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Abstract
In this paper, we will present a variational PDE-based image inpainting model in which we
have used the square of the L2 norm of Hessian of the image u as regularization term. The
Euler–Lagrange equation will lead us to a fourth-order linear PDE. For time discretization,
we have used convexity splitting and the resulting semi-discrete scheme is solved in Fourier
domain. Stability analysis for the semi-discrete scheme is carried out. We will demonstrate
some numerical results and compare with TV − L2 and TV − H−1 model.
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1 Introduction

Image inpainting is a process of filling in the missing part of an image from the information
of its surroundings. Mathematically inpainting of an image is an extrapolation of the image.
Image inpainting is an important area of research in the field of image processing. Inpainting
has lot of applications in real life such as in restoration of ancient frescoes and in reduction
of artifacts in MRI, CT, and PET images.

There are several methods for inpainting such as exemplar-based (Criminisi et al. 2003),
stochastic methods (Li 2011), texture synthesis (Efros and Leung 1999), wavelet based
(Dobrosotskaya and Bertozzi 2008) and PDE-based methods (Chan and Shen 2001a, b;
Bertozzi et al. 2007a).Wewill focus on PDE-basedmethods. PDE-basedmethods influenced
the researcher because it has a strongmathematical background andmost of the physical phe-
nomenon can be represented by PDEs. It helps us to understand the underlying physics and
can come up with new fruitful model and numerical scheme.
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In PDE-based methods the PDE can be obtained by minimizing an energy functional or we
can propose a PDE directly for inpainting. If the PDE is obtained by minimizing an energy
functional then the method is called a variational method.

Let u be the restored (inpainted) image from the given image f defined on a domain
Ω ⊂ R

2 with D ⊂ Ω as missing part (to be inpainted) then the energy E(u) used for
minimizing in the variational inpainting method has the form:

min
u∈B2

{E(u) = R(u) + λ‖ f − u‖2B1}, (1)

where B1 and B2 are two Banach spaces with B2 ⊆ B1, f ∈ B1 and λ defined as

λ(x) =
{

λ0 in Ω\D
0 in D

(2)

with λ0 � 1.
The term R(u) is called regularization term, ‖ f − u‖2B1 is called fidelity term and λ is

called fidelity parameter which forces the inpainting image to remain closer to the original
image outside the domain D. Regularization term R(u) plays an important role in image
inpainting. Several models have been proposed by choosing different R(u).

The first variational method for inpainting is introduced in Chan and Shen (2001a). They
have chosen R(u) = ∫

Ω
|∇u|dxdy, total variation (TV) of u, and B1 = L2 and B2 = BV(Ω),

space of bounded variation. This inpainting model (Chan and Shen 2001a) is known as
TV − L2 inpainting model. The Euler–Lagrange equation for TV − L2 model will give a
second-order equation.

The problem with the second-order models is that they are not able to fill the large gaps
and unable to connect the level lines in the missing domain. So the authors Chan and Shen
(2001b) proposed a third-order model based on TVwhich is called curvature-driven diffusion
(CDD) model. This work is motivated by the work of Perona and Malik (1990) introduced
for image denoising.

Later on motivated by the segmentation work of Nitzberg et al. (1993) and Chan et al.
(2002) a fourth-order model called Euler Elastica (EE) model was proposed. This work is
also related to the earlier work of Masnou and Morel (1998) but the new approach is a
functionalized model and in the current model have consider elastica energy in terms of u,
whereas inMasnou andMorel (1998) elastica curve is chosen for the level lines of the image.
In EE model R(u) is chosen as

∫
Ω

(a + bκ2)|∇u|dxdy, where a and b are constants and
κ = ∇ · ∇u

|∇u| is curvature.
The first work for PDE-based inpainting was proposed by Bertalmio et al. (2000). They

imitate the technique of museum artists and propose a third-order nonlinear PDE for inpaint-
ing. In the later work (Bertalmio et al. 2001), authors found that the third-order PDE proposed
in Bertalmio et al. (2000) is connected to two-dimensional Navier–Stokes (NS) equation.
They found that the problem proposed in Bertalmio et al. (2000) is related to the inviscid
Euler equations from incompressible flow where the image intensity acts like the stream
function in the fluid problem. Esedoglu and Shen (2002) have proposed an inpainting model
based on theMumford and Shah (1989) image segmentation model and they have shown that
this model is not suitable for inpainting. So in the same paper (Esedoglu and Shen 2002), they
improve the model using the idea of Euler Elastica (Chan et al. 2002) model. They penalize
square of the curvature along an edge contour and proposed a model called Mumford–Shah–
Euler image inpainting model. This model results in a fourth-order nonlinear parabolic PDE
containing a small parameter.

123



A linear fourth-order PDE-based gray-scale image inpainting model Page 3 of 21 6

Later on, Bertozzi et al. (2007a) have proposed a new inpainting model by modifying the
Cahn–Hilliard equation generally used inmaterial science for phase separation phenomena. In
the later work (Bertozzi et al. 2007b), authors have done some analysis of the Cahn–Hilliard-
based inpainting model. Since the Cahn–Hilliard model (Bertozzi et al. 2007a) contains a
bimodal potential the model is effective for binary image inpainting only. Burger et al. (2009)
have generalized the model of Bertozzi et al. for inpainting of gray-scale images. The model
of Burger et al. (2009) is also known as TV − H−1 model. Recently, many authors have
tried to generalize the binary inpainting model of Bertozzi et al. in Cherfils et al. (2017),
Vijayakrishna (2015) and Theljani et al. (2017). In Schönlieb and Bertozzi (2011), authors
have used the binary inpainting model bitwise to gray-scale image for gray-scale image
inpainting.

As we mentioned earlier that because of the bimodal potential, the Cahn–Hilliard model
is applicable for binary image only so now the question is can we avoid the potential term and
still get a model which is applicable for both binary and gray images. In this paper, we have
shown that indeed we can get rid of the potential term and the proposed model is motivated
by the denoising work (Kašpar and Zitová 2003). The generalized model (Burger et al. 2009)
is nonlinear in nature which is difficult to solve and time consuming. So in this current work
we will propose a linear model which is faster and effective for gray-scale image inpainting.

The paper is organized as follows: in Sect. 2 we have discussed some related existing
models and followed it by our proposed model. Section 3 talks about the numerical scheme
for our proposed model. In Sect. 4, we have presented the existence and uniqueness theorem,
and an overview of the proof and at the end we have presented the stability analysis of the
numerical method. In Sect. 5, we have presented the numerical results of our model and also
compared our results with models such as TV − L2 and TV − H−1. Finally, in Sect. 6 we
draw some conclusion about our model and calculated results.

2 Proposedmodel and some existingmodel

2.1 TV− L2 model

TV−L2 inpaintingmodel is a variational type of inpaintingmodel. In this case, regularization
term R(u) = ∫

Ω
|∇u|dxdy and fidelity term is taken in L2 norm. The minimization energy

is:

E(u) =
∫

Ω

|∇u|dxdy + λ

2

∫
Ω

( f − u)2dxdy. (3)

Corresponding Euler–Lagrange equation will be

− ∇ · ∇u

|∇u| + λ(u − f ) = 0. (4)

Then the steepest descent equation for E is

ut = ∇ · ∇u

|∇u| + λ( f − u). (5)

2.2 Cahn–Hilliard inpaintingmodel

This model is based on the Cahn–Hilliard equation (6) which arises in material science to
simulate the physical phenomena called phase separation for a heated mixture of alloys. It
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simulates the evolutionary process of a mixed binary alloy separating into separate metal
ingredients over a particular time interval. It is basically divided into two stages that occurs
right after the sudden cooling of the mixture. The Cahn–Hilliard equation has the following
form:

ut = Δ(−ε2Δu + W ′(u)), (6)

where W (u) = u2(1 − u)2 is bimodal (double-well) potential.
Bertozzi et al. (2007a) havemodified this CH equation (6) by adding the fidelity termλ( f −u)

and used it for binary image inpainting. So the modified Cahn–Hilliard equation used for
inpainting is as follows:

ut = Δ

(
−εΔu + 1

ε
W ′(u)

)
+ λ( f − u). (7)

This equation is sum of gradient of two energies. The first part is gradient of the energy E1

in H−1 norm with

E1(u) =
∫

Ω

ε

2
|∇u|2 + 1

ε
W (u) dxdy (8)

and the fidelity part is gradient of E2 in L2 norm where

E2(u) =
∫

Ω

λ

2
( f − u)2 dxdy. (9)

They have used convexity splitting to both the energies E1 and E2, which is proposed by
Eyre (1998) for solving this equation.

2.3 TV− H−1 model

As the double-well potential W (u) is present in Eq. (7), CH inpainting model is applicable
for binary inpainting only. The model proposed in Burger et al. (2009) is a generalization of
CHmodel for gray-value image. With an approximation to the TV functional TV(u) in terms
of ε and a bimodal potential W (u), they have defined a sequence of functionals J ε(u, v)

involving an entirely different fidelity term in H−1 norm to that of the usual L2 fidelity. For
a given f and v ∈ L2(Ω), define J ε(u, v) as follows:

J ε(u, v) =
∫

Ω

(
ε

2
|∇u|2 + 1

ε
W (u)

)
dxdy

+ 1

2τ
‖u − v‖2−1 + λ0

2

∥∥∥∥u − λ

λ0
f −

(
1 − λ

λ0

)
v

∥∥∥∥
2

−1
, (10)

which was shown to Γ -converge, as ε → 0 in the topology of L1(Ω), to J (u, v), given by,

J (u, v) = TV(u) + 1

2τ
‖u − v‖2−1 + λ0

2

∥∥∥∥u − λ

λ0
f −

(
1 − λ

λ0

)
v

∥∥∥∥
2

−1
. (11)

It was practically accomplished for the generalized inpainting using sub-gradients (∂) of
the TV functional TV(u) within the flow, which leads to structure inpainting with smooth
curvature of level sets. The inpainted image u of f ∈ L2(Ω) shall evolve via

ut = Δp + λ( f − u), p ∈ ∂TV(u), (12)
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where TV(u) can be defined using the distributional derivative of u, i.e. Du, as

TV(u) =
{

|Du(Ω)| := ∫
Ω

|Du|dxdy if |u(x)| ≤ 1 a.e. in Ω

+∞ otherwise.
(13)

For the sake of computations a regularized form for the sub-gradient p = ∇ · ∇u
|∇u| with a

parameter δ given by ∇ · ∇u√
|∇u|2+δ2

was considered. For more information on the nature of

p ∈ ∂TV(u) and various parameters involved in the model, refer Burger et al. (2009) which
also includes a proof on the existence of a minimizer to J ε(u, v) using fixed point theory
approach.

2.4 Proposedmodel

Themodel which we are going to propose is of variational type.We choose the regularization
term R(u) as

∫
Ω

(u2xx + 2u2xy + u2yy)dxdy, which is used for denoising in Kašpar and Zitová
(2003) and B1 = B2 = L2(Ω). Then the minimization energy (1) is reduced to:

min

{
E(u) =

∫
Ω

(u2xx + 2u2xy + u2yy)dxdy + λ

2

∫
Ω

( f − u)2dxdy

}
. (14)

The corresponding Euler–Lagrange equation is:

Δ2u + λ(u − f ) = 0, (15)

where Δ2 is biharmonic operator and λ is same as in (2).
But biharmonic operator is smoothing the images so we want a parameter ε to control the
smoothing. So we consider the following:

εΔ2u + λ(u − f ) = 0. (16)

If we evolve with respect to time t then the equation will reduces to:

ut = −εΔ2u + λ( f − u). (17)

Note that our model is a linear model and does not contain any potential term. We impose
the boundary condition:

∂u

∂ν
= 0 = ∂Δu

∂ν
(18)

where ν is the outward normal vector to the boundary of Ω .

Remark In Papafitsoros et al. (2013), an attempt has been made without much success to
deal with binary inpainting problem using (17) for λ = 2. No discussion on either numerical
scheme or on methodology is provided in Papafitsoros et al. (2013).

3 Convexity splitting and numerical scheme

The numerical solution has been obtained using the finite difference approach similar to
Bertozzi et al. (2007a). The proposed PDE model is first discretized in time according to the
convexity splitting of the related functional, proposed by Eyre (1998) and then the discrete
Fourier transform has been applied on the entire expression to get an explicit discrete formula
for the solution in Fourier domain. Finally, the discrete inverse Fourier transform has been
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taken on the solution obtained in Fourier domain to get the required solution in special
domain.

Convexity splitting methods are used widely in optimization. It usually used to solve gra-
dient system and also applicable to the evolution equations which do not follow a variational
principle. Consider the problem of the type:

ut = −∇E .

In convexity splitting, we split the energy E as

E(u) = Ec(u) − Ee(u),

where Ec and Ee are strictly convex, i.e. −Ee is concave. In the resulting scheme, convex
part is considered implicitly and concave part is taken explicitly.
For the numerical approximation of u(t), the convexity splitting of E being used with the
time-step Δt as follows:

Uk+1 −Uk = Δt
[∇Ee(Uk) − ∇Ec(Uk+1)

]
.

HereUk+1 andUk denote the approximations to u(t) at t = tk+1(= (k+1)Δt) and t = tk(=
kΔt), respectively. Like Cahn–Hilliard equation (7), Eq. (17) can be derived as the gradient
flow of the energies F1 in H−1 and F2 in L2 norm, where

F1(u) =
∫

Ω

ε

2
|∇u|2dxdy, F2(u) =

∫
Ω

λ

2
( f − u)2dxdy. (19)

The convexity splitting idea for our model is as follows. Science F1 is convex so we will split
F2 only. Write F2 = F21 − F22 with

F21 =
∫

Ω

C2

2
|u|2dxdy and

F22 =
∫

Ω

(
−λ

2
( f − u)2 + C2

2
|u|2

)
dxdy.

Hence, the resulting time-stepping scheme for the above-stated choices of convexity splittings
for F1 and F2 is

Uk+1 −Uk

Δt
= −∇H−1F1(Uk+1) + ∇L2(F22(Uk) − F21(Uk+1)), (20)

where ∇H−1 is gradient in H−1 inner product and ∇L2 is gradient w.r.t the L2 inner product.
Finally, we arrive at a super-positioned gradient flow for the energy that evolves from two
different inner products from the Hilbert spaces H−1 and L2 as

Uk+1 −Uk

Δt
+ εΔ2Uk+1 + C2Uk+1 = λ( f −Uk) + C2Uk (21)

whereC2 are positive and should be large enough to make F21 and F22 as convex functionals.
For the numerical evaluations of our proposed model, we used an unconditionally stable
numerical scheme convexity splitting (21) for the time variable and the Fourier spectral
(Gillette 2006) method for the space variable.

Applying the two-dimensional (2D) Discrete Fourier Transform (DFT) on (21) to get an
explicit formula for ûk+1 in frequency domain, given by

Ûk+1 (l,m) =
(
1 + C2Δt

)
Ûk(l,m) + Δt ̂(λ( f −Uk))(l,m)

1 + Δt(εM2
l,m + C2)

(22)
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with Ml,m for l = 0, 1, 2, . . . , N − 1 and m = 0, 1, 2, . . . , M − 1 are given by Gillette
(2006),

Ml,m = 2

(Δx)2

(
cos

(
2πl

N

)
− 1

)
+ 2

(Δy)2

(
cos

(
2πm

M

)
− 1

)
,

where N × M is the size of the image, and Δx and Δy are the step size in x direction and y
direction, respectively.

At every step, we compute the 2D-inverse DFT of ûn+1 and extract its real part to get
un+1. Here we have used the relation Δ̂u(l,m) = Ml,mû(l,m) whose derivation is given in
the thesis of Gillette (2006).

4 Analysis of proposedmodel

In this section,wewill prove the existence anduniqueness of the solution of both the stationary
equation (16) and the parabolic equation (17). The existence of the solution of the Eq. (16)
follows from the Lax–Milgram lemma and for Eq. (17), we will follow the Faedo–Galerkin
approach. Before going into the proof let us define the space V := {v ∈ H2(Ω) : ∂v

∂ν
=

0 on ∂Ω} and define the energy norm on V as ‖v‖V = (ε‖Δv‖2 + λ0‖v‖2) 1
2 .

Lemma 1 Temam (1997) For any λ > 0, ‖ · ‖V is a norm in V which is equivalent to H2

norm.

4.1 Existence of steady-state equation

Here we will prove the existence and uniqueness of the steady-state equation (16). Eq. (16)
can be written as

εΔ2u + λu = λ f (23)

and impose the boundary condition

∂u

∂ν
= 0 = ∂Δu

∂ν
. (24)

Now multiplying (23) by v ∈ V and integrating over Ω we get∫
Ω

Δ2uv +
∫

Ω

λuv =
∫

Ω

λ f v.

Applying integration by parts and using the two times in the first term and using the boundary
condition we get the weak form of the Eq. (23) as

ε

∫
Ω

ΔuΔv +
∫

Ω

λuv =
∫

Ω

λ f v. (25)

Theorem 1 There exist a unique solution of Eq. (25) in the space V which continuously
depend on initial data.

Proof Eq. (25) can be written as

a(u, v) = L(v),
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where the bilinear form a(u, v) = ∫
Ω

ΔuΔv + ∫
Ω

λuv and the liner form L(v) = ∫
Ω

λ f v.
Clearly the bilinear form a is coercive. We will prove the boundedness of the bilinear form
a in ‖ · ‖V norm.

a(u, v) = ε

∫
Ω

ΔuΔv +
∫

Ω

λuv

≤ ε‖Δu‖‖Δv‖ + √
λ0‖u‖√λ0‖v‖

≤ ‖u‖V ‖v‖V (by Holder’s inequality).

Hence a is bounded and boundedness of f is obvious. Hence by Lax–Milgram lemma the
theorem follows.

4.2 Existence and uniqueness of Eq. (17)

Multiplying (17) by v ∈ V and integrating over Ω , and using the Green’s formula and the
boundary condition (18) we get the weak form as〈

∂u

∂t
, v

〉
+ ε〈Δu,Δv〉 = 〈λ( f − u), v〉, ∀v ∈ V (26)

with u(x, y, 0) = f (x, y).

Theorem 2 Let f ∈ L2(Ω), and every T > 0, there exists a unique solution u of the initial
boundary value problems (17) and (18) which belongs to C([0, T ]; L2) ∩ L2([0, T ]; V ).

Proof The existence proof follows a similar argument as in Bertozzi et al. (2007b). First we
establish an L2 estimate involving the fidelity term. Putting v = u in (26) we get

1

2

d

dt

∫
Ω

u2 = −ε

∫
Ω

(Δu)2 +
∫

Ω

λu( f − u). (27)

Now ∫
Ω

λu( f − u) ≤ λ0

2

∫
Ω

f 2 − λ0

2

∫
Ω

u2.

Using this estimate in (27) we get

1

2

d

dt

∫
Ω

u2 + ε

∫
Ω

(Δu)2 ≤ λ0

2

∫
Ω

f 2 − λ0

2

∫
Ω

u2, (28)

which implies
1

2

d

dt

∫
Ω

u2 ≤ λ0

2

∫
Ω

f 2 − λ0

2

∫
Ω

u2. (29)

Applying Gronwall’s lemma we will get a priori bound on u in L2 norm on any interval
[0, T ). If λ is sufficiently large then we will get a uniform in time bound of u(·, t) in the L2

norm.
The existence result follows by invoking Galerkin method and passing to the limit.

Uniqueness Let u and v be two different solutions of the problem (17). We have

ut = −εΔ2u + λ( f − u) (30)

vt = −εΔ2v + λ( f − v). (31)
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On subtracting one from the other and taking z := u − v it will be

zt = −εΔ2z − λz.

Taking inner product with z on both sides.

〈zt , z〉 = −ε〈Δz,Δz〉 − λ〈z, z〉
or

1

2

d

dt
‖z‖2 = −ε‖Δz‖2 − λ‖z‖2. (32)

Notice that d
dt ‖z‖2 ≤ 0 for z(0) = 0 and d

dt ‖z‖2 ≤ 0 implies ‖z(t)‖ = 0 ∀ t ≥ 0. Hence
z(x, t) = 0 for almost every x ∈ Ω and ∀ t ≥ 0. For every t ≥ 0, u(x, t) = v(x, t), a.e. x ∈
Ω where x = (x, y).

4.3 Unconditional stability of the scheme

Theorem 3 Let u be the exact solution of (17) and at time kΔt the exact solution denoted
by uk = u(kΔt) for a time step Δt > 0 and k ∈ N. Let Uk be the solution of (21) at k-th
iteration with constant C2 > λ0. Then the following statements holds:
(a) Assuming ‖utt‖ and ‖Δ2ut‖2 are bounded, the scheme is consistent with the continuous

equation and it is of order 1 in time.
(b) For fixed T , the solutionUk is bounded on [0, T ], for allΔt > 0. More over for kΔt ≤ T ,

we have

‖Uk‖2 +Δt K1‖ΔUk‖2 ≤ eKT (‖U0‖2 +Δt K1‖ΔU0‖2 +ΔtTC(Ω, D, λ0, f )), (33)

for every Δt > 0, and K1 and K are some constants and constant C depending on
Ω, D, λ0, f .

(c) The discretization error ek = uk − Uk. For smooth solution uk and Uk, the error ek
converges to 0 as Δt → 0. For fixed T > 0 and kΔt ≤ T , we have

‖ek‖2 + ΔtM1‖Δek‖2 ≤ T
M2

eM3T (Δt)2

for suitable positive constants M1, M2, M3.

Proof (a) Let τk be the local truncation error. Then τk can be obtained by subtracting Eq. (17)
from (21).

τk =
{
uk+1 − uk

Δt
+ εΔ2uk+1 + C2uk+1 − λ( f − uk) − c2uk

}
− {ut (kΔt) + εΔ2uk − λ( f − uk)}

= uk+1 − uk
Δt

− ut (kΔt) + εΔ2(uk+1 − uk) + C2(uk+1 − uk). (34)

Using the Taylor series theorem and the assumption on ‖utt‖, ‖Δ2ut‖2 and ‖ut‖2 we will
get the global truncation error τ as

τk = max
k

‖τk‖ = O(Δt) as Δt → 0.

Putting value of ut from Eq. (17) in (34) we get

τk = uk+1 − uk
Δt

+ εΔ2uk+1 − λ( f − uk) + C2(uk+1 − uk). (35)

��
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Proof (b) Let us consider the discrete model

Uk+1 −Uk

Δt
+ εΔ2Uk+1 + C2Uk+1 = C2Uk + λ( f −Uk). (36)

Multiply Eq. (36) with Uk+1 and integrate over Ω we get

1

Δt
(‖Uk+1‖2 − 〈Uk,Uk+1〉) + ε‖ΔUk+1‖2 + C2‖Uk+1‖2

= C2〈Uk,Uk+1〉 + 〈λ( f −Uk),Uk+1〉.

Using Young’s inequality we obtain

1

2Δt

(‖Uk+1‖2 − ‖Uk‖2
) + ε‖ΔUk+1‖2 + C2‖Uk+1‖2

≤ C2

2
‖Uk‖2 + C2

2
‖Uk+1‖2 + 1

2
‖λ( f −Uk)‖2 + 1

2
‖Uk+1‖2. (37)

Now we use the estimate

‖λ( f −Uk)‖2 ≤ 2λ20‖Uk‖2 + C(Ω, D, λ0, f ). (38)

Using the estimate (38) in Eq. (37) rearranging the terms we get

(
1

2Δt
+ C2

2
− 1

2

)
‖Uk+1‖2 + ε‖ΔUk+1‖2

≤
(

1

2Δt
+ C2

2
+ λ20

)
‖Uk‖2 + ε‖ΔUk‖2 + C(Ω, D, λ0, f ). (39)

Since C2 > λ0 > 1, the coefficients in (39) are positive. Multiply both side of above
inequality with 2Δt and putting M1 = 1+ Δt(C2 − 1) and M2 = 1+ Δt(C2 + 2λ20) we get

M1‖Uk+1‖2 + 2εΔt‖ΔUk+1‖2 ≤ M2‖Uk‖2 + 2εΔt‖ΔUk‖2 + ΔtC(Ω, D, λ0, f ).

Dividing by M1 we have

‖Uk+1‖2 + Δt
2ε

M1
‖ΔUk+1‖2

≤ M2

M1
‖Uk‖2 + Δt

2ε

M1
‖ΔUk‖2 + ΔtC(Ω, D, λ0, f )

≤ M2

M1

(
‖Uk‖2 + Δt

2ε

M2
‖ΔUk‖2

)
+ ΔtC(Ω, D, λ0, f )

≤ M2

M1

(
‖Uk‖2 + Δt

2ε

M1
‖ΔUk‖2

)
+ ΔtC(Ω, D, λ0, f ), (40)

the last inequality we get by multiplying the 2nd term of the bracket by M2
M1

which is bigger
than 1.
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By induction it follows that

‖Uk+1‖2 + Δt
2ε

M1
‖ΔUk+1‖2

≤
(
M2

M1

)k (
‖U0‖2 + Δt

2ε

M1
‖ΔU0‖2

)
+ Δt

k−1∑
i=0

(
M2

M1

)i

C(Ω, D, λ0, f )

= (1 + K1Δt)k
(

‖U0‖2 + Δt
2ε

M1
‖ΔU0‖2

)
+ Δt

k−1∑
i=0

(1 + K1Δt)iC(Ω, D, λ0, f ).

(41)

Hence for kΔt ≤ T we obtain

‖Uk+1‖2 + Δt
2ε

M1
‖ΔUk+1‖2 ≤ eKT

(
‖U0‖2 + Δt

2ε

M1
‖ΔU0‖2 + TC(Ω, D, λ0, f )

)
,

which gives the required result. ��

Proof (c) Subtracting Eq. (21) from (35) and rearranging the terms we get that the discretiza-
tion error ek = uk −Uk satisfies

ek+1 − ek
Δt

+ εΔ2ek+1 + C2ek+1 = C2ek − λek + τk . (42)

Multiply by ek+1 and integrating over Ω we get

1

Δt
(‖ek+1‖2 − 〈ek, ek+1〉) + ε‖Δek+1‖2 + C2‖ek+1‖2

= C2〈ek, ek+1〉 − 〈λek, ek+1〉 + 〈τk, ek+1〉.
Applying Young’s inequality leads to

1

2Δt
(‖ek+1‖2 − ‖ek‖2) + ε‖Δek+1‖2 + C2‖ek+1‖2

≤ C2

2
‖ek‖2 + C2

2
‖ek+1‖2 + λ20‖ek‖2 + 1

4
‖ek+1‖2 + ‖τk‖2 + 1

4
‖ek+1‖2.

After simplifying we get(
1

2Δt
+ C2

2
− 1

2

)
‖ek+1‖2 + ε‖Δek+1‖2 ≤

(
1

2Δt
+ C2

2
+ λ20

)
‖ek‖2 + 1

2
‖τk‖2

≤
(

1

2Δt
+ C2

2
+ λ20

)
‖ek‖2 + ε‖Δek‖2 + 1

2
‖τk‖2. (43)

Multiply both side 2Δt and putting M1 = 1 + Δt(C2 − 1) and M2 = 1 + Δt(C2 + λ20) we
get

M1‖ek+1‖2 + 2εΔt‖Δek+1‖2 ≤ M2‖ek‖2 + 2εΔt‖Δek‖2 + Δt‖τk‖2. (44)

Dividing by M1 and adjusting the coefficient we get

‖ek+1‖2 + Δt
2ε

M1
‖Δek+1‖2 ≤ M2

M1

(
‖ek‖2 + Δt

2ε

M1
‖ΔUk‖2

)
+ Δt

M1
‖τk‖2. (45)
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By induction on k we obtain

‖ek+1‖2 + Δt
2ε

M1
‖Δek+1‖2 ≤

(
M2

M1

)k+1 (
‖e0‖2 + Δt

2ε

M1
‖Δe0‖2

)

+ Δt

M1

k∑
i=0

(
M2

M1

)i

max
i≤k

‖τi‖2

= Δt

M1

k∑
i=0

(1 + K1Δt)i max
i≤k

‖τi‖2

≤ Δt

M1
keK1kΔt max

i≤k
‖τi‖2,

where the information e0 = 0 and 1 ≤ M2
M1

= 1+ K1Δt have been used. Hence, using bound
on truncation error and kΔt ≤ T we obtain

‖ek+1‖2 + Δt
2ε

M1
‖Δek+1‖2 ≤ T

M1
eK1T O(Δt)2. (46)

5 Numerical results

Here, we will present numerical results of our model on some standard test images typically
used for inpainting. We will compare our results with the results of TV − L2 model (5) and
TV− H−1 inpainting model. To compare the quality of the result we have calculated PSNR,
SNR and SSIM of resulting images. Now we will introduce the above-mentioned measures.

(a) Peak signal to noise ratio (PSNR) is the ratio of maximum possible value of the original
image and the mean squared error between the original and the resulting image. The
formula for PSNR is as follows:

PSNR = 10 log10

∑row
i=1

∑col
j=1 255

2∑row
i=1

∑col
j=1[I (i, j) − B(i, j)]2 ,

where I is the original image and B is the recovered image. Higher PSNR indicates the

better the processed image. SNR = σ 2
I

σ 2
B
where σ 2 is variance.

(b) Signal to noise ratio (SNR) is defined as the ratio of the variance of the original image
and recovered image. Higher SNR implies the better inpainting.

(c) Structural Similarity Index (SSIM) is defined to measure the similarity between two
images (Wang and Bovik 2002). SSIM is defined as follows:

SSIM(I , B) = (2μIμB + c1)(2σI B + c2)

(μ2
I + μ2

B + c1)(σ 2
I + σ 2

B + c2)

where μ, σ represents mean and variance of the corresponding image and c1 =
(0.01L)2, c2 = (0.03L)2, here dynamic range L = 255. Higher the SSIM implies
the better recovery of the image.

The parameters used for our model are as follows: λ0 = 105, Δt = 1, Δx = Δy = 0.25
and the constantsC2 = λ0. For the parameters of TV−H−1 and TV− L2, we have followed
Sch önlieb (2009) and for these two models we have used the code available on the web
(Schönlieb 2012). Our results are calculated in two stages. In the first stage, we put ε = 2
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Fig. 1 Left to right: damaged image, image with mask, result by our model

Fig. 2 First row: original image, damaged image and second row: inpainting results of TV− L2, TV− H−1,
and our model

and in the second stage we set ε to 0.1. In the first stage, the process repairs the damaged
portion and second stage helps to get better quality of the image obtained in the first stage.
We have calculated PSNR in each 50 iterations and stopped our algorithm when difference
between the two consecutive calculated PSNR is less than 10−3. In Fig. 1, we have shown a
damaged image and the recovered image by our model. For this image, the first stage lasts
for 1400 iterations and second stage is run with ε = 0.01 for 100 iterations.

In Figs. 2 and 3, we have shown inpainting result of an elephant image with two different
inpainting domains. In the first row of the corresponding figure, we have shown the original
and damaged image of an elephant and in the second rowwe have shown the inpainting results
of TV − L2, TV − H−1 and our model. From the figure, one can see that our results are
visually better (see: tree, back of elephant) than the other two. Table 1 contains the measures
PSNR, SNR and SSIM for all the three methods. From the table we can see that our model
gives the best results among the three in terms of PSNR, SNR and SSIM. Also our model
takes less time in comparison of the other two although models.

In the first row of Fig. 4, we have presented the original kaleidoscope image and a damaged
image with somemissing part, and the second row contains the inpainting results of TV−L2,
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Fig. 3 First row: original image, damaged image and second row: inpainting results of TV− L2, TV− H−1,
and our model

Fig. 4 First row: original image, damaged image and second row: inpainting results of TV− L2, TV− H−1,
and our model
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Table 1 Table for comparison of results of Grayscale images

Image Model PSNR SNR SSIM Iteration Time taken

Elephant 1 Our 28.23 21.41 0.9002 150 + 250 1.90

TV − L2 27.36 20.54 0.8727 1200 15.53

TV − H−1 28.04 21.23 0.8685 1300 17.27

Elephant 2 Our 36.58 29.76 0.9865 2900 + 100 13.85

TV − L2 33.82 27.01 0.9500 3400 41.05

TV − H−1 32.18 25.36 0.9167 4000 51.50

Kaleidoscope Our 28.19 20.46 0.9339 3900 + 900 38.72

TV − L2 26.40 18.67 0.8965 10,000 233.51

TV − H−1 27.51 19.78 0.9019 3700 92.85

Lena 1 Our 33.24 27.59 0.9527 600 + 650 15.21

TV − L2 31.57 25.92 0.9165 1200 48.75

TV − H−1 32.87 27.22 0.9100 1900 82.93

Lena 2 Our 35.83 30.17 0.9780 4650 + 350 65.09

TV − L2 34.84 29.19 0.9456 2500 107.93

TV − H−1 34.60 28.94 0.9271 4900 220.62

Lena 3 Our 29.25 23.57 0.9205 10,000 + 1050 142.26

TV − L2 26.79 21.11 0.8795 20,000 818.30

TV − H−1 29.28 23.59 0.8818 20,000 850.05

Barbara 1 Our 28.01 22.12 0.9192 700 + 100 10.07

TV − L2 26.92 21.04 0.8851 1650 67.38

TV − H−1 26.93 21.05 0.8516 1450 64.80

Barbara 2 our 31.42 25.54 0.9662 4150 + 100 51.33

TV − L2 29.87 23.98 0.9346 2000 81.37

TV − H−1 28.65 22.76 0.8872 4350 206.74

Barbara 3 Our 27.39 21.51 0.8970 10,300 + 100 140.88

TV − L2 24.49 18.61 0.8516 21,800 885.30

TV − H−1 26.26 20.37 0.8302 26,050 1155.20

Gray shade Our 46.98 43.28 0.9928 3050 + 350 17.62

TV − L2 41.64 37.94 0.9822 3550 43.16

TV − H−1 45.23 41.53 0.9909 6650 87.59

TV−H−1 and our model, respectively. From the figure, one can see that our result is visually
better (see lower part), brighter than the other two results and our result is more closer to the
original one. In Table 1, we have noted down the PSNR, SNR and SSIM values of all the
above-mentioned models for kaleidoscope image. From the table, we can see that in terms
of PSNR, SNR and SSIM our method gives the best result among the three. Also, our model
consumes less time than other two.

Figs. 5, 6 and 7 demonstrate few inpainting of Lena image. We have taken three different
inpainting domains with different sizes. Also, the results of our model are compared with
the results of TV − L2 and TV − H−1 models. To compare the quality of the recovered
images, we have calculated PSNR, SNR and SSIM and they are reported in Table 1. From
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Fig. 5 Left to right: image to be inpainted, inpainting results of TV − H−1, TV − L2 and our model

Fig. 6 Left to right: image to be inpainted, inpainting results of TV − H−1, TV − L2 and our model

Fig. 7 Left to right: image to be inpainted, inpainting results of TV − H−1, TV − L2 and our model

Fig. 8 Left to right: image to be inpainted, inpainting results of TV − H−1, TV − L2 and our model

Table 1, one can see that our model gives better result than other two models in terms of
PSNR, SNR and SSIM. Also we have reported the CPU time and number of iterations. For
our model, iteration indicates counts of 1st phase + counts of 2nd phase. From the Table 1,
we can conclude that our model is faster than other two.

In Figs. 8, 9 and 10, we have shown similar kind of results to Barbara image. In Table 1,
we have reported PSNR, SNR, SSIM and CPU time for all the three Barbara images. Here
also we can see that our model beats the other two in terms of PSNR, SNR and SSIM. Our
model is faster than other two.
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Fig. 9 Left to right: image to be inpainted, inpainting results of TV − H−1, TV − L2 and our model

Fig. 10 Left to right: image to be inpainted, inpainting results of TV − H−1, TV − L2 and our model

Fig. 11 First row: original image, damaged image and second row: inpainting results of TV− L2, TV−H−1,
and our model

In the first row of Fig. 11, we have shown an image with variation of gray colour having
sharp edges and a damaged image with hole of different size and in the second row we have
shown the inpainting results of TV − L2, TV − H−1 and our model, respectively. From the
figure, we can see that the result of TV − L2 is not able to recover the image completely
but our model and TV − H−1 recover the image except at the edges. From the Table 1, we
can see that our model gives better result in terms of PSNR and SNR but in terms of SSIM,
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Fig. 12 Comparison of results of our model and modified Cahn–Hilliard (mCH) model (Bertozzi et al. 2007a)
with different size of gap to the strip. Left to right: damaged image, result by our model and result by mCH
model

TV − H−1 slight good result than our model but our model is faster than other two for this
case also. Note: the damaged Lena and Barbara image are taken from the paper Li (2011).

Nowwewill apply our model to some binary images and will compare our results with the
results of modified Cahn–Hilliard (mCH) model (Bertozzi et al. 2007a). For the following
results, the parameters for our model are chosen as ε = 1, λ0 = 102, dt = 1,Δx = Δy =
1
8 andC2 = λ0 and for Cahn–Hilliard inpainting we have followed Gillette (2006), where the
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Table 2 Table for comparison of results of binary images

Image Model PSNR SNR SSIM Iteration Time taken

Strip1 Our 26.28 24.95 0.7783 100 + 100 0.17

CH 25.50 24.17 0.7778 150 + 200 0.46

Strip2 Our 26.28 24.95 0.7783 100 + 150 0.21

CH 25.48 24.15 0.7850 200 + 250 0.66

Strip3 Our 26.283 24.95 0.7783 150 + 250 0.35

CH 25.77 24.44 0.7937 450 + 600 1.81

Strip4 Our 26.283 24.95 0.7783 150 + 300 0.40

CH 24.15 22.82 0.7704 150 + 250 0.65

Strip5 Our 26.283 24.95 0.7783 400 + 650 0.90

CH 23.65 22.32 0.7674 150 + 1650 2.73

Cross Our 27.09 21.68 0.9866 550 + 200 0.69

CH 21.53 16.12 0.9268 150 + 650 1.73

Single strip Our 60.17 55.22 1.00 450 + 400 0.80

CH 26.04 18.19 0.9629 150 + 350 1.15

Fig. 13 Comparison of results of our model and modified Cahn–Hilliard (mCH) model (Bertozzi et al. 2007a)
on cross and vertical strip image. Left to right: damaged image, result by our model and result by mCHmodel

parameters are set as λ0 = 5× 105,Δt = 1,Δx = 0.01 = Δy and C1 = 300,C2 = 3× λ0
and ε = 0.5 in the first stage and .01 in the second stage. We have calculated PSNR in
each 50 iterations and stopped our algorithm when difference between the two consecutive
calculated PSNR is less than 10−2. The final result is obtained by setting the pixels of value
≤ 0.5 as 0 and > 0.5 value to 1.

In Fig. 12, we have shown the inpainted result of a strip with different size of gaps and also
compared our results with the results of mCH model. For first three images, the results are
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obtained in 100 iterations and took around 0.50 s, and the last two images it took 150 and 700
iterations, respectively, and their corresponding CPU time are 0.72 and 2.97 s for our model.
Similarly, for the first four images the results are obtained in 100 iterations in 1st stage and
50 iterations in second stage, and for the last image the 1st stage runs for 1000 iterations and
the second stage runs for 800 iterations. The CPU time for mCH model is around 0.90 s for
the first four images and for the last image it took 9.21 s. From the figure, one can see that
our model gives the better result than mCH model. Also we have reported PSNR, SNR and
SSIM for all these images in Table 2.

In Fig. 13, we have shown the inpainted result of a cross-image and a vertical strip, and
also compared our results with the results of mCH model. For our model 100 iterations are
enough for both the images and it takes 0.51 s. For mCH model, we run the code for 200
iterations in 1st stage and the second stage runs for 100 iterations for both the images and it
took 1.76 s. From the figure one can notice that our model gives the better result than mCH
model.

6 Conclusion

Here we have presented a new fourth-order PDE model which do not contain any nonlinear
potential terms and the samemodel is effective for both the binary and gray-scale images. An
unconditionally stable scheme based on convexity splitting strategy has been used for solving
the proposed PDE. Numerical results show the superiority of our model over TV − L2 and
TV − H−1 model.
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