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Abstract
In this paper, we propose an iterative technique with residual vectors for finding a common
element of the set of fixed points of a relatively nonexpansive mapping and the set of solu-
tions of a split inclusion problem (SIP) with a way of selecting the stepsizes without prior
knowledge of the operator norm in the framework of p-uniformly convex and uniformly
smooth Banach spaces. Then strong convergence of the proposed algorithm to a common
element of the above two sets is proved. As applications, we apply our result to find the set
of common fixed points of a family of mappings which is also a solution of the SIP. We also
give a numerical example and demonstrate the efficiency of the proposed algorithm. The
results presented in this paper improve and generalize many recent important results in the
literature.
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1 Introduction

Let H1 and H2 be two Hilbert spaces. Let B1 : H1 � H1 and B2 : H2 � H2 be two
set-valued maximal monotone operators and A : H1 → H2 be a bounded linear operator.
Moudafi (2011) introduced the following so-called split inclusion problem (SIP):

Find x∗ ∈ H1 such that 0 ∈ B1(x
∗) and 0 ∈ B2(Ax

∗). (1.1)

The set of solutions of problem (1.1) is denoted by �, i.e., � := {x∗ ∈ H1 : x∗ ∈
B−1
1 (0) and Ax∗ ∈ B−1

2 (0)}. In fact, we know that the split inclusion problem is a gener-
alization of the inclusion problem and the split feasibility problem. Next, we provide some
special cases of SIP (1.1).

• Let f : H1 → R ∪ {+∞} and g : H2 → R ∪ {+∞} be proper, lower semicontinuous
and convex functions. If we take B1 = ∂ f and B2 = ∂g, where ∂ f and ∂g are the
subdifferential of f and g, then the SIP (1.1) becomes the following so-called proximal
split feasibility problem:

Find x∗ ∈ argmin f such that Ax∗ ∈ argmin g, (1.2)

where argmin f = {x ∈ H1 : f (x) ≤ f (y), ∀y ∈ H1} and argmin g = {x ∈
H2 : g(x) ≤ g(y), ∀y ∈ H2}. In particular, if we take f (x) = 1

2‖Mx − b‖2 and
g(x) = 1

2‖Nx − c‖2, where M and N are matrices, and b, c ∈ H1, then the SIP (1.2)
becomes the least square problem. This problem has been intensively studied, especially,
in Hilbert spaces; see for instance (Moudafi and Thakur 2014).

• Let C and Q be nonempty, closed, and convex subsets of real Hilbert spaces H1 and
H2, respectively. If B1 = NC , B2 = NQ , where NC and NQ are the normal cones of C
and Q, respectively, then the SIP (1.2) becomes the following so-called split feasibility
problem:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.3)

This problemwasfirst introduced, in afinite dimensionalHilbert space, byCensor andElfving
(1994) for modeling inverse problems in radiation therapy treatment planning which arise
from phase retrieval and in medical image reconstruction, especially intensity modulated
therapy (Censor et al. 2006).

To solve the SIP (1.1), Byrne et al. (2011) gave the following convergence theorem in
infinite dimensional Hilbert spaces:

Theorem 1.1 Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator with its adjoint operator A∗. Let B1 : H1 � H1 and B2 : H2 � H2 be set-valued
maximal monotone mappings, λ > 0 and γ ∈ (

0, 2
‖A‖2

)
. Suppose that � 
= ∅. For given

x1 ∈ H1, let {xn} be the sequence defined by
xn+1 = J B1

λ (xn − γ A∗(I − J B2
λ )Axn), ∀n ≥ 1. (1.4)

Then {xn} converges weakly to an element x∗ ∈ �.

In order to obtain strong convergence, Kazmi and Rizvi (2014) proposed an algorithm
for solving SIP (1.1) with fixed points of a nonexpansive mapping T . They obtained the
following result:
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Theorem 1.2 Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a bounded linear
operator and f : H1 → H1 be a contraction mapping with a constant α ∈ (0, 1). Let
B1 : H1 � H1 and B2 : H2 � H2 be set-valued maximal monotone mappings, λ > 0. Let
T : H1 → H1 be a nonexpansive mapping such that F(T ) ∩ � 
= ∅. For a given x1 ∈ H1

arbitrarily, let the iterative sequences {un} and {xn} be generated by
{
un = J B1

λ (xn − γ A∗(I − J B2
λ )Axn),

xn+1 = αn f (xn) + (1 − αn)Tun, ∀n ≥ 1,
(1.5)

where γ ∈ (
0, 2

‖A‖2
)
and {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,

∑∞
n=1 αn =

∞ and
∑∞

n=1 |αn+1 − αn | < ∞. Then the sequences {un} and {xn} both converge strongly
to x∗ ∈ F(T ) ∩ �, where x∗ = PF(T )∩� f (x∗).

On the other hand, Takahashi and Takahashi (2016) first introduced the SIP outside Hilbert
spaces. Let E1 and E2 be two Banach spaces. Let B1 : E1 � E1 and B2 : E2 � E2 be two
set-valued maximal monotone operators and A : E1 → E2 be a bounded linear operator.
They proposed the SIP in Banach spaces as follows:

Find x∗ ∈ E1 such that 0 ∈ B1(x
∗) and 0 ∈ B2(Ax

∗). (1.6)

In recent years, many authors have constructed several iterative methods for solving SIP
(see, e.g., Sitthithakerngkiet et al. 2018; Takahashi and Takahashi 2016; Takahashi 2015,
2017; Takahashi and Yao 2015; Suantai et al. 2018; Jailoka and Suantai 2017; Ogbuisi and
Mewomo 2017; Alofi et al. 2016).

Very recently, Alofi et al. (2016) introduced an algorithm based on Halpern’s iteration for
solving SIP (1.1) in a uniformly convex and smooth Banach space. They proved the following
strong convergence theorem:

Theorem 1.3 Let H be a Hilbert space and let E be a uniformly convex and smooth Banach
space. Let JE be the duality mapping on E. Let B1 : H � H and B2 : E � E∗ be maximal
monotone operators, respectively. Let J B1

λ be the resolvent of B1 for λ > 0 and let J B2
μ be

the metric resolvent of B for μ > 0. Let A : H → E be a bounded linear operator with its
adjoint A∗ such that A 
= 0. Suppose that � 
= ∅. Let {un} be a sequence in H such that
un → u. Let x1 ∈ H and let {xn} ⊂ H be a sequence generated by

{
yn = αnun + (1 − αn)J

B1
λn

(xn − λn A∗(I − J B2
μn )Axn),

xn+1 = βnxn + (1 − βn)yn, ∀n ≥ 1,
(1.7)

where {λn}, {μn} ⊂ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy the following conditions:

lim
n→∞ αn = 0 and

∞∑

n=1

αn = ∞

0 < a ≤ λn‖A‖2 ≤ b < 2, 0 < k ≤ μn, 0 < c ≤ βn ≤ d < 1,

for some a, b, c, d ∈ R. Then {xn} converges strongly to x∗ ∈ �, where x∗ = P�u.

However, it is observed that several iterative methods suggested require the computation of
the norm of the bounded linear operator ‖A‖, which may not be calculated easily in general.
In this work, motivated by the previous works, we introduce an iterative technique with
residual vectors for solving the fixed point problem of a relatively nonexpansive mapping
and SIP with a way of selecting the step sizes without prior knowledge of the operator norm
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in the framework of p-uniformly convex and uniformly smooth Banach spaces. We prove
its strong convergence of proposed algorithm to a common element of the set fixed points of
a relatively nonexpansive mapping and the solutions of the SIP. As applications, we apply
our result to finding the set of common fixed points of a family of mappings which is also a
solution of the SIP. We also give some numerical examples and demonstrate the efficiency
of the proposed algorithm. The results obtained in this paper improve and generalize many
known results in the literature.

2 Preliminaries

Let E and E∗ be real Banach spaces and the dual space of E , respectively. Let E1 and E2

be real Banach spaces and let A : E1 → E2 be a bounded linear operator with its adjoint
operator A∗ : E∗

2 → E∗
1 which is defined by

〈A∗ ȳ, x〉 := 〈ȳ, Ax〉, ∀x ∈ E1, ȳ ∈ E∗
2 .

The modulus of convexity of E is the function δE : (0, 2] → [0, 1] defined by

δE (ε) = inf

{
1 − ‖x+y‖

2 : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
.

The modulus of smoothness of E is the function ρE : R+ := [0,∞) → R
+ defined by

ρE (τ ) =
{

‖x+τ y‖+‖x−τ y‖
2 − 1 : ‖x‖ = ‖y‖ = 1

}
.

Definition 2.1 A Banach space E is said to be

1. uniformly convex if δE (ε) > 0 for all ε ∈ (0, 2];
2. p-uniformly convex (or to have a modulus of convexity of power type p) if there is a

cp > 0 such that δE (ε) ≥ cpε p for all ε ∈ (0, 2];
3. uniformly smooth if limτ→0

ρE (τ )
τ

= 0;
4. q-uniformly smooth if there exists a cq > 0 such that ρE (τ ) ≤ cqτ q for all τ > 0.

From theDefinition 2.1, we observe that every p-uniformly convex space is uniformly convex
and if E is q-uniformly smooth, then E is also uniformly smooth. It is known that (Agarwal
et al. 2009)

{
E is p-uniformly convex if and only if E∗ is q-uniformly smooth,

E is q-uniformly smooth if and only if E∗ is p-uniformly convex,
(2.1)

where p ≥ 2 and 1 < q ≤ 2 are conjugate exponents, i.e., p, q satisfy 1
p + 1

q = 1 (see Xu
and Roach 1991). For the sequence spaces �p , Lebesgue spaces L p and Sobolev spacesWm

p ,
we also know that (Agarwal et al. 2009; Hanner 1956; Xu and Roach 1991)
{

�p, L p and Wm
p are 2-uniformly convex and p-uniformly smooth with 1 < p ≤ 2,

�p, L p and Wm
p are q-uniformly convex and 2-uniformly smooth with 2 ≤ q < ∞.

Definition 2.2 A continuous strictly increasing function ϕ : R+ → R
+ is said to be a gauge

if ϕ(0) = 0 and limt→∞ ϕ(t) = ∞.
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Definition 2.3 The mapping J E
ϕ : E � E∗ associated with a gauge function ϕ defined by

J E
ϕ (x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖ϕ(‖x‖), ‖ f ‖ = ϕ(‖x‖), ∀x ∈ E},

is called the duality mapping with gauge ϕ, where 〈·, ·〉 denotes the duality pairing between
E and E∗.

Ifϕ(t) = t , then J E
ϕ = J E

2 = J is thenormalizeddualitymapping. In particular,ϕ(t) = t p−1,
where p > 1, the duality mapping J E

ϕ = J E
p is called the generalized duality mappingwhich

is defined by

J E
p (x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖p, ‖ f ‖ = ‖x‖p−1}.

It is well known that if E is uniformly smooth, the generalized duality mapping J E
p is norm

to norm uniformly continuous on bounded subsets of E (see Reich 1981). Furthermore, J E
p is

one-to-one, single-valued and satisfies J E
p = (J E∗

q )−1, where J E∗
q is the generalized duality

mapping of E∗ (see Reich 1992; Cioranescu 1990 for more details).
For a gauge ϕ, the function � : R+ → R

+ defined by

�(t) =
∫ t

0
ϕ(s)ds

is a continuous convex strictly increasing differentiable function on R
+ with �′(t) = ϕ(t)

and limt→∞ �(t)
t = ∞. Therefore, � has a continuous inverse function �−1.

We next recall the Bregman distance, which was introduced and studied in Bregman
(1967).

Definition 2.4 Let E be a real smooth Banach space. The Bregman distance Dϕ(x, y)
between x and y in E is defined by

Dϕ(x, y) = �(‖y‖) − �(‖x‖) − 〈Jϕ(x), y − x〉.
We note that the Bregman distance Dϕ does not satisfy the well-known properties of a metric
because Dϕ is not symmetric and does not satisfy the triangle inequality. Moreover, the
Bregman distance has the following important properties:

Dϕ(x, y) = Dϕ(x, z) + Dϕ(z, y) + 〈J E
ϕ x − J E

ϕ z, z − y〉, (2.2)

Dϕ(x, y) + Dϕ(y, x) = 〈J E
ϕ x − J E

ϕ y, x − y〉, (2.3)

for all x, y, z ∈ E .
In the case ϕ(t) = t p−1, where p > 1, the distance Dϕ = Dp is called the p-Lyapunov

function which was studied in Bonesky et al. (2008) and it is given by

Dp(x, y) = 1

q
‖x‖p − 〈J E

p x, y〉 + 1

p
‖y‖p,

where p, q are conjugate exponents. For the p-uniformly convex space, the Bregman distance
has the following relation (see Schöpfer et al. 2008):

τ‖x − y‖p ≤ Dp(x, y) ≤ 〈J E
p x − J E

p y, x − y〉, (2.4)

where τ > 0 is some fixed number. If p = 2, we get

D2(x, y) := φ(x, y) = ‖x‖2 − 2〈J x, y〉 + ‖y‖2,
where φ is called the Lyapunov function which was introduced by Alber (1993, 1996).
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The following Lemma can be obtained from Theorem 2.8.17 of Agarwal et al. (2009) (see
also Lemma 5 of Kuo and Sahu 2013).

Lemma 2.5 Let p > 1, r > 0 and E be a Banach space. Then the following statements are
equivalent:

(i) E is uniformly convex;
(ii) There exists a strictly increasing convex function g∗

r : R+ → R
+ with g∗

r (0) = 0 such
that

∥
∥

N∑

k=1

αk xk
∥
∥p ≤

N∑

k=1

αk‖xk‖p − αiα j g
∗
r (‖xi − x j‖),

for all i, j ∈ {1, 2, . . . , N }, xk ∈ Br := {x ∈ E : ‖x‖ ≤ r}, αk ∈ (0, 1) with∑N
k=1 αk = 1, where k ∈ {1, 2, . . . , N }.

Lemma 2.6 (Xu 1991) Let 1 < q ≤ 2 and E be a Banach space. Then the following
statements are equivalent:

(i) E is q-uniformly smooth;
(ii) there is a constant κq > 0 which is called the q-uniform smoothness coefficient of E

such that for all x, y ∈ E

‖x − y‖q ≤ ‖x‖q − q〈y, J E
q (x)〉 + κq‖y‖q . (2.5)

In what follows, we shall use the following notations: xn → x means that {xn} converges
strongly to x and xn⇀x means that {xn} converges weakly to x . LetC be a closed and convex
subset of E and let T be a mapping from C into itself. We denote F(T ) by the set of all
fixed points of T , i.e., F(T ) = {x ∈ C : x = T x}. A point z ∈ C is called an asymptotic
fixed point (Reich 1996) of T , if there exists a sequence {xn} in C which converges weakly
to z and limn→∞ ‖xn − T xn‖ = 0. We denote F̂(T ) by the set of asymptotic fixed points of
T . A mapping T : C → C is called Bregman relatively nonexpansive (Butnariu et al. 2001,
2003; Censor and Reich 1996; Matsushita and Takahashi 2005), if the following conditions
are satisfied:

(R1) F(T ) = F̂(T ) 
= ∅;
(R2) Dp(T x, z) ≤ Dp(x, z), ∀z ∈ F(T ), ∀x ∈ C .

Let E be a p-uniformly convex Banach space which is also uniformly smooth. Following
Censor and Lent (1981) and Alber (1993), we make use of the function Vp : E∗ × E → R

+
which is defined by

Vp(x
∗, x) = 1

q
‖x∗‖q − 〈x∗, x〉 + 1

p
‖x‖p (2.6)

for all x ∈ E and x∗ ∈ E∗, where p, q are conjugate exponents. Then Vp is nonnegative and
convex in the first variable. It is observed that

Vp(x
∗, x) = Dp(J

E∗
q (x∗), x) (2.7)

for all x ∈ E and x∗ ∈ E∗. In addition,

Vp(x
∗, x) ≤ Vp(x

∗ − y∗, x) + 〈J E∗
q (x∗) − x, y∗〉 (2.8)

for all x ∈ E and x∗ ∈ E∗.
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Lemma 2.7 (Bonesky et al. 2008) Let p > 1 and E be a real p-uniformly convex
and uniformly smooth Banach space. For x ∈ E and a sequence {xn} in E. Then,
limn→∞ Dp(xn, x) = 0 ⇐⇒ limn→∞ ‖xn − x‖ = 0.

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive
Banach space E . Then we know that for any x ∈ E , there exists a unique element z ∈ C
such that

Dp(x, z) = min
y∈C Dp(x, y). (2.9)

The mapping �C : E → C defined by z = �C x is called the generalized projection of E
onto C .

Lemma 2.8 (Kuo and Sahu 2013) Let C be a nonempty, closed and convex subset of a p-
uniformly convex and uniformly smooth Banach space E and let x ∈ E. Then the following
assertions hold:

(i) z = �C x if and only if 〈J E
p (x) − J E

p (z), y − z〉 ≤ 0, ∀y ∈ C.
(ii) Dp(�C x, y) + Dp(x,�C x) ≤ Dp(x, y), ∀y ∈ C.

Let B : E � E∗ be a mapping. The effective domain of B is denoted by D(B), i.e.,
D(B) = {x ∈ E : Bx 
= ∅}. A multi-valued mapping B is said to be monotone if

〈u − v, x − y〉 ≥ 0, ∀x, y ∈ D(B), u ∈ Bx and v ∈ By. (2.10)

A monotone operator B on E is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator on E .

Let E be a p-uniformly convex and uniformly smooth Banach space and let B : E � E∗
be a maximal monotone operator. Then, for x ∈ E and λ > 0, we define a mapping QB

λ :
E → D(B) by

QB
λ (x) := (I + λ(J E

p )−1B)−1(x) for all x ∈ E . (2.11)

This mapping is called the metric resolvent of B for λ > 0. The set of null points of B is
defined by B−1(0) = {z ∈ E : 0 ∈ Bz}. We know that B−1(0) is closed and convex (see
Takahashi 2000). We see that

0 ∈ J E
p (QB

λ (x) − x) + λBQB
λ (x). (2.12)

Further, F(QB
λ ) = B−1(0) for λ > 0 (see Zeidler 1984). From Kuo and Sahu (2013), we

also know that

〈QB
λ (x) − QB

λ (y), J E
p (x − QB

λ (x)) − J E
p (y − QB

λ (y))〉 ≥ 0, (2.13)

for all x, y ∈ E and if B−1(0) 
= ∅, then
〈J E

p (x − QB
λ (x)), QB

λ (x) − z〉 ≥ 0, (2.14)

for all x ∈ E and z ∈ B−1(0).
In addition, we can define a single-valued mapping RB

λ : E → D(B) so-called the
resolvent of B by (Kohsaka and Takahashi 2005)

RB
λ (x) := (J E

p + λB)−1 J E
p (x) for all x ∈ E .

It is known that RB
λ is a relatively nonexpansive mapping and F(RB

λ ) = B−1(0) for λ > 0
(see Kuo and Sahu 2013).
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Lemma 2.9 (Kohsaka and Takahashi 2005) Let B : E � E∗ be a maximal monotone
operator with B−1(0) 
= ∅ and let RB

λ be a resolvent operator of B for λ > 0. Then

Dp(R
B
λ (x), z) + Dp(R

B
λ (x), x) ≤ Dp(x, z),

for all x ∈ E and z ∈ B−1(0).

The following Theorem is proved by Kohsaka and Takahashi (see Kohsaka and Takahashi
2005, Lemma 7.2).

Lemma 2.10 (Kohsaka and Takahashi 2005) Let B : E � E∗ be a monotone operator. Then
B is maximal if and only if for each λ > 0,

R(J E
p + λB) = E∗,

where R(J E
p + λB) is the range of J E

p + λB.

The following lemma was proved by Suantai et al. (2018).

Lemma 2.11 Let E1 and E2 be uniformly convex and smooth Banach spaces. Let A : E1 →
E2 be a bounded linear operator with the adjoint operator A∗. Let RB1

λ be the resolvent

operator of a maximal monotone operator B1 for λ1 > 0 and QB2
λ2

be a metric resolvent of
a maximal monotone operator B2 for λ2 > 0. Suppose that � 
= ∅. Let r > 0 and x∗ ∈ E1.
Then x∗ is a solution of problem (1.6) if and only if

x∗ = RB1
λ1

(J
E∗
1

q (J E1
p (x∗) − r A∗ J E2

p (I − QB2
λ2

)Ax∗)).

Lemma 2.12 Let E be a real p-uniformly convex and uniformly smooth Banach spaces.
Suppose that x ∈ E and {xn} is a sequence in E. Then the following statements are equivalent:
(a) {Dp(xn, x)} is bounded;
(b) {xn} is bounded.

Proof For the implication (a) �⇒ (b) was proved in Reich and Sabach (2010). For the
converse implication (b) �⇒ (a), we assume that x ∈ E and {xn} are bounded. From (2.4),
we observe that

Dp(xn, x) ≤ 〈J E
p xn − J E

p x, xn − x〉
≤ ‖J E

p xn − J E
p x‖‖xn − x‖

≤ M,

for all n ∈ N, where M = supn≥1{‖xn‖, ‖xn‖p−1, ‖x‖, ‖x‖p−1}. This implies that
{Dp(xn, x)} is bounded. ��

Lemma 2.13 (Reich 1979) Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 1,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that limn→∞ γn = 0,∑∞
n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Then limn→∞ an = 0.
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Lemma 2.14 (Maingé 2008) Let {�n} be a sequence of real numbers that does not decrease at
infinity in the sense that there exists a subsequence {�ni } of {�n} which satisfies �ni < �ni+1

for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : �k < �k+1},
where n0 ∈ N such that {k ≤ n0 : �k < �k+1} 
= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;
(ii) �τn ≤ �τ(n)+1 and �n ≤ �τ(n)+1, ∀n ≥ n0.

Lemma 2.15 Let E be a real p-uniformly convex and uniformly smooth Banach space. Let
z, xk ∈ E (k = 1, 2, . . . , N ) and αk ∈ (0, 1) with

∑N
k=1 αk = 1. Then, we have

Dp

(
J E∗
q

( N∑

k=1

αk J
E
p (xk)

)
, z

)
≤

N∑

k=1

αk Dp(xk, z) − αiα j g
∗
r

(‖J E
p (xi ) − J E

p (x j )‖
)
,

for all i, j ∈ {1, 2, . . . , N }.
Proof Since p-uniformly convex, hence it is uniformly convex. From Lemma 2.5, we have

Dp

(
J E∗
q

( N∑

k=1

αk J
E
p (xk)

)
, z

)

= Vp

( N∑

k=1

αk J
E
p (xk), z

)

= 1

q

∥∥
N∑

k=1

αk J
E
p (xk)

∥∥q −
〈

N∑

k=1

αk J
E
p (xk), z

〉

+ 1

p
‖z‖p

≤ 1

q

N∑

k=1

αk‖J E
p (xk)‖q − αiα j g

∗
r (‖J E

p (xi ) − J E
p (x j )‖) −

〈
N∑

k=1

αk J
E
p (xk), z

〉

+ 1

p
‖z‖p

= 1

q

N∑

k=1

αk‖J E
p (xk)‖q −

N∑

k=1

αk〈J E
p (xk), z〉 + 1

p
‖z‖p − αiα j g

∗
r (‖J E

p (xi ) − J E
p (x j )‖)

=
N∑

k=1

αk Dp(xk, z) − αiα j g
∗
r (‖J E

p (xi ) − J E
p (x j )‖),

for all i, j ∈ {1, 2, . . . , N }. This completes the proof. ��

3 Algorithm and strong convergence theorem

In this section, we introduce an iterative algorithm for finding a common element of the set of
solutions of split inclusion problem (1.6) and the set of fixed points of a Bregman relatively
nonexpansive mapping. More specifically, we assume the following assumptions:

• E1 and E2 are p-uniformly convex and uniformly smooth Banach spaces;
• B1 : E1 � E∗

1 and B2 : E2 � E∗
2 are maximal monotone operators such that B−1

1 (0) 
=
∅ and B−1

2 (0) 
= ∅, respectively;
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12 Page 10 of 25 P. Cholamjiak et al.

• RB1
λ1

is the resolvent operator of a maximal monotone B1 for λ1 > 0 and QB2
λ2

is the
metric resolvent operator of a maximal monotone B2 for λ2 > 0;

• A : E1 → E2 is a bounded linear operator with its adjoint operator A∗ : E∗
2 → E∗

1 ;• T : E1 → E1 is a Bregman relatively nonexpansive mapping such that F(T ) = F̂(T ) 
=
∅;

• The set of solution of SIP is consistent, i.e., � 
= ∅;
• � := F(T ) ∩ � 
= ∅;
• εn denotes the residual vector in E1 such that limn→∞ εn = u ∈ E1.

Algorithm 3.1 Choose an initial guess u1 ∈ E1; let {xn}∞n=1 and {un}∞n=1 be sequences
generated by

{
xn = RB1

λ1
(J

E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun))

un+1 = J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn)), ∀n ≥ 1,

(3.1)

where {αn}, {βn} and {γn} are sequences in (0, 1) such that αn + βn + γn = 1. Suppose that
stepsize λn is a bounded sequence chosen in such a way that

0 < ε ≤ λn ≤
(

q‖(I − QB2
λ2

)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

) 1
q−1

, n ∈ N , (3.2)

for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Note that the choice in (3.2) of the stepsize λn is
independent of the norms ‖A‖.
Lemma 3.2 Let {xn}∞n=1 and {un}∞n=1 be sequences generated byAlgorithm3.1. Then, {xn}∞n=1
and {un}∞n=1 are bounded.

Proof. By the choice of λn , we observe that

λ
q−1
n ≤ q‖(I − QB2

λ2
)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

⇐⇒ κqλ
q−1
n ‖A∗ J E2

p (I − QB2
λ2

)Aun‖q ≤ ‖(I − QB2
λ2

)Aun‖p − εκq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

⇐⇒ εκq

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q ≤ ‖(I − QB2
λ2

)Aun‖p − κqλ
q−1
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q .
(3.3)

Let z ∈ �. From (2.14), we observe that

〈J E2
p (I − QB2

λ2
)Aun, Aun − Az〉

= ‖(I − QB2
λ2

)Aun‖p + 〈J E2
p (I − QB2

λ2
)Aun, Q

B2
λ2

(Aun) − Az〉
≥ ‖(I − QB2

λ2
)Aun‖p. (3.4)

Set vn := J
E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun) for all n ≥ 1. By (3.4) and Lemma 2.6,
we have

Dp(xn , z) ≤ Dp(vn , z)

= Dp
(
J
E∗
1

q (J
E1
p (un) − λn A

∗ J E2p (I − Q
B2
λ2

)Aun), z
)
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= 1

q
‖J E

∗
1

q (J
E1
p (un)−λn A

∗ J E2p (I − Q
B2
λ2

)Aun)‖p−〈J E1p (un)−λn A
∗ J E2p (I−Q

B2
λ2

)Aun , z〉+ 1

p
‖z‖p

= 1

q
‖J E1p (un) − λn A

∗ J E2p (I − Q
B2
λ2

)Aun)‖q − 〈J E1p (un) − λn A
∗ J E2p (I − Q

B2
λ2

)Aun , z〉 + 1

p
‖z‖p

≤ 1

q
‖J E1p (un)‖q − λn〈Aun , J

E2
p (I − Q

B2
λ2

)Aun〉 + κqλ
q
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q − 〈J E1p (un), z〉

+λn〈J E2p (I − Q
B2
λ2

)Aun , Az〉 + 1

p
‖z‖p

= 1

q
‖un‖p − 〈J E1p (un), z〉

+ 1

p
‖z‖p + λn〈J E2p (I − Q

B2
λ2

)Aun , Az − Aun〉 + κqλ
q
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q

= Dp(un , z) + λn〈J E2p (I − Q
B2
λ2

)Aun , Az − Aun〉 + κqλ
q
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q

≤ Dp(un , z) − λn

(
‖(I − Q

B2
λ2

)Aun‖p − κqλ
q−1
n

q
‖A∗ J E2p (I − Q

B2
λ2

)Aun‖q
)

, (3.5)

which implies by (3.3) that

Dp(xn, z) ≤ Dp(un, z).

Since limn→∞ εn = u ∈ E1, which implies that {εn} is bounded, then from Lemma 2.12, we
have {Dp(εn, z)} is bounded. So there exists a constant K > 0 such that Dp(εn, z) ≤ K for
all n ≥ 1. From Lemma 2.15, we have

Dp(xn+1, z) ≤ Dp(un+1, z)

= Dp(J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn)), z)

≤ αnDp(εn, z) + βnDp(xn, z) + γnDp(T xn, z)

−βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ αnDp(εn, z) + (1 − αn)Dp(xn, z) − βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ αnK + (1 − αn)Dp(xn, z)

≤ max{K , Dp(xn, z)}
...

≤ max{K , Dp(x1, z)}. (3.6)

By induction, we have {Dp(xn, z)} is bounded. Hence, {xn} is bounded and so are {un} and
{Aun}.

Theorem 3.3 Let {xn}∞n=1 and {un}∞n=1 be sequences generated by Algorithm 3.1. Suppose
that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1).

Then {xn}∞n=1 and {un}∞n=1 converge strongly to x∗ = ��u, where �� is the generalized
projection from E1 onto �.

Proof Let x∗ = �F(T )∩�u. From (2.7) and (3.6), we have
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12 Page 12 of 25 P. Cholamjiak et al.

Dp(xn+1, x
∗)

≤ Dp(un+1, x
∗)

= Vp
(
αn J

E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn), x

∗)

≤ Vp(αn J
E1
p (εn)+βn J

E1
p (xn)+γn J

E1
p (T xn) − αn(J

E1
p (εn)− J E1

p (x∗), x∗))

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
= Vp(αn J

E1
p (x∗)+βn J

E1
p (xn)+γn J

E1
p (T xn), x

∗)+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
= Dp(J

E∗
1

q (αn J
E1
p (x∗) + βn J

E1
p (xn) + γn J

E1
p (T xn)), x

∗)

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
≤ αnDp(x

∗, x∗) + βnDp(xn, x
∗) + γnDp(T xn, x

∗) − βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
≤ (1 − αn)Dp(xn, x

∗) − βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

+αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉. (3.7)

We now divide the proof into two cases:

Case 1 Suppose that there exists n0 ∈ N such that {Dp(xn, x∗)}∞n=n0 is non-increasing. So
we have {Dp(xn, x∗)}∞n=1 converges and it is bounded. From (3.7), we have

0 ≤ kg∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ βnγng
∗
r (‖J E1

p (xn) − J E1
p (T xn)‖)

≤ Dp(xn, x
∗) − Dp(xn+1, x

∗) + αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉. (3.8)

This implies that

lim
n→∞ g∗

r (‖J E1
p (xn) − J E1

p (T xn)‖) = 0.

By the property of g∗
r , we have

lim
n→∞ ‖J E1

p (xn) − J E1
p (T xn)‖ = 0. (3.9)

Since J
E∗
1

q is uniformly norm-to-norm continuous on bounded subsets of E∗
1 , then

lim
n→∞ ‖xn − T xn‖ = 0. (3.10)

By Lemma 2.7, we also have

lim
n→∞ Dp(xn, T xn) = 0. (3.11)

By the boundedness of {xn} and the reflexivity of E1, there exists a subsequence {xni } of {xn}
such that xni ⇀x̂ ∈ E1. From (3.10), we obtain x̂ ∈ F̂(T ) = F(T ). From (3.3), (3.5) and
(3.6), we see that
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ε2κq

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q ≤ λn

(
‖(I − QB2

λ2
)Aun‖p − κqλ

q−1
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q
)

≤ Dp(un, x̂) − Dp(xn, x̂)

≤ αn−1Dp(εn−1, x̂) + Dp(xn−1, x̂) − Dp(xn, x̂) → 0 as n → ∞,

which implies that

lim
n→∞ ‖A∗ J E2

p (I − QB2
λ2

)Aun‖ = 0. (3.12)

From (3.5) and (3.6), we have

ε‖(I − QB2
λ2

)Aun‖p ≤ λn‖(I − QB2
λ2

)Aun‖p

≤ Dp(un, x̂) − Dp(xn, x̂) + κqλ
q
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q

≤ αn−1Dp(εn−1, x̂) + Dp(xn−1, x̂) − Dp(xn, x̂)

+κqλ
q
n

q
‖A∗ J E2

p (I − QB2
λ2

)Aun‖q → 0 as n → ∞.

Hence

lim
n→∞ ‖Aun − QB2

λ2
Aun‖ = 0. (3.13)

Then, we have

‖J E1
p (vn) − J E1

p (un)‖ ≤ λn‖A∗ J E2
p (I − QB2

λ2
)Aun‖

≤ λn‖A∗‖‖J E2
p (I − QB2

λ2
)Aun‖

≤ λn‖A∗‖‖Aun − QB2
λ2

Aun‖p−1 → 0 as n → ∞,

which implies that

lim
n→∞ ‖J E1

p (vn) − J E1
p (un)‖ = 0. (3.14)

Since J
E∗
1

q is norm-to-norm uniformly continuous on bounded subsets of E∗
1 ,

lim
n→∞ ‖vn − un‖ = 0. (3.15)

By Lemma 2.9 and (3.6), we have

Dp(xn, vn) = Dp(R
B1
λ1

vn, vn)

≤ Dp(vn, x̂) − Dp(xn, x̂)

≤ Dp(un, x̂) − Dp(xn, x̂)

≤ αn−1Dp(εn−1, x̂) + Dp(xn−1, x̂) − Dp(xn, x̂) → 0 as n → ∞.

Thus, we have

lim
n→∞ ‖RB1

λ1
vn − vn‖ = lim

n→∞ ‖xn − vn‖ = 0. (3.16)

Since xni ⇀x̂ ∈ E1, we also have vni ⇀x̂ ∈ E1. From (3.16), we get x̂ ∈ F(RB1
λ1

) ∈ B−1
1 (0).

From (3.15) and (3.16), we obtain

‖xn − un‖ ≤ ‖xn − vn‖ + ‖vn − un‖ → 0 as n → ∞. (3.17)
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Since xni ⇀x̂ ∈ E1 and from (3.17), we also get uni ⇀x̂ ∈ E1. From (2.14), we have

‖(I − QB2
λ2

)Ax̂‖p = 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Ax̂ − QB2

λ2
Ax̂〉

= 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Ax̂ − Auni 〉

+ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Auni − QB2

λ2
Auni 〉

+ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), QB2

λ2
Auni − QB2

λ2
Ax̂〉

≤ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Ax̂ − Auni 〉

+ 〈J E2
p (Ax̂ − QB2

λ2
Ax̂), Auni − QB2

λ2
Auni 〉. (3.18)

Since A is continuous, we have Auni ⇀Ax̂ as i → ∞. Then, we have

‖Ax̂ − QB2
λ2

Ax̂‖ = 0,

that is, Ax̂ = QB2
λ2

Ax̂ . This shows that Ax̂ ∈ F(QB2
λ2

) = B−1
2 (0). So x̂ ∈ �. Therefore, we

conclude that x̂ ∈ � := F(T ) ∩ �.
Now, we see that

Dp(un+1, xn) ≤ Dp(J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (T xn)), xn)

≤ αnDp(εn, xn) + βnDp(xn, xn) + γnDp(T xn, xn) → 0 as n → ∞,

and hence

lim
n→∞ ‖un+1 − xn‖ = 0. (3.19)

So, we have

‖un+1 − un‖ ≤ ‖un+1 − xn‖ + ‖xn − un‖ → 0 as n → ∞. (3.20)

We now choose a subsequence {xni } of {xn} such that
lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), xn − x∗〉 = lim
i→∞〈J E1

p (u) − J E1
p (x∗), xni − x∗〉,

where x∗ = ��u. From (3.17) and Lemma 2.8, we get

lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), un − x∗〉 = lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), xn − x∗〉
= lim

i→∞〈J E1
p (u) − J E1

p (x∗), xni − x∗〉
= 〈J E1

p (u) − J E1
p (x∗), x̂ − x∗〉 ≤ 0.

From (3.20), we also have

lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), un+1 − x∗〉 ≤ 0. (3.21)

By (3.7), we note that

Dp(xn+1, x
∗) ≤ (1 − αn)Dp(xn, x

∗) + αn〈J E1
p (εn) − J E1

p (x∗), un+1 − x∗〉
= (1 − αn)Dp(xn, x

∗) + αn〈J E1
p (εn) − J E1

p (u), un+1 − x∗〉
+αn〈J E1

p (u) − J E1
p (x∗), un+1 − x∗〉.
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Since εn → u implies J E1
p (εn) → J E1

p (u). Considering this together with (3.21), we con-
clude by Lemma 2.13 that Dp(xn, x∗) → 0 as n → ∞. Therefore,S xn → x∗ ∈ �.

Case 2 Suppose that there exists a subsequence {�ni } of {�n} such that �ni < �ni+1 for all
i ∈ N. Let us define a mapping τ : N → N by

τ(n) = max{k ≤ n : �k < �k+1}.
Then, by Lemma 2.14, we obtain

�τ(n) ≤ �τ(n)+1 and �n ≤ �τ(n)+1.

Put �n = Dp(xn, x∗) for all n ∈ N. Then, we have from (3.6) that

0 ≤ lim
n→∞(Dp(xτ(n)+1, x

∗) − Dp(xτ(n), x
∗))

≤ lim
n→∞(Dp(ετ(n), x

∗) + (1 − ατ(n))Dp(xτ(n), x
∗) − Dp(xτ(n), x

∗))

= lim
n→∞ ατ(n)

(
Dp(ετ(n), x

∗) − Dp(xτ(n), x
∗)) = 0,

which implies that

lim
n→∞(Dp(xτ(n)+1, x

∗) − Dp(xτ(n), x
∗)) = 0. (3.22)

Following the proof line in Case 1, we can show that

lim
n→∞ ‖xτ(n) − T xτ(n)‖ = 0,

lim
n→∞ ‖A∗ J E2

p (I − QB2
λ2

Auτ(n)‖ = 0,

lim
n→∞ ‖Auτ(n) − QB2

λ2
Auτ(n)‖ = 0,

lim
n→∞ ‖xτ(n) − vτ(n)‖ = lim

n→∞ ‖xτ(n) − uτ(n)‖ = 0

and

lim
n→∞ ‖uτ(n)+1 − uτ(n)‖ = 0.

Furthermore, we can show that

lim sup
n→∞

〈J E1
p (u) − J E1

p (x∗), uτ(n)+1 − x∗〉 ≤ 0.

From (3.7), we have

Dp(xτ(n)+1, x
∗) ≤ (1 − ατ(n))Dp(xτ(n), x

∗) + ατ(n)〈J E1
p (ετ(n)) − J E1

p (x∗), uτ(n)+1 − x∗〉,
which implies that

ατ(n)Dp(xτ(n), x
∗) ≤ Dp(xτ(n), x

∗) − Dp(xτ(n)+1, x
∗)

+ατ(n)〈J E1
p (ετ(n)) − J E1

p (x∗), uτ(n)+1 − x∗〉.
Since �τ(n) ≤ �τ(n)+1 and ατ(n) > 0, we get

Dp(xτ(n), x
∗) ≤ 〈J E1

p (ετ(n)) − J E1
p (x∗), uτ(n)+1 − x∗〉

= 〈J E1
p (ετ(n)) − J E1

p (u), uτ(n)+1 − x∗〉 + 〈J E1
p (u)− J E1

p (x∗), uτ(n)+1−x∗〉.
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Since ετ(n) → u implies J E1
p (ετ(n)) → J E1

p (u). Hence, limn→∞ Dp(xτ(n), x∗) = 0. From
(3.22), we obtain

Dp(xn, x
∗) ≤ Dp(xτ(n)+1, x

∗) = Dp(xτ(n), x
∗) + (Dp(xτ(n)+1, x

∗)
−Dp(xτ(n), x

∗)) → 0 as n → ∞,

which implies that Dp(xn, x∗) → 0. That is xn → x∗ as n → ∞. This completes
the proof. ��

We consequently obtain the following result in Hilbert spaces:

Corollary 3.4 Let H1 and H2 be Hilbert spaces. Let B1 : H1 � H1 and B2 : H2 � H2 be
maximal monotone operators such that B−1

1 (0) 
= ∅ and B−1
2 (0) 
= ∅, respectively. Let RB1

λ1

be the resolvent operator of a maximal monotone B1 for λ1 > 0 and let QB2
λ2

be the metric
resolvent operator of a maximal monotone B2 for λ2 > 0. Let A : H1 → H2 be a bounded
linear operator with its adjoint operator A∗ : H2 → H1. Let T : H1 → H1 be a relatively
nonexpansive mapping such that F(T ) = F̂(T ) 
= ∅. Assume that � := F(T ) ∩ � 
= ∅.
Choose an initial guess u1 ∈ H1; let {xn}∞n=1 and {un}∞n=1 be sequences generated by

{
xn = RB1

λ1
(un − λn A∗(I − QB2

λ2
)Aun)

un+1 = αnεn + βnxn + γnT xn, ∀n ≥ 1,
(3.23)

where {εn} ⊂ H1 is a residual vector such that εn → u, and {αn}, {βn} and {γn} are sequences
in (0, 1) such that αn +βn + γn = 1. Suppose that stepsize λn is a bounded sequence chosen
in such a way that

0 < ε ≤ λn ≤ 2‖(I − QB2
λ2

)Aun‖2
‖A∗(I − QB2

λ2
)Aun‖2

− ε, n ∈ N , (3.24)

for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1).

Then {xn}∞n=1 and {un}∞n=1 converge strongly to x∗ = ��u.

4 Convergence theorems for a family of mappings

In this section, we apply our result to the common fixed point problems of a family of
mappings.

4.1 A countable family of relatively nonexpansivemappings

Definition 4.1 (Aoyama et al. 2007) Let C be a subset of a real p-uniformly convex and
uniformly smooth Banach space E . Let {Tn}∞n=1 be a sequence of mappings of C in to E
such that

⋂∞
n=1 F(Tn) 
= ∅. Then {Tn}∞n=1 is said to satisfy the AKTT-condition if, for any

bounded subset B of C ,
∞∑

n=1

sup
z∈B

{‖J E
p (Tn+1z) − J E

p (Tnz)‖} < ∞.
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As in Suantai et al. (2012), we can prove the following Proposition:

Proposition 4.2 Let C be a nonempty, closed and convex subset of a real p-uniformly convex
and uniformly smooth Banach space E. Let {Tn}∞n=1 be a sequence of mappings of C such that⋂∞

n=1 F(Tn) 
= ∅ and {Tn}∞n=1 satisfies the AKTT-condition. Suppose that for any bounded
subset B of C. Then there exists the mapping T : B → E such that

T x = lim
n→∞ Tnx, ∀x ∈ B (4.1)

and

lim
n→∞ sup

z∈B
‖J E

p (T z) − J E
p (Tnz)‖ = 0.

In the sequel, we say that ({Tn}, T ) satisfies the AKTT-condition if {Tn}∞n=1 satisfies the
AKTT-condition and T is defined by (4.1) with

⋂∞
n=1 F(Tn) = F(T ).

Theorem 4.3 Let E1 and E2 be p-uniformly convex and uniformly smoothBanach spaces. Let
B1 : E1 � E∗

1 and B2 : E2 � E∗
2 be maximal monotone operators such that B−1

1 (0) 
= ∅
and B−1

2 (0) 
= ∅, respectively. Let RB1
λ1

be the resolvent operator of a maximal monotone B1

forλ1 > 0 and let QB2
λ2

be themetric resolvent operator of amaximalmonotone B2 forλ2 > 0.
Let A : E1 → E2 be a bounded linear operator with its adjoint operator A∗ : E∗

2 → E∗
1 .

Let {Tn}∞n=1 be a countable family of Bregman relatively nonexpansive mappings on E1 such
that F(Tn) = F̂(Tn) for all n ≥ 1. Assume that � := ⋂∞

n=1 F(Tn) ∩ � 
= ∅. Choose an
initial guess u1 ∈ E1, and let {xn}∞n=1 and {un}∞n=1 be sequences generated by

{
xn = RB1

λ1
(J

E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun))

un+1 = J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (Tnxn)), ∀n ≥ 1,

(4.2)

where {εn} ⊂ E1 is a residual vector such that εn → u, and {αn}, {βn} and {γn} are sequences
in (0, 1) such that αn +βn + γn = 1. Suppose that stepsize λn is a bounded sequence chosen
in such a way that

0 < ε ≤ λn ≤
(

q‖(I − QB2
λ2

)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

) 1
q−1

, n ∈ N , (4.3)

for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1).

Suppose in addition that ({Tn}∞n=1, T ) satisfies the AKTT-condition and F(T ) = F̂(T ). Then
{xn}∞n=1 and {un}∞n=1 converge strongly to x

∗ = ��u, where�� is the generalized projection
from E1 onto �.

Proof To this end, it suffices to show that limn→∞ ‖xn−T xn‖ = 0. By following the method
of proof in Theorem 3.3, we can show that {xn} is bounded and limn→∞ ‖xn − Tnxn‖ = 0.
Since J E1

p is uniformly continuous on bounded subsets of E1, we have

lim
n→∞ ‖J E1

p (xn) − J E1
p (Tnxn)‖ = 0.
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By Proposition 4.2, we see that

‖J E1
p (xn) − J E1

p (T xn)‖ ≤ ‖J E1
p (xn) − J E1

p (Tnxn)‖ + ‖J E1
p (Tnxn) − J E1

p (T xn)‖
≤ ‖J E1

p (xn) − J E1
p (Tnxn)‖

+ sup
x∈{xn}

‖J E1
p (Tnx) − J E1

p (T x)‖ → 0 as n → ∞.

Since J
E∗
1

q is norm-to-norm uniformly continuous on bounded subsets of E∗
1 ,

lim
n→∞ ‖xn − T xn‖ = 0.

This completes the proof. ��

4.2 A semigroup of relatively nonexpansivemappings

Definition 4.4 A one-parameter family S = {Tt }t≥0 from E into E is said to be a nonexpan-
sive semigroup if it satisfies the following conditions:

(S1) T0x = x for all x ∈ E ;
(S2) Ts+t = TsTt for all s, t ≥ 0;
(S3) for each x ∈ C the mapping t �→ Tt x is continuous;
(S4) for each t ≥ 0, Tt is nonexpansive, i.e.,

‖Tt x − Tt y‖ ≤ ‖x − y‖, ∀x, y ∈ E .

Remark 4.5 We denote by F(S) the set of all common fixed points of S, i.e., F(S) =⋂
t≥0 F(Tt ).

We now give some examples of semigroup operator. The following classical examples
were one of the main sources for the development of semigroup theory (see Engel and Nagel
2000):

Example 4.6 Let E be a real Banach space and let L(E) be the space of all bounded linear
operators on E . For A ∈ L(E) and define a bounded linear operator Tt by

Tt := et A =
∞∑

n=0

tn An

n! ,

for t ≥ 0. Then, the operator Tt is a semigroup on E .

Example 4.7 Let E := L p(Rn), 1 ≤ p < ∞. Consider the initial value problem for the heat
equation:

∂u
∂t = �u, for x ∈ R

n and t > 0,

u(x, 0) = f (x), for x ∈ R
n,

(4.4)

where � = ∑n
i=1

∂2

∂x2i
is the Laplacian operator on E . We can solve the heat equation using

Fourier transform and the solution (4.4) can be written as follows:

u(x, t) = 1√
(4π t)n

∫

Rn
e

−‖s−ξ‖2
4t f (ξ)dξ,
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where t > 0, s ∈ R
n and f ∈ E . Then, we can write the solution u(x, t) in the form of

convolution integral as follows:

u(x, t) = (Kt ∗ f )(x),

where Kt is heat kernel given by Kt (x) = 1√
(4π t)n

e
−‖x‖2

4t . Then the solution of (4.4) can be
written as follows:

Tt f (x) := u(x, t) = (Kt ∗ f )(x).

We can check that the operator Tt f (x) is a semigroup on E .

Definition 4.8 A one-parameter family S = {Tt }t≥0 : E → E is said to be a fam-
ily of uniformly Lipschitzian mappings if there exists a bounded measurable function
Lt : (0,∞) → [0,∞) such that

‖Tt x − Tt y‖ ≤ Lt‖x − y‖, ∀x, y ∈ E .

We now first give the following definition:

Definition 4.9 A one-parameter family S = {Tt }t≥0 : E → E is said to be a Bregman rela-
tively nonexpansive semigroup if it satisfies (S1), (S2), (S3) and the following conditions:

(a) F(S) = F̂(S) 
= ∅;
(b) Dp(Tt x, z) ≤ Dp(x, z), ∀x ∈ E, z ∈ F(S) and t ≥ 0.

Using idea in Aleyner and Censor (2005), Aleyner and Reich (2005) and Benavides et al.
(2002), we define the following concept:

Definition 4.10 A continuous operator semigroup S = {Tt }t≥0 : E → E is said to be
uniformly asymptotically regular (in short, u.a.r.) if for all s ≥ 0 and any bounded subset B
of E such that

lim
t→∞ sup

x∈B
‖J E

p (Tt x) − J E
p

(
TsTs x

)‖ = 0.

Theorem 4.11 Let E1 and E2 be p-uniformly convex and uniformly smooth Banach spaces.
Let B1 : E1 � E∗

1 and B2 : E2 � E∗
2 be maximal monotone operators such that B

−1
1 (0) 
=

∅ and B−1
2 (0) 
= ∅, respectively. Let RB1

λ1
be the resolvent operator of amaximalmonotone B1

forλ1 > 0 and let QB2
λ2

be themetric resolvent operator of amaximalmonotone B2 forλ2 > 0.
Let A : E1 → E2 be a bounded linear operator with its adjoint operator A∗ : E∗

2 → E∗
1 . Let

S = {Tt }t≥0 be a u.a.r. Bregman relatively nonexpansive semigroup of uniformly Lipschitzian
mappings on E1 into E1 with a bounded measurable function Lt : (0,∞) → [0,∞) such
that F(S) := ⋂

h≥0 F(Th) 
= ∅. Assume that � := F(S) ∩ � 
= ∅. Choose an initial guess
u1 ∈ E1; let {xn}∞n=1 and {un}∞n=1 be sequences generated by

{
xn = RB1

λ1
(J

E∗
1

q (J E1
p (un) − λn A∗ J E2

p (I − QB2
λ2

)Aun))

un+1 = J
E∗
1

q (αn J
E1
p (εn) + βn J

E1
p (xn) + γn J

E1
p (Ttn xn)), ∀n ≥ 1,

(4.5)

where {εn} ⊂ E1 is a residual vector such that εn → u, and {αn}, {βn} and {γn} are sequences
in (0, 1) such that αn +βn + γn = 1. Suppose that stepsize λn is a bounded sequence chosen
in such a way that

0 < ε ≤ λn ≤
(

q‖(I − QB2
λ2

)Aun‖p

κq‖A∗ J E2
p (I − QB2

λ2
)Aun‖q

− ε

) 1
q−1

, n ∈ N , (4.6)
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for some ε > 0, where the index set N := {n ∈ N : (I − QB2
λ2

)Aun 
= 0} and λn = λ (λ
being any nonnegative value), otherwise. Suppose that the following conditions hold:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) 0 < k ≤ βnγn ≤ 1 for some k ∈ (0, 1);
(C3) {tn} ⊂ (0,∞) with limn→∞ tn = ∞.

Then {xn}∞n=1 and {un}∞n=1 converge strongly to x∗ = ��u, where �� is the generalized
projection from E1 onto �.

Proof We only have to show that limn→∞ ‖xn − Tt xn‖ = 0 for all t ≥ 0. By following the
method of proof in Theorem 3.3, we can show that {xn} is bounded and

lim
n→∞ ‖xn − Ttn xn‖ = 0. (4.7)

Since {Tt }t≥0 is a uniformly of Lipschitzian mappings with a bounded measurable function
Lt . Then, we have

‖Tt Ttn xn − Tt xn‖ ≤ Lt‖Ttn xn − xn‖
≤ sup

t≥0
{Lt }‖Ttn xn − xn‖ → 0 as n → ∞.

Since J E1
p is uniformly norm-to-norm continuous on bounded subsets of E1, then we also

have

lim
n→∞ ‖J E1

p (Tt Ttn xn) − J E1
p (Tt xn)‖ = 0. (4.8)

For each t ≥ 0, we note that

‖J E1
p (xn) − J E1

p (Tt xn
)‖ ≤ ‖J E1

p (xn) − J E1
p (Ttn xn)‖ + ‖J E1

p (Ttn xn) − J E1
p (Tt Ttn xn)‖

+‖J E1
p (Tt Ttn xn) − J E1

p (Tt xn)‖
≤ ‖J E1

p (xn) − J E1
p (Ttn xn)‖ + ‖J E1

p (Tt Ttn xn) − J E1
p (Tt xn)‖

+ sup
x∈{xn}

‖J E1
p (Ttn x) − J E1

p (Tt Ttn )x‖.

Since {Tt }t≥0 is a u.a.r. Bregman relatively nonexpansive semigroup with limn→∞ tn = ∞,
then from (4.7) and (4.8), we get

lim
n→∞ ‖J E1

p (xn) − J E1
p (Tt xn)‖ = 0

for all t ≥ 0. Since J
E∗
1

q is uniformly norm-to-norm continuous on bounded subsets of E∗
1 ,

we get

lim
n→∞ ‖xn − Tt xn‖ = 0.

This completes the proof. ��

5 Numerical experiments

In this section, we give some numerical examples to support our main theorem.
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Table 1 Numerical results of
Algorithm 5.2 with different
choices of N and M

The choices of N and M No. of iterations cpu (time)

N = 50, M = 50 250 0.007260

N = 100, M = 50 290 0.010884

N = 200, M = 200 357 0.031999

N = 150, M = 300 347 0.024889

N = 500, M = 1000 460 0.260444
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Fig. 1 The convergence behavior of En for N = 50 and M = 50

Example 5.1 For each x = (x1, x2, . . . , xN ) ∈ R
N . Let f : RN → R∪{+∞} and g : RN →

R ∪ {+∞} be defined by

f (x) := ‖x‖2 and g(x) = −
N∑

i=1

log xi .

Then, we have

proxλ f (x)

⎧
⎨

⎩

(
1 − λ

‖x‖2

)
x; ‖x‖2 ≥ λ

0; ‖x‖2 < λ

(5.1)

and

proxλg(x)i =
xi +

√
x2i + 4λ

2

for i = 1, 2, 3, . . . , N . Let a mapping T : RN → R
N be defined by

T x = (2 − x1, 2 − x2, 2 − x3, . . . , 2 − xN ).

We aim to solve the following SIP and the fixed point problem: find x∗ ∈ � ∩ F(T ), i.e.,
find x∗ ∈ argmin f such that Ax∗ ∈ argmin g and x∗ is a fixed point of T , where A is a real
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Fig. 2 The convergence behavior of En for N = 100 and M = 50
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Fig. 3 The convergence behavior of En for N = 200 and M = 200

N × M matrix. So our iterative scheme (3.1) becomes

{
xn = prox f

λ1

[
un − λn At (Aun − proxgλ2(Aun))

]

un+1 = αnεn + βnxn + γnT xn, ∀n ≥ 1.
(5.2)

Let λ1 = λ2 = 1, αn = 1
20n+1 , βn = 0.5, γn = 10n−0.5

20n+1 and λn = ‖Aun−proxgλ2
(Aun)‖2

‖At (Aun−proxgλ2
(Aun))‖2 .

The stopping criterion is defined by En = ‖un+1 − un‖ < 10−6. The matrix A is generated
from a normal distribution with mean zero and one variance. For an initial guess x1 ∈ R

N

and residual vector εn ∈ R
N randomly, we obtain the following numerical results, given in

Table 1 and Figs. 1, 2, 3, 4 and 5:
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Fig. 4 The convergence behavior of En for N = 150 and M = 300
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Fig. 5 The convergence behavior of En for N = 500 and M = 1000
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