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Abstract
In this paper, a meshless approximation based on generalized moving least squares is applied
to solve the reaction–diffusion equations on the sphere and red-blood cell surfaces. The
proposed method is based on the projected gradient of the shape functions, and it approx-
imates the Laplace operator defined on the surfaces that is called Laplace–Beltrami. This
technique only requires nodes at locations on the surface and the corresponding normal vec-
tors to the surface. To discretize the time variable, an explicit time technique based on the
fourth-order Runge–Kutta is used. Some numerical results on Turing and Fitzhugh–Nagumo
partial differential equations are given for showing patterns which are appeared in biological
phenomena.

Keywords Generalized moving least-squares approximation · Projected gradient of the
shape functions · Runge–Kutta time discretization · Turing and Fitzhugh–Nagumo models ·
Biological pattern formation · Spot and stripe patterns · Spiral wave patterns in excitable
media
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1 Introduction

In this paper, we consider the following reaction–diffusion equation on the sphere and red-
blood cell surfaces (Fuselier and Wright 2013):
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⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= δu ΔMu + fu(u, v, t),

∂v

∂t
= δv ΔMv + fv(u, v, t),

(1.1)

in which u, v : M → R, δu, δv ≥ 0, fu, fv are (possibly non-linear) scalar functions, and
ΔM is the Laplace–Beltrami operator defined on the surface M ⊂ R

3 (Fuselier and Wright
2013). Here, we introduce two important reaction–diffusion equations in developmental
biology defined on the surfaces.

1.1 Turingmodel

The mathematical model of Turing pattern formation on the surfaces is of the following form
(Fuselier and Wright 2013):

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= δuΔMu + αu(1 − τ1v

2) + v(1 − τ2u),

∂v

∂t
= δvΔMv + βv(1 + ατ1

β
uv) + u(γ + τ2v),

(1.2)

where u and v represent concentrations of the chemical substances. In fact, the substances u
and v are called the activator with a slow diffusion rate and the inhibitor with a fast diffusion
rate, respectively (Gierer and Meinhardt 1972). Moreover, the cubic coupling parameter τ1
points the stripes patterns, while the quadratic coupling parameter τ2 refers to spot patterns
(Fuselier and Wright 2013). As is said in Sugai et al. (2017), the activator increases the
concentrations of both the activator and the inhibitor, while the inhibitor represses the con-
centration of the activator. We can also derive different patterns such as spots and stripes
by changing diffusivity rates (Fuselier and Wright 2013; Mosekilde 1996). As mentioned in
Fuselier andWright (2013) and related literature works, the spot pattern formations are more
robust than the stripes and take far less time to reach steady state.

The history of primary Turing model comes back to 1952. In that year, Alan Turing in
his paper Turing (1952) showed how chemical reactions can create patterns in the nature
by reaction–diffusion equation. As is said in Maini et al. (2012), Turing hypothesized that
the patterns which we observe during embryonic development arise in response to a spatial
pre-pattern in biochemicals which he called morphogens. Until now, Turing mechanism is
considered experimentally in different morphological events such as, hair pattern of mam-
mals, feather patterns of birds, regeneration of hydra, and pigment pattern formation in the
skin of zebrafish (Kondo et al. 2009; Murray 1993). As is said in Sheth et al. (2012), to
achieve a leopard spot pattern, the activator u produces a dark colored fur, while the inhibitor
v prevents the dark color formation which gives the background gold color, and the over-
all result is black spots on a gold background (Sheth et al. 2012). Besides, there are other
complex patterns which can be derived via modified reaction–diffusion system (see Fig. 1).

Several Turing models have been developed such as the Gierer–Meinhardt model (Gierer
and Meinhardt 1972), Gray–Scott model (Gray and Scott 1983), Lengyel–Epstein model
(Lengyel and Epstein 1991), Brusselator model (Prigogine and Lefever 1968), Schnaken-
berg model (Schnakenberg 1979), and Selkov model (Selkov 1968). The solutions of Turing
models show the pattern formation in the developing animal embryo through interactions
between two diffusible substances (Kondo and Miura 2010). Since the exact solutions for
Turing models are not available, finding the numerical solutions will be important. For exam-
ple, spot pattern on cheetah is simulated by applying numerical method on reaction–diffusion
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Fig. 1 Biological patterns created by modified reaction–diffusion mechanisms for types of seashell and fish.
Taken from Kondo and Miura (2010)

equation inCooper andLeeuwen (2013) andVarvruska (2015). Besides, patterns on thewings
of a butterfly have been simulated in Sekimura et al. (2000) with a numerical method. The
other numerical techniques for showing Turing patterns can be found in the literature works.

1.2 Fitzhugh–Nagumomodel

The well-known Fitzhugh–Nagumo (FHN) model is formulated as a reaction–diffusion sys-
tem in the following form (Fuselier and Wright 2013):

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= δu ΔMu + 1

α
u(1 − u)(u − v + b

a
),

∂v

∂t
= δv ΔMv + (u − v),

(1.3)

where u denotes the membrane potential, and v is a recovery variable (Tonnelier 2002).
The parameters a, b, and α govern the reaction Kinetic. In addition, δu and δv represent
the diffusivities rates (Fuselier and Wright 2013). As is mentioned in Fuselier and Wright
(2013), when α << 1, the value of u is 0 or 1 almost everywhere (Fuselier andWright 2013).
The FHN model is often applied as a generic model for excitable media (Nomura and Glass
1996).

The patterns of action potential propagation along the axon of a single neuron or in a
network of cortical neurons can be obtained by numerical simulations of FHNmodel (Alford
and Auchmuty 2006). In addition, this model can be applied to simulate the propagation of
wave in heart tissue (Cherry and Fenton 2008) (see Fig. 2).

The history of FHNmodel returns to 1928 when Van der Pol and Van derMark introduced
a mathematical model for showing the heart’s dynamic (Van der Pol and Van der mark 1928).
In 1952, Hodgkin and Huxley presented another mathematical model known as Hodgkin–
Huxley for explaining the behavior of nerve cells in a squid giant axon (Hodgkin Huxley
1952). In 1961, Fitzhugh proposed a newmodel of the electrical activities of nervemembrane
by using of simple representative of Hodgkin-Huxley model (Fitzhugh 1961). After that, in
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Fig. 2 Spiral wave on the surface of a human heart. Taken from Cherry and Fenton (2008)

1962, Nagumo et al. (1962) confirmed Fitzhugh’s model and proposed a new mathematical
model of the nerve axon. Finally, this model is known as Fitzhugh–Nagumo which interprets
qualitative characteristics of electrical impulses along nerve and cardiac fibers (Xu et al.
2014). The other types of FHN model which have been derived from the original one can be
found in Izhikevich (2010), Kostova et al. (2004), and Roqoreanu et al. (2000).

1.3 The literature review

In recent years, there are different researchworks on the numerical solutions of the reaction-di
usion equations. For example,DiscontinuousGalerkin (DG)method (Epshteyn andKurganov
2008, and Zhu et al. 2009), various finite difference (FD) techniques (Smiely 2009; Tyson
et al. 1999, 2000), and finite volume methods (Chertock and Kurganov 2008; Chiu and
Yu 2007). Authors of Shakeri and Dehghan (2011) combined the spectral element method
with finite volume method, and obtained a numerical scheme for solving Turing model
in two-dimension. Authors of Tatari et al. (2011) applied the moving least-squares (MLS)
approximation to solve Turing equation in R

2. In Ilati and Dehghan (2015), the meshless
local weak form has been applied to solve Brusselator model and spike dynamics in the
Gierer–Meinhardt system. In addition, they solved Turing-type models via direct meshless
local Petrov–Galerkin (DMLPG) method (Ilati and Dehghan 2017). In Guin and Mandal
(2014), the finite difference scheme was used to solve predator–prey model. More numeri-
cal simulations of the reaction–diffusion equations can be found in Gambino et al. (2013),
Guin et al. (2012), and Guin (2015). Also, for solving Brusselator model, there are some
methods such as Adomian decomposition method (Adomian 1995), second-order finite dif-
ference scheme (Twizell et al. 1999), modified Adomian decomposition method (Wazwaz
2000), dual-reciprocity boundary elementmethod (Ang2003), differential quadraturemethod
(Mittal and Jiwari 2011), and radial basis functions collocation method (Islam et al. 2010).
Recently, the authors of Mohammadi et al. (2014) solved this problem with reproducing ker-
nel Hilbert space technique. In Dehghan and Fakhar-Izadi (2011), pseudospectral method has
been applied to find the numerical solution of Nagumo equation in one-dimensional space.
Authors of Dehghan and Abbaszadeh (2016) obtained the numerical solution of Turing and
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FHN models in two-dimensional space with element-free Galerkin (EFG) method which is
combined with the moving kringing least-squares technique and radial point interpolation
scheme.Ahigh-order kernelmethod based on radial basis functions (RBFs) is applied to solve
reaction–diffusion equations on the surfaces embedded in R

3 (Fuselier and Wright 2013). In
Shankar et al. (2015), the authors introduced a radial basis function (RBF)–finite difference
(FD) method and applied it for solving reaction–diffusion equations on the surfaces. Authors
of (Lehto et al. 2017) provided a radial basis function (RBF) compact finite difference (FD)
scheme for solving reaction–diffusion equations on surfaces. In Peng and Zhang (2016), the
method of multiple time scales is employed to derive the amplitude equations which are the
cubic Stuart–Landau equation in the supercritical case and the quintic in the subcritical case.
In Fua et al. (2016), a new mixed finite-element method is introduced for approximating
the steady reaction–diffusion equations. Other numerical methods for finding the numerical
solutions of Turing models can be observed in Bergdorf et al. (2010), Bertalmio et al. (2001),
Calhoun and Helzel (2009), Gomatam and Amdjadi (1997), MacDonald and Ruuth (2009),
Piret (2012), Ruuth and Merriman (2008), and references therein.

1.4 The structure of remainder of this paper

In this paper, we use a direct method based on generalized moving least squares (GMLS) for
approximating the spatial variables of Turing and FHN equations on the unit sphere and red-
blood cell surfaces. The remainder of the paper is as follows: Sect. 2 gives a brief discussion
of the GMLS approximation. The discussion of the continuous surface differential operators
is given in the next section. In Sect. 4, we approximate the Laplace–Beltrami operator using
the projected gradient of the shape functions. In Sect. 5, the time discretization of the semi-
discretized reaction–diffusion equation using the fourth-order Runge–Kutta method is given.
In Sect. 6, some numerical simulations are reported for solving Turing and FHN models on
the unit sphere and red-blood cell surfaces.

2 Generalizedmoving least squares approximation

The generalized moving least squares approximation on the spheres has been introduced by
Mirzaei (2017). In this section, we briefly review the main idea of this approximation on
the two-dimensional unit sphere, i.e., S

2. For further information, the interested reader can
refer to Mirzaei (2017) and the other references such as Fasshauer (2007), Mirzaei (2016),
Mirzaei et al. (2012), and Wendland (2005).

Suppose that X = {x1, x2, . . . , xN } is N scattered points on the unit sphere. In addition,
P = {

p1, p2, . . . , pQ
}
is the basis of the space of all spherical harmonics of degreem which

is denoted by Y2m . Besides, we consider u is a scalar real-valued function defined on S
2. The

approximation of u by GMLS can be written as follows (Mirzaei 2016, 2017; Mirzaei et al.
2012):

u(x) ≈ û(x) =
∑

j∈I (x)
a j (x)u(x j ), x ∈ S

2,

where a j (x) j = 1, 2, . . . , |I (x)| are the shape functions which are obtained from the min-
imizing of the weighted discrete-	2 (Lancaster and Salkauskas 1981, Mirzaei 2017, Salehi
and Dehghan 2013). In addition, I (x) denotes the family of indices of points in support
x ∈ S

2, and it is defined as follows:
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I (x) = {
j ∈ {1, 2, . . . , N } : dist(x, x j ) ≤ δ

}
,

in which δ is the radius of support domain, and dist(x, x j ) shows the geodesic distance
between x and x j on S

2.

Definition 1 Theweight functionW is defined as follows (Mirzaei 2016, 2017;Mirzaei et al.
2012; Wendland 2005):

W : S
2 × S

2 → R,

such that

W (x, x j ) =
{

φ (r) , 0 ≤ r ≤ 1,
0, r > 1,

where φ is a radial function and r := dist(x, x j )

δ
.

In this paper, we use the Gaussian weight function as follows (Mirzaei 2016, 2017; Mirzaei
et al. 2012):

W (x, x j ) =
⎧
⎨

⎩

e−ε2r2 − e−ε2

1 − e−ε2
, 0 ≤ r ≤ 1,

0, r > 1,

where ε is a constant (shape) parameter. The approximation of Dαu(x) for multi-index
α ∈ N

d
0 , where |α| = α1 + α2 + · · · + αd , can be written as follows (Mirzaei 2016, 2017;

Mirzaei et al. 2012):

Dαu(x) ≈ D̂αu(x) =
∑

j∈I (x)
a j,α(x)u j , x ∈ S

2.

The vector form of D̂αu(x) can be written as follows:

D̂αu(x) = [a1,α(x), a2,α(x), . . . , a|I (x)|,α(x)]u := Dα pT (x)(PTW P)−1PTWu,

in which

Dα pT(x) = [Dα p1(x), Dα p2(x), . . . , Dα pQ(x)],
P = P(x) = (Pk(x j )) ∈ R

|I (x)|×Q,

W = W (x) = diag{W (x, x j )} ∈ R|I (x)|×|I (x)|,
u = [u1, u2, . . . , u|I (x)|]T ∈ R

|I (x)|.

3 Continuous surface differential operators

In this section, we present the mathematical formulations of the differential operators which
are defined on the surfaces embedded in R

3. All discussions proposed here are taken from
Fuselier and Wright (2013). For more details, the interested reader can refer to Fuselier and
Wright (2013) and references therein.

We suppose thatM is a smooth-embedded surface (sub-manifold) ofR
3 with no boundary.

At each point x = (x, y, z)T on M, we denote the normal vector as n = (nx , ny, nz)T, and
the tangent vector to M at x is shown with TxM, i.e., Fuselier and Wright (2013):

∇M := P ∇ = (I − nnT )∇, (3.1)
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such that P projects vectors in R
3 to TxM. The vector form of ∇M can be written as follows:

∇M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − nxnx )
∂

∂x
− nxny

∂

∂ y
− nxnz

∂

∂z

−nxny
∂

∂x
+ (1 − nyny)

∂

∂ y
− nynz

∂

∂z

−nxnz
∂

∂x
− nynz

∂

∂ y
+ (1 − nznz)

∂

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎣

ηx

ηy

ηz

⎤

⎥
⎥
⎥
⎦

. (3.2)

Due to the definition ∇M, i.e., Eq. (3.2), the Laplace–Beltrami operator can be written as
follows:

ΔM := ∇M.∇M = (P ∇). (P ∇) = ηxηx + ηyηy + ηzηz . (3.3)

4 The projected gradient of the shape functions

Our goal of this section is to approximate the Laplace–Beltrami operator defined on the
sphere and red-blood cell surfaces at given set of points X by GMLS technique. For this
purpose, the approximation of the surface differential operators which is based on deriving
the projected gradient of the shape functions is introduced. Another approach with details to
approximate Laplace–Beltrami operator defined on the spheres by GMLS can be found in
Mirzaei (2017).

According to (3.2), at point x ∈ M, we have

∇Ma j (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − nxnx )
∂a j (x)

∂x
− nxny

∂a j (x)
∂ y

− nxnz
∂a j (x)

∂z

−nxny
∂a j (x)

∂x
+ (1 − nyny)

∂a j (x)
∂ y

− nynz
∂a j (x)

∂z

−nxnz
∂a j (x)

∂x
− nynz

∂a j (x)
∂ y

+ (1 − nznz)
∂a j (x)

∂z

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4.1)

for j = 1, 2, . . . , |I (x)|. We again consider the following approximation for the function u
defined on the surface M:

u(x) =
∑

j∈I (x)
a j (x) u j , x ∈ M. (4.2)

Due to (4.2), ∇Mu at point x ∈ M can be written as follows:

∇Mu(x) =
∑

j∈I (x)
∇Ma j (x) u j . (4.3)

According to (4.1) and (4.3), the components of ∇Mu(x) can be written as follows:

ηx u(x) :=
∑

j∈I (x)
ηxa j (x) u j =

∑

j∈I (x)

[

(1 − nxnx )
∂a j (x)

∂x
− nxny

∂a j (x)
∂ y

− nxnz
∂a j (x)

∂z

]

u j ,

ηyu(x) :=
∑

j∈I (x)
ηya j (x) u j =

∑

j∈I (x)

[

−nxny
∂a j (x)

∂x
+ (1 − nyny)

∂a j (x)
∂ y

− nynz
∂a j (x)

∂z

]

u j,

ηzu(x) :=
∑

j∈I (x)
ηzX a j (x) u j =

∑

j∈I (x)

[

−nxnz
∂a j (x)

∂x
− nynz

∂a j (x)
∂ y

+ (1 − nznz)
∂a j (x)

∂z

]

u j ,

(4.4)
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where x ∈ M. Applying the collocation technique on Eq. (4.4) with X = {x1, x2, . . . , xN }
yields

ηx
Xu(xi ) =

∑

j∈I (xi )
ηxXa j (xi ) u j

=
∑

j∈I (xi )

[

(1 − nx i nx i )
∂a j (xi )

∂x
− nx i nyi

∂a j (xi )
∂ y

− nx i nzi
∂a j (xi )

∂z

]

u j ,

(4.5)

for i = 1, 2, . . . , N . ηy
Xu(xi ) and ηzXu(xi ) will be obtained in a similar way. We now define

Bx
X :=

[

(1 − nxi nxi )
∂a j (xi )

∂x
− nxi nyi

∂a j (xi )
∂ y

− nxi nzi
∂a j (xi )

∂z

]

1≤i, j≤N
,

By
X :=

[

−nxi nyi
∂a j (xi )

∂x
+ (1 − nyi nyi )

∂a j (xi )
∂ y

− nyi nzi
∂a j (xi )

∂z

]

1≤i, j≤N
,

Bz
X :=

[

−nxi nzi
∂a j (xi )

∂x
− nyi nzi

∂a j (xi )
∂ y

+ (1 − nzi nzi )
∂a j (xi )

∂z

]

1≤i, j≤N
. (4.6)

According to (4.6), the discrete version of the approximation of Laplace–Beltrami operator
can be written as follows:

ΔM|X = ∇M.∇M|X ≈ LX := Bx
X B

x
X + By

X B
y
X + Bz

X B
z
X . (4.7)

5 Time discretization

Applying GMLS approximation on Eq. (1.1) gives the following semi-discretized equation:

duX

dt
= δLuX + F(uX , t) =: R(uX , L, t), (5.1)

where uX is the vector of approximation solution at points X due to the spatial discretization.
Also, L is a matrix as follows:

L =
[
LX zeros(N , N )

zeros(N , N ) LX

]

2N×2N
,

and

F(uX , t) = [ fu(uX , vX , t), fv(uX , vX , t)]T.

We now discretize Eq. (5.1) due to the time variable using the fourth-order Runge–Kutta
method Quarteroni et al. (2007). We suppose that t ∈ [0, T ] where T is the final time. By
dividing the time interval [0, T ] into M sub-intervals, such that T = MΔt where Δt is the
time step and by defining tn := nΔt , the Runge–Kutta method for Eq. (5.1) can be written
as follows:
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k1 = Δt R
(
Un

X , L, tn
)
,

k2 = Δt R

(

Un
X + k1

2
, L, tn + Δt

2

)

,

k3 = Δt R

(

Un
X + k2

2
, L, tn + Δt

2

)

,

k4 = Δt R
(
Un

X + k3, L, tn + Δt
)
,

Un+1
X = Un

X + 1

6
(k1 + 2(k2 + k3) + k4) , n = 0, 1, . . . , M − 1,

in which Un+1
X represents the vector of approximation solution due to the time and spatial

discretizations at tn+1.

6 Numerical simulations

In this section, we have reported some numerical results on the unit sphere and red-blood
cell surfaces using the proposed method for solving Turing and FHN models. The surface of
the unit sphere is formulated as follows (Fuselier and Wright 2013):

M = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1}. (6.1)

Asmentioned in St Clair (2006), the sphere has amore smooth, constant curvature throughout
the surface. This gives the patterns to distribute evenly in comparison to the other surfaces.

The surface of red-blood cell is a mathematical model for human red-blood cells in static
equilibrium conditions, and in the spherical coordinate, it is defined as follows (Fuselier and
Wright 2013):

M = {(x, y, z) ∈ R
3 : x = r0 cos λ cos θ, y = r0 sin λ cos θ,

z = 1

2
sin θ(c0 + c2cos

2θ + c4cos
4θ)}, (6.2)

inwhich−π/2 ≤ θ ≤ π/2,−π ≤ λ ≤ π , r0 = 3.91/3.39, c0 = 0.81/3.39, c2 = 7.83/3.39,
c4 = −4.39/3.39.

To show the convergence of the presented method due to the time discretization, the
numerical order of convergence is calculated by the following formula:

log
(
e1
e2

)

log
(

Δt1
Δt2

) ,

in which e1 and e2 denote the numerical errors due to L∞−norm for time steps Δt1 and Δt2,
respectively. Since the exact solution of this problem is not available, to show the order of

convergence with respect to time discretization, we compute e =
∥
∥
∥uTΔt1

− uTΔt2

∥
∥
∥
L∞

, where

uT(.) denotes the approximation solution at the final time T with respect to Δt . Here, the

number of points is considered N = 9989, the radius of support domain is fixed δ = c/
√
N ,

where c is a constant parameter, and ε = 4 is chosen as shape parameter for the Gaussian
weight function. All simulations presented here are carried out in MATLAB environment.
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Fig. 3 Turing stripe pattern with the initial condition on the unit sphere surface for u at t = 2000, 3000, and
t = 5000 in Test problem 1

6.1 Turing patterns on the unit sphere and red-blood cell surfaces

6.1.1 Test problem 1 (stripe pattern formations)

In this example, the presentedmethod is applied to simulate Turing patterns on the unit sphere
and red-blood cell surfaces. The initial conditions of u and v are considered as random values
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Fig. 4 Turing stripe pattern on red-blood cell surface for u (left panel) and v (right panel) at t = 1520 in Test
problem 1

Fig. 5 Turing spot pattern on the unit sphere surface for u (left panel) and v (right panel) at t = 400 in Test
problem 2

between −0.5 and 0.5 in a thin strip around the “equator” of each surface and u = v = 0
elsewhere (Fuselier and Wright 2013). To obtain stripe patterns on both surfaces, we set
δv = 0.0021, δu = 0.516δv , τ1 = 3.5, τ2 = 0, α = 0.899, β = −0.91, and γ = −α

(Fuselier and Wright 2013). Figure 3 shows the numerical solutions of u with the initial
condition at different time levels t = 2000, 3000 and t = 5000 on the unit sphere using
δ = 20/

√
N and Δt = 0.1. This figure demonstrates stripe pattern as is observed in the

literature works. Moreover, the numerical solutions of u and v on red-blood cell surface are
displayed in Fig. 4 at t = 1520 using Δt = 0.05.
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6.1.2 Test problem 2 (spot pattern formations)

This test demonstrates the spot patterns on the unit sphere and red-blood cell surfaces with the
presented method. Similar to the previous test, the initial conditions of u and v are considered
as random values between −0.5 and 0.5 in a thin strip around the ”equator” of each surface
and u = v = 0 elsewhere (Fuselier and Wright 2013). To simulate spot patterns on both
surfaces, the parameters are chosen as follows: δv = 0.0045, δu = 0.516δv , τ1 = 0.02,
τ2 = 0.2, α = 0.899, β = −0.91, γ = −α (Fuselier and Wright 2013), and t = 400
with δ = 30/

√
N and Δt = 0.05. The numerical simulations of u and v at steady state are

shown in Fig. 5 on the unit sphere. In addition, the numerical solution of u on red-blood
cell is shown at time levels t = 400 in Fig. 6. In Table 1, the numerical L∞ error with the
order of convergence of the proposed time discretization is given by different time steps. In
Table 2, we have compared the proposed approximation with RBFs’ interpolation (Fuselier
and Wright 2013) due to CPU time which is needed to reach the steady-state solution. Here,
we have used N = 6561 points generated on the unit sphere and red-blood cell surfaces
(Fuselier and Wright 2013) and Δt = 0.05.

Fig. 6 Turing spot pattern on red-blood cell surface for u (left panel) and v (right panel) at t = 400 in Test
problem 2

Table 1 The L∞ error with the order of convergence of time discretization

Δt1 − Δt2 L∞ Orders

0.1 − 0.1
2 2.87e−7 −

0.1
2 − 0.1

4 1.68e−8 4.10
0.1
4 − 0.1

8 1.01e−9 4.05
0.1
8 − 0.1

16 6.22e−11 4.02

Table 2 CPU time required for spot patterns on the considered surfaces

Surface GMLS approximation RBF interpolation
(Fuselier and Wright 2013)

CPU time(s) CPU time(s)

Sphere 1172.24 835.96

Red-blood cell 1333.23 705.94

123



Approximation of continuous surface differential operators… 6967

Fig. 7 Spiral wave pattern with the initial condition for u on the unit sphere surface, u = 0 (blue color) and
u = 1 (red color) at t = 42.24, 42.80, 43, 76 and t = 44.80 in Test problem 3

6.2 Spiral waves on the unit sphere and red-blood cell surfaces

6.2.1 Test problem 3 (Spiral waves)

In this test, we have obtained the numerical solution of FHNmodel on the unit sphere and red-
blood cell surfaces via the presented method. The initial conditions of u and v are considered
as follows (Fuselier and Wright 2013):
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Fig. 8 Spiral wave pattern with the initial condition for u on red-blood cell surface, u = 0 (blue color) and
u = 1 (red color) at t = 42.24, 42.80, 43, 76 and t = 44.80 in Test problem 3

u(x, y, z, 0) = 1

2
[1 + tanh(2x + y)] ,

v(x, y, z, 0) = 1

2
[1 − tanh(3z)] .

To show spiral wave patterns on both surfaces, δv = 0, δu = 2.5(2π/50)2, α = 0.02,
a = 0.75, b = 0.02 are considered as the parameters of the model. The numerical solutions
of u with the initial condition at different time levels t = 42.24, 42.80, 43, 76 and t = 44.80
are drawn in Fig. 7 using δ = 30/

√
N and Δt = 0.02. Moreover, in Fig. 8, spiral wave

pattern is simulated on red-blood cell surface using the proposed approach. As can be seen
here and observations reported in Fuselier and Wright (2013), during the simulation time,
these spiral waves remain intact, but they are meandering around the surfaces.
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7 Conclusion

In this paper, we have successfully applied a numericalmeshlessmethod based on generalized
moving least squares for solving reaction–diffusion systems on the sphere and red-blood cell
surfaces which show animal coat patterns such as spot and stripe, and spiral wave patterns in
excitable media. We have used the projected gradient to construct discrete approximations
to the Laplace–Beltrami operator. An explicit time discretization based upon fourth-order
Runge–Kutta method is used to approximate the time variable. Some numerical simulations
are given for Turing and Fitzhugh–Nagumo (FHN) equations on the considered surfaces
which are embedded in R

3.
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