−01

x = 0.45 6.63E−01 5.52E−01 4.76E−01

x = 0.55 5.57E−01 4.55E−01 3.86E−01

x = 0.65 4.68E−01 3.74E−01 3.10E−01

x = 0.75 3.97E−01 3.09E−01 2.49E−01

x = 0.85 3.55E−01 2.71E−01 2.14E−01

x = 0.95 3.46E−01 2.63E−01 2.06E−01

5 and 6 for different values of γ , α and x . From these Figures, it can be easily observed that
the numerical results near the boundary x = 1 are better than the ones around x = 0. That
is why the boundary condition is given analytically at x = 1 with only small measurement
errors. From Tables 1, 2 and 3, we can see that the error for α = 0.01 is less than the errors
for α = 0.05 and α = 0.1086. Moreover, we cannot see any relation between numerical
accuracy and the order γ of Caputo fractional derivative as in Zheng and Wei (2011c). The
reason is that the right-hand side of (17) may be a decreasing or an increasing function of γ

in some intervals.

Example 2 Consider inverse problem (35) for
⎧
⎪⎪⎨

⎪⎪⎩

G(x, t) = γ tγ+1

�(1 − γ )

(
a

(x + 1)2
− 1

(x + 1)

)

− γ (γ + 1)!t
(x + 1)�(2)�(1 − γ )

,

g(t) = γ tγ+1

2�(1 − γ )
·

(37)

By noting that 0D
γ
t u = γ t(γ + 1)!

(x + 1)�(1 − γ )�(2)
, ux (x, t) = − γ tγ+1

�(1 − γ )(x + 1)2
, u(x, 0) =

0 and

lim
x→+∞ u(x, t) = lim

x→+∞
γ tγ+1

(x + 1)�(1 − γ )
= 0,
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Fig. 1 The exact and regularized solutions for γ = 0.1 and x = 0.35

Fig. 2 The exact and regularized solutions for γ = 0.1 and x = 0.65
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Fig. 3 The exact and regularized solutions for γ = 0.45 and x = 0.35

Fig. 4 The exact and regularized solutions for γ = 0.45 and x = 0.65
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Fig. 5 The exact and regularized solutions for γ = 0.9 and x = 0.35

Fig. 6 The exact and regularized solutions for γ = 0.9 and x = 0.65
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Table 4 The relative errors between exact solution and the regularized solution for γ = 0.1

x , α α = 0.2086 α = 0.05 α = 0.02 α = 0.01

x = 0.11 0.7635317 0.252512587 0.183867595 0.152466191

x = 0.33 0.788320251 0.281986478 0.184129443 0.148419919

x = 0.55 0.806174486 0.240119711 0.185342757 0.1419990451

x = 0.77 0.574524471 0.210412969 0.156846767 0.157654904

x = 0.99 1.354317 0.195685175 0.229835052 0.13844801

Table 5 The relative errors between exact solution and the regularized solution for γ = 0.45

x , α α = 0.2086 α = 0.05 α = 0.02 α = 0.01

x = 0.11 0.608790934 0.235966663 0.168524039 0.143631154

x = 0.33 0.631142913 0.250958095 0.170172446 0.144866765

x = 0.55 0.687332575 0.237741415 0.171604018 0.145714397

x = 0.77 0.593704729 0.240012391 0.161175947 0.140351604

x = 0.99 0.584578057 0.243626184 0.172139829 0.138123937

Table 6 The relative errors between exact solution and the regularized solution for γ = 0.9

x , α α = 0.2086 α = 0.05 α = 0.02 α = 0.01

x = 0.11 0.608790934 0.235966663 0.168524039 0.143631154

x = 0.33 0.631142913 0.250958095 0.170172446 0.144866765

x = 0.55 0.687332575 0.237741415 0.171604018 0.145714397

x = 0.77 0.593704729 0.240012391 0.161175947 0.140351604

x = 0.99 0.584578057 0.243626184 0.172139829 0.138123937

Fig. 7 The exact and regularized solutions for γ = 0.1 and α = 0.2086

it is easy to check that the following function is the solution to (35):

u(x, t) = γ tγ+1

(x + 1)�(1 − γ )
· (38)

The difference of this example from the first example is that the solution u(x, t) depends
on γ as it is seen in (38). Similar to Example 1, it is clear that the regularized solution
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Fig. 8 The exact and regularized solutions for γ = 0.1 and α = 0.05

Fig. 9 The exact and regularized solutions for γ = 0.1 and α = 0.02

Fig. 10 The exact and regularized solutions for γ = 0.1 and α = 0.01

converges to the exact solution with different values of γ . We also observe that the errors
are generally bigger than the ones in Example 1. That is why the solution depends on γ .
In contrast to Example 1, it can be easily seen that if γ increases, the numerical accuracy
decreases. Tables 4, 5 and 6 show the relative errors for γ = 0.1, γ = 0.45 and γ = 0.9,
with parameter regularization α = 0.2086, α = 0.05, α = 0.02 and α = 0.01, respectively.
The numerical results are also shown in Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18
for different values of γ , α and x .
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Fig. 11 The exact and regularized solutions for γ = 0.45 and α = 0.2086

Fig. 12 The exact and regularized solutions for γ = 0.45 and α = 0.05

Fig. 13 The exact and regularized solutions for γ = 0.45 and α = 0.02

4 Conclusion

In this paper, we consider an inverse problem for a time fractional diffusion equation with
a nonlinear source. The inverse problem here is studied for the linear source function
F(x, t, u) = b(x, t)u(x, t) + H(x, t), where L∞([0, T ]; L2(R)) and L2([0, 1]; L2(R)) in
Tuan et al. (2016). We note that the proof in this paper is based on Lemma 1. We present a
modified method to regularize the solution and investigate the convergence rate between the
regularized solution and the sought solution. We have many possible stability terms in the
homogeneous case.However, in the nonlinear case, the solution u is given an integral equation
whose right-hand side depends on the solution u thatmakes the nonlinear case difficult. In this
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Fig. 14 The exact and regularized solutions for γ = 0.45 and α = 0.01

Fig. 15 The exact and regularized solutions for γ = 0.9 and α = 0.2086

Fig. 16 The exact and regularized solutions for γ = 0.9 and α = 0.05

paper, we develop some new techniques to overcome these difficulties. Numerical examples
are given to illustrate our results. In the future, we extend the results in this paper for more
general source term F(x, t, u(x, t), ux (x, t)). We also plan to determine the source term
numerically in the time-fractional equation −aux (x, t) =0 Dγ

t u(x, t) + F(x, t, u(x, t)). In
this context, we prove the existence and uniqueness to the solution. Then after we show that
the inverse problem is ill posed, we find a regularized solution. Later, we will study simul-
taneous determination problem of the diffusivity coefficient a and the order of the Caputo
time fractional derivative γ for both numerically and theoretically. These are subjects of the
future studies by the authors of this paper.
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Fig. 17 The exact and regularized solutions for γ = 0.9 and α = 0.02

Fig. 18 The exact and regularized solutions for γ = 0.9 and α = 0.01
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