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Abstract
An algorithm for the reaction–diffusion system including model problems Brusselator,
Schnakenberg and Gray–Scott is introduced. The integration of the system is managed by
combining the Crank–Nicolson method in time and the cubic trigonometric B-spline collo-
cation method in space. Our aim here is to provide a new code to understand and implement
reaction–diffusion-type events. Some problems chosen from the literature to illustrate the
efficiency of the algorithm are studied for each model problem.

Keywords Finite-element method · Collocation · B-spline · Reaction–diffusion

Mathematics Subject Classification 65L60 · 35K57 · 42A10 · 65D07

1 Introduction

Reaction–diffusion systems (RDSs) are mathematical models that reveal several phenomena.
Thus, RDS let us give complex behaviors due to the occurrence of both reaction and diffusion
terms. Not only do interacting reaction terms lead to interesting behaviors, but also spreading
this behavior via diffusion causes to develop pattern formation. Although reaction–diffusion
systems are naturally applied in chemistry, physics and phenomena in other fields of science
can be defined by various RDSs. Both patterns and some motions of nature are described via
RDS to use in fields; for example, wave optics, predator–prey model, spread of infectious
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diseases, migration of population and spread of forest fires, chemical exchange reaction and
transport of ground water in an aquifer.

Many studies have dealt with the solutions of the RDS theoretically and numerically. The
numerical studies are of importance because theoretical solutions of the nonlinear RDS exist
for the restricted boundary and initial conditions. Some classical numerical methods such as
implicit–explicit method (Ruuth 1995), adaptive moving mesh methods (Zegeling and Kok
2004), and partially linearized-implicit θ methods (Garcia-Lopez and Ramos 1996) have
applied to find numerical solutions of the RDS to reveal wide range of behaviors. Polynomial
B-splines and exponential B-spline collocation algorithms are constructed to have numerical
solutions ofRDS in the doctoralwork of Sahin (2009) andErsoy andDag (2015), respectively.
Reaction–diffusion systems are solved via modified cubic B-spline differential quadrature
method (Mittal and Rohila 2016).

The collocation method based on the spline functions is preferable for two reasons for
numerical solutions of the differential equations. First, it is easy to implement and second,
to give us a smoother approximating function, which is continuous in derivatives up to one
lower order of spline both within the subintervals and at the interpolating nodes. Fairweather
andMeade havemade comprehensive survey on numerical solutions of differential equations
using spline methods, primarily smoothest spline collocation, modified spline collocation,
and orthogonal spline collocation method (Fairweather and Meade 1989). Since then, devel-
opments have been substantiated in the formulation and application of the spline collocation
method. I. J. Schoenberg came up with both trigonometric spline and trigonometric B-spline
in 1964 to interpolate functions (Schoenberg 1964).The trigonometric B-splines are shown
to be better for handling the problem of surface approximation in geometric modeling (Wang
et al. 2004). Due to application capabilities of the trigonometric B-splines, various forms
of the trigonometric B-splines are introduced as an alternative to more usual polynomial
B-splines.

Numerical methods constructed through the trigonometric B-splines have started to obtain
solutions of the differential equations. Although many polynomial B-spline-based numerical
algorithms have been developed for finding solutions of the differential equation, the trigono-
metric B-spline is not widespread. Numerical solutions of the ordinary differential equation
in standard form are given byway of both quadratic and cubic trigonometric B-splines in stud-
ies, respectively (Nikolis 2004; Nikolis and Seimenis 2005). The linear two-point boundary
value problems of order two and singular two-point boundary value problems are solved by
the method of collocation based on trigonometric cubic B-splines (Hamid et al. 2010; Gupta
and Kumar 2011). Time-dependent partial differential equation, such as one-dimensional
hyperbolic equation (wave equation) with nonlocal conservation condition, nonclassical dif-
fusion problems, Generalized Nonlinear Klien–Gordon equation and advection–diffusion
equation, are solved by trigonometric B-spline collocation method (Abbas et al. 2014a, b;
Zin et al. 2014a, b; Nazir et al. 2016). Burgers’ equation is dealt with to find solution by
way of a trigonometric quadratic B-spline subdomain Galerkin algorithm in the work (Ay
et al. 2015). Numerical solution of 1D Hyperbolic Telegraph equation using B-spline and
trigonometric B-spline by differential quadrature method is presented in the study (Arora
and Joshi 2016)

Since RDSs include the second-order derivatives, the trigonometric B-spline functions
enable to opt for the second-order trial function for the collocation method. Our aim is
to see the effects of the trigonometric cubic B-spline functions when used with colloca-
tion method and give alternative solution algorithm on getting solutions of the RDS. The
reaction–diffusion systems are integrated in time and space variables fully to have the alge-
braic equations. This equation is solved with a variant of Thomas algorithm.
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Table 1 Models of the RDS

Test problem a1 a2 b1 b2 c1 c2 d1 d2 e1 e2 m1 m2 n1 n2

Linear d d −a 0 1 −b 0 0 0 0 0 0 0 0

Brusselator ε1 ε2 −(B + 1) B 0 0 1 −1 0 0 0 0 A 0

Schnakenberg 1 d −γ 0 0 0 γ −γ 0 0 0 0 γ a γ b

Gray–Scott ε1 ε2 − f 0 0 −( f + k) 0 0 0 0 −1 1 f 0

RDSs which we use in this paper are mentioned in Sect. 2. The suggested algorithm is
explained in Sect. 3. In Sect. 4 named as numerical results, solutions of the four special RDSs
are studied for some test problems. Figures and tables are given to see the suitability as well
as the accuracy of the proposed method. In addition, matrix stability analysis is given in
Sect. 5.

2 Reaction–diffusion systems

The nonlinear RDS is classified mathematically as the semi-linear parabolic partial differen-
tial equations which include Brusselator, Schnakenberg, and Gray–Scott models, and others.
General form of the time-dependent one-dimensional nonlinear RDS, including all models
studied, is expressed as follows:

∂U

∂t
= a1

∂2U

∂x2
+ b1U + c1V + d1U

2V + e1UV + m1UV 2 + n1

∂V

∂t
= a2

∂2V

∂x2
+ b2U + c2V + d2U

2V + e2UV + m2UV 2 + n2. (1)

For computational purpose, spatial domain is confined to be finite interval [x0, xN ]. The
initial conditions are

U (x, 0) = U0(x), V (x, 0) = V0(x), x ∈ Ω. (2)

Boundary conditions are going to be defined in every test problem sections. Special cases of
the RDSs are specified according to the parameters in Eq. 1 defined in Table 1

3 Trigonometric cubic B-spline collocationmethod

The interval [a, b] is divided into equal subelements at the knots xi , i = 0, . . . , N with
mesh spacing h = (b − a)/N and a = x0, b = xN . Trigonometric cubic B-spline
TCBi (x), i = −1, ...N + 1 are defined at these knots over the interval [a, b] together
with knots xN−2, xN−1, xN+1, xN+2 outside the problem domain as follows:

TCBi (x) = 1

θ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω3(xi−2), x ∈ [
xi−2, xi−1

]

ω(xi−2)(ω(xi−2)φ(xi )
+φ(xi+1)ω(xi−1)) + φ(xi+2)ω

2(xi−1), x ∈ [
xi−1, xi

]

ω(xi−2)φ
2(xi+1) + φ(xi+2)(ω(xi−1)φ(xi+1)

+φ(xi+2)ω(xi )), x ∈ [
xi , xi+1

]

φ3(xi+2), x ∈ [
xi+1, xi+2

]

0, otherwise,

(3)
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Table 2 Values of TCBi (x) and its principle two derivatives at the knot points

TCBi (xk ) TCB′
i (xk ) TCB′′

i (xk )

xi−2 0 0 0

xi−1 sin2( h2 ) csc (h) csc( 3h2 ) − 3
4 csc( 3h2 )

3(1+3 cos(h)) csc2( h2 )

16
[
2 cos( h2 )+cos( 3h2 )

]

xi
2

1+2 cos(h)
0

−3 cot2( 3h2 )

2+4 cos(h)

xi+1 sin2( h2 ) csc (h) csc( 3h2 ) 3
4 csc( 3h2 )

3(1+3 cos(h)) csc2( h2 )

16
[
2 cos( h2 )+cos( 3h2 )

]

xi+2 0 0 0

where ω(xi ) = sin( x−xi
2 ), φ(xi ) = sin( xi−x

2 ), θ = sin( h2 ) sin(h) sin( 3h2 ). TCBi (x) are
twice continuously differentiable piecewise functions on the interval [a, b]; each of them is
nonnegative on subelements

[
xi−2, xi+2

]
and starting with the basis of the TCB-splines of

order 1:

T 1
i (x) =

{
1, x ∈ [xi , xi+1)

0, otherwise.
(4)

TCB-spline basis of order k = 2, 3, ... can be calculated using the recursive formula:

T k
i (x) = sin( x−xi

2 )

sin( xi+k−1−xi
2 )

T k−1
i (x) + sin( xi+k−x

2 )

sin( xi+k−xi+1
2 )

T k−1
i+1 (x), k = 2, 3, 4, ... (5)

The values of TCBi (x),TCB
′
i (x) and TCB

′′
i (x) at the knots xi ’s can be computed from

Eq. 3 as in Table 2.
The approximate solutions UN (x, t) and VN (x, t) are sought in terms of trigonometric

B-splines as follows:

U (x, t) ≈ UN (x, t) =
N+1∑

i=−1

TCBi (x)δi (t),

V (x, t) ≈ VN (x, t) =
N+1∑

i=−1

TCBi (x)γi (t), (6)

where time-dependent parameters δi and γi are to be determined from the collocationmethod
together with using the boundary and initial conditions.

The nodal values of U , V , and its first and second derivatives at the knots are given in
terms of parameters by the following relations:

Ui = α1δi−1 + α2δi + α1δi+1 Vi = α1γi−1 + α1γi + α1γi+1

U ′
i = β1δi−1 + β2δi+1 V ′

i = β1γi−1 + β2γi+1

U ′′
i = λ1δi−1 + λ2δi + λ1δi+1 V ′′

i = λ1γi−1 + λ2γi + λ1γi+1,

(7)

where the coefficients are

α1 = sin2( h2 ) csc(h) csc( 3h2 ) α2 = 2
1+2 cos(h)

β1 = − 3
4 csc(

3h
2 ) β2 = 3

4 csc(
3h
2 )

λ1 = 3((1+3 cos(h)) csc2( h2 ))

16(2 cos( h2 )+cos( 3h2 ))
λ2 = − 3 cot2( h2 )

2+4 cos(h)
.

(8)
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Using the Crank–Nicolson scheme

Ut = Un+1 −Un

Δt
,U = Un+1 +Un

2
,

Vt = V n+1 − V n

Δt
, V = V n+1 + V n

2
(9)

leads to the time-integrated RDS equation system:

Un+1 −Un

Δt
− a1

Un+1
xx +Un

xx

2
− b1

Un+1 +Un

2
− c1

V n+1 + V n

2

− d1
(U 2V )n+1 + (U 2V )n

2
− e1

(UV )n+1 + (UV )n

2
− m1

(UV 2)n+1 + (UV 2)n

2
− n1 = 0

V n+1 − V n

Δt
− a2

V n+1
xx + V n

xx

2
− b2

Un+1 +Un

2
− c2

V n+1 + V n

2

− d2
(U 2V )n+1 + (U 2V )n

2
− e2

(UV )n+1 + (UV )n

2
− m2

(UV 2)n+1 + (UV 2)n

2
− n2 = 0, (10)

where Un+1 = U (x, tn+1) and V n+1 = V (x, tn+1) denote the solutions at the (n + 1)th
time level. Here, tn+1 = tn +Δt ,Δt is the time step and nth level is tn = nΔt . Linearization
of the nonlinear terms (U 2V )n+1, (UV 2)n+1, and (UV )n+1 in Eq. 10 is managed by the
following which is given in the study: (Rubin and Graves 1975) as:

(U 2V )n+1 = Un+1UnV n +UnUn+1V n +UnUnV n+1 − 2UnUnV n

(UV 2)n+1 = Un+1V nV n +UnV n+1V n +UnV nV n+1 − 2UnV nV n

(UV )n+1 = Un+1V n +UnV n+1 −UnV n . (11)

When we substitute (11) in (10), the linearized general model equation system takes the form
as follows:

−a1
2
Un+1
xx + βm1U

n+1 + βm2V
n+1 = a1

2
Un
xx

+βm3U
n + βm4V

n + n1

−a2
2
V n+1
xx + βm5U

n+1 + βm6V
n+1 = a2

2
V n
xx

+βm7U
n + βm8V

n + n2, (12)
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where

βm1 = 1

Δt
− b1

2
− d1U

nV n − e1
2
Vn − m1

2
(V n)2,

βm2 = −c1
2

− d1
2

(Un)2 − e1
2
Un − m1U

uV n,

βm3 = 1

Δt
+ b1

2
− m1

2
(V n)2,

βm4 = c1

2
− d1

2
(Un)2,

βm5 = −b2
2

− d2U
nV n − e2

2
Vn − m2

2
(V n)2,

βm6 = 1

Δt
− c2

2
− d2

2
(Un)2 − e2

2
Un − m2U

uV n,

βm7 = b2
2

− m2

2
(V n)2,

βm8 = 1

Δt
+ c2

2
− d2

2
(Un)2. (13)

Substitutionof the approximate solutions at the knots (7) into (12) yields algebraic equation
system:

νm1δ
n+1
m−1 + νm2γ

n+1
m−1 + νm3δ

n+1
m + νm4γ

n+1
m + νm5δ

n+1
m+1 + νm6γ

n+1
m+1

= νm7δ
n
m−1 + νm8γ

n
m−1 + νm9δ

n
m + νm10γ

n
m + νm11δ

n
m+1 + νm12γ

n
m+1 + n1

νm13δ
n+1
m−1 + νm14γ

n+1
m−1 + νm15δ

n+1
m + νm16γ

n+1
m + νm17δ

n+1
m+1 + νm18γ

n+1
m+1

= νm19δ
n
m−1 + νm20γ

n
m−1 + νm21δ

n
m + νm22γ

n
m + νm23δ

n
m+1 + νm24γ

n
m+1 + n2, (14)

where the coefficients νm are obtained by

νm1 = βm1α1 − a1
2 λ1 νm13 = βm5α1

νm2 = βm2α1 νm14 = βm6α1 − a2
2 λ1

νm3 = βm1α2 − a1
2 λ2 νm15 = βm5α2

νm4 = βm2α2 νm16 = βm6α2 − a2
2 λ2

νm5 = βm1α1 − a1
2 λ1 νm17 = βm5α1

νm6 = βm2α1 νm18 = βm6α1 − a2
2 λ1

νm7 = βm3α1 + a1
2 λ1 νm19 = βm7α1

νm8 = βm4α1 νm20 = βm8α1 + a2
2 λ1

νm9 = βm3α2 + a1
2 λ2 νm21 = βm7α2

νm10 = βm4α2 νm22 = βm8α2 + a2
2 λ2

νm11 = βm3α1 + a1
2 λ1 νm23 = βm7α1

νm12 = βm4α1 νm24 = βm8α1 + a2
2 λ1.

(15)

The system (14) can be converted into the matrix system:

Axn+1 = Bxn + F . (16)

Boundary conditions are applied to adapt the system (12). The Dirichlet boundary conditions
U (x0, t) = σ0, U (xN , t) = σN , and V (x0, t) = η0, V (xN , t) = ηN become

m = 0 δn−1 = 1

α1

(
σ0 − α2δ

n
0 − α1δ

n
1

)
, γ n

−1
= 1

α1
(η0 − α2γ

n
0

− a1γ
n
1
),

m = N δnN+1 = 1

α1

(
σN − α1δ

n
N−1 − α2δ

n
N

)
, γ n

N+1 = 1

α1
(ηN − α1γ

n
N−1 − a2γ

n
N ), (17)
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and the Neumann boundary conditions Ux (x0, t) = Ux (xN , t) = 0 and Vx (x0, t) =
Vx (xN , t) = 0 give the following equations:

m = 0 δn−1 = 1

β1
(Ux (x0, t) − β2δ

n
1 ), γ n

−1
= 1

β1
(Vx (x0, t) − β2γ

n
1 ),

m = N δnN+1 = 1

β2
(Ux (xN , t) − β1δ

n
N−1), γ n

N+1 = 1

β2
(Vx (xN , t) − β1γ

n
N−1). (18)

Thus, using one of the coupled boundary conditions, we can eliminate the parameters
δn−1, δ

n
N+1, γ

n
−1

, γ n
N+1 from the system (14). Thus, the modified system contains 2N + 2

linear equation having 2N + 2 unknown parameters. This system can be solved using the
Thomas algorithm (Thomas 1975).

Solutions can be found at each step at the knots on the problem domain using the (14)
and (17), respectively, once the initial parameters d0 = (δ0−1, γ

0−1, δ
0
0, γ

0
0 ..., δ0N+1, γ

0
N+1)

are computed. To do so, the approximate solution at t = 0 should match up with the initial
conditions at the knots and the first derivative of the approximate solutions should also match
up with the Neumann boundary conditions at knots x0 and xN :

U (x0, 0) = UN (x0, 0) = β1δ
0−1 + β2δ

0
1

U (xi , 0) = UN (xi , 0) = α1δ
0
i−1 + α2δ

0
i + α1δ

0
i+1

U (xN , 0) = UN (xN , 0) = β1δ
0
N−1 + β2δ

0
N+1

i = 0, . . . , N
V (x0, 0) = VN (x0, 0) = β1γ

0−1 + β2γ
0
1

V (xi , 0) = VN (xi , 0) = α1γ
0
i−1 + α2γ

0
i + α1γ

0
i+1

V (xN , 0) = VN (xN , 0) = β1γ
0
N−1 + β2γ

0
N+1 .

Solving systems above separately give the initial parameters d0.

4 Numerical solutions and test results

In this section, we will compare the efficiency and accuracy of suggested method on the
given reaction–diffusion equation system models. The obtained results for each model will
be compared with the earlier studies given in the references. The accuracy of the schemes is
measured in terms of the following discrete error norms: L∞ = |U − UN |∞ = max

j
|Uj −

(UN )nj |, the relative error =
√

∑N
j=0 |Un+1

j −Un
j |2

∑N
j=0 |Un+1

j | . Order of convergence is computed using the

following form:

order =
log (L∞)Δtm

(L∞)Δtm+1

log Δtm
Δtm+1

, (19)

where (L∞)Δtm is the error norm L∞ with time step Δtm .
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4.1 Linear problem

The linear form of the problem (1) has been solved to calculate error norms for testing the
method:

∂U

∂t
= d

∂2U

∂x2
− aU + V

∂V

∂t
= d

∂2V

∂x2
− bV , (20)

which has analytical solutions given as follows:

U (x, t) = (e−(a+d)t + e−(b+d)t ) cos(x),

V (x, t) = (a − b)(e−(b+d)t ) cos(x). (21)

Three different cases in terms of dominance of reaction or of diffusion were considered in
numerical computation. The initial conditions can be obtained, when t = 0 in (21) solutions.
When solution region is selected as (0, π

2 ) interval, the boundary conditions are described as
follows:

Ux (0, t) = 0 U (π/2, t) = 0,

Vx (0, t) = 0 V (π/2, t) = 0. (22)

In numerical calculations, the program is going to run up to time t = 1 for N = 512 and Δt ,
and reaction and diffusion mechanism is examined for different selections of constants a, b,
and d . The error value L∞ is presented in the tables.

First, the system (20) is studied for parameters a = 0.1, b = 0.01 and d = 1 which is
diffusion dominated case. The boundary and initial conditions are chosen to coincide with
(Sahin 2009). In Table 3, L∞ error norms and pointwise rate of order are recorded for both
U and V , for N = 512 and various Δt , and the results of Chou et al. (2007), Sahin (2009)
and Ersoy and Dag (2015) are also given in the same table. When Table 3 is examined, it
seems that accuracy of the obtained results for functionU and V is very close to those found
with application of both polynomial cubic B-spline collocation method (PCBCM) (Sahin
2009) and the Crank–Nicolson and multi-grid method (CN-MGM) (Chou et al. 2007). The
suggested algorithm produces lower accuracy than the collocation method based on the
exponential B-splines including one free parameter (EBCM) (Ersoy and Dag 2015). The free
parameter of the exponential B-spline function was found experimentally at every time steps
and this increases the cost of the algorithm.

Second, the parameters of system (20) are selected as a = 2, b = 1, d = 0.001 which is
reaction-dominated case. The obtained results in terms of L∞ norm are given in Table 4 and
similar accuracy is obtained for solutions of the U and V for Eq. 20. The suggested method
together with PCBCM, CN-MGM, and implicit integration factor method (IIFM) produces
similar results except for the EBCM.

Finally, with parameters a = 100, b = 1, d = 0.001, reaction dominated with stiff reac-
tion case solution of the reaction–diffusion equation is obtained. Once more, the suggested
method provides the same magnitude of the error with PCBCM, CN-MGM, and IIFM, as
shown in Table 5.
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Fig. 1 Repetitive spot pattern of waves of the function U

4.2 Nonlinear problem (Brusselator model)

One of the special forms of nonlinear RDS is the Brusselator model predicting oscillations
in chemical reaction. First, the system was presented by Prigogine and Lefever (Prigogine
and Lefever 1968) which describes some chemical reactions with two components:

∂U

∂t
= ε1

∂2U

∂x2
+ A +U 2V − (B + 1)U

∂V

∂t
= ε2

∂2V

∂x2
+ BU −U 2V , (23)

where εi , i = 1, 2 are diffusion constants, x is the spatial coordinate andU , V are functions
of x and t which represent concentrations. The initial conditions are selected similar to those
in the reference Zegeling and Kok (2004):

U (x, 0) = 0.5, V (x, 0) = 1 + 5x, (24)

and the first derivative initial boundary condition is replaced by the second derivative initial
boundary conditions for this test problem as follows:

Uxx (x0, t) = 0 Uxx (xN , t) = 0,

Vxx (x0, t) = 0 Vxx (xN , t) = 0.
(25)

In the system (23), the coefficients are taken as ε1 = ε2 = 10−4, A = 1, and B = 3.4 to
coincide with parameters in the paper (Zegeling and Kok 2004). The solutions are obtained
in the region x ∈ [0, 1] with use of space step N = 200, time step Δt = 0.01 and the
program is run by the time t = 15. The solutions under these selections of boundary and
initial conditions are periodically moving wave given in Figs. 1 and 2 in which a period of 7.7
is measured. The smaller ε1, ε2 are chosen; steeper wave is produced. Thus, the algorithm
gives a fairly moving waves.

The density values for periodical motion are given in Table 6 and these values can be
verified with the Table 7, study of Sahin (2009).
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Fig. 2 Repetitive spot pattern of waves of the function V

Table 6 Density values for periodic motion of TCB

Density t x = 0.0 x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

U 3 0.279411 0.317966 0.377959 0.612863 1.519566 0.671340

10.7 0.347622 0.321165 0.376196 0.611072 1.626541 0.734697

6 0.357610 0.706716 2.716938 0.510445 0.326202 0.350450

13.7 0.345062 0.691306 2.769688 0.500800 0.324518 0.347382

V 3 3.055402 4.251219 5.066734 5.537437 1.732675 2.547923

10.7 2.739242 4.233839 5.056601 5.637847 1.659791 2.462780

6 4.612647 5.606813 1.137111 2.825005 4.355426 4.772794

13.7 4.469646 5.613879 1.119232 2.845503 4.317258 4.730515

Table 7 Density values for periodic motion of cubic B-spline (Sahin 2009)

Density t x = 0.0 x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0

U 3 0.285859 0.317966 0.377959 0.612863 1.519566 0.671123

10.7 0.327067 0.321165 0.376196 0.611073 1.626541 0.734563

6 0.404261 0.706716 2.716938 0.510445 0.326202 0.350458

13.7 0.402817 0.691319 2.769687 0.500800 0.324518 0.347387

V 3 3.381906 4.251219 5.066734 5.537437 1.732675 2.548228

10.7 3.340110 4.233840 5.056601 5.637847 1.659791 2.462952

6 5.220968 5.606813 1.137112 2.825005 4.355426 4.772910

13.7 5.209322 5.613875 1.119232 2.845503 4.317258 4.730594
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Fig. 3 Density variation for U for N = 200 Δt = 0.01

Fig. 4 Density variation for U for N = 200 Δt = 0.01

Exhibited periodical movement is seen clearly in Figs. 3, 4, 5, 6 which shows the change
of the density of functions. When these figures are examined, we can see that the waves
display periodical motion.
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Fig. 5 Density variation for V for N = 200 Δt = 0.01

Fig. 6 Density variation for V for N = 200 Δt = 0.01

4.3 Nonlinear problem (Schnakenbergmodel)

Schnakenberg model is another well-known RDS model. There are many studies in the
literature on this model. First, it is proposed by Schnakenberg (1979) and given as follows:

∂U

∂t
= ∂2U

∂x2
+ γ (a −U +U 2V )

∂V

∂t
= d

∂2V

∂x2
+ γ (b −U 2V ), (26)
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whereU and V denote the concentration of activator and inhibitor, respectively; d is diffusion
coefficients; γ , a, and b are rate constants of the biochemical reactions. The oscillation
problem is taken into account for Schnakenberg model. Accordingly, the parameters for
system (26) are selected as a = 0.126779, b = 0.792366, d = 10 and γ = 104. The
problem’s initial conditions are as follows:

U (x, 0) = 0.919145 + 0.001
25∑

j=1

cos(2π j x)

j

V (x, 0) = 0.937903 + 0.001
25∑

j=1

cos(2π j x)

j
(27)

which are on the interval [−1, 1]. Computations are performed until the time t = 2.5 for
space/time combinations given in Table 8. The obtained relative error values are given in
Table 8 together with the results of polynomial cubic B-spline collocation method (Sahin
2009).

As shown in Table 8, the algorithmproduces accurate results evenwhen the time increment
is larger. Figure 7 is drawn to show the oscillation movements for values Δt = 5 × 10−5,
N = 100 and N = 200. It is shown in Fig. 7 that the functions U and V make nine
oscillationswhen N = 200 and one of them does not seen in the complete form of oscillations
when N = 100. This result with the references Madzvamuse et al. (2003), Ruuth (1995)
shows that the finer mesh is necessary to have accurate solutions.

4.4 Nonlinear problem (Gray–Scott model)

Some patterns existing in nature are performed via the Gray–Scott RDS which was first
introduced by Gray and Scott (1984) and the system is given as follows:

∂U

∂t
= ε1

∂2U

∂x2
−U 2V + f (1 −U ),

∂V

∂t
= ε2

∂2V

∂x2
+U 2V − ( f + k)V . (28)

In this section, the numerical method was run to model repetitive spot patterns on Gray–
Scott system. The parameters for the system (28) were chosen from the reference Craster and
Sassi (2006) and ε1 = 10−4, ε2 = 10−6, f = 0.024 and k = 0.06. The initial conditions,
both Dirichlet and Neumann boundary conditions of the system (28), were taken as follows:

U (x, 0) = 1 − 1

2
sin100(π

(x − L)

2L
)

V (x, 0) = 1

4
sin100(π

(x − L)

2L
), (29)

U (x0, t) = U (xN , t) = 1, V (x0, t) = V (xN , t) = 0 and Ux (x0, t) = Ux (xN , t) =
0, Vx (x0, t) = Vx (xN , t) = 0, respectively. Solutions were obtained over intervals
[−200, 200]× [0, 2000) for space step h = 1 and time step Δt = 0.2. The initial pulses and
solutions are depicted in Fig. 8, when times t = 0 and t = 2000, so the repetitive patterns
can be observed. Figures 8, 9, 10 demonstrate pulse split for U and V as time advance; the
initial pulses are split into two pulses and separated from each other, and once more, the same
repeats for each pulse.
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Fig. 7 Oscillation movement for N = 100 and N = 200 at the moment t = 2.5

Fig. 8 Splitting process of repetitive spot pattern of waves

Fig. 9 Repetitive spot pattern of waves of the function U
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Fig. 10 Repetitive spot pattern of waves of the function V

Fig. 11 Eigenvalues of matrix M for linear problem with N = 512 and Δt = 0.005, t = 1, and max|λi |
= 0.9993

5 Stability analysis

The stability of the recursive system (16) can be written in the matrix form:

xn+1 = Mxn + Q, (30)

which is studied by finding eigenvalues of the iterativematrixM = A−1B whose eigenvalues
λi are expected asmax |λi | < 1. Thus, eigenvalues of M are demonstrated for linear problem
and Schnakenberg model in Figs. 11 and 12.
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Fig. 12 Eigenvalues of matrix M for Schnakenberg model with N = 100 and Δt = 5 × 10−6, t = 2.5,
max|λi | = 0.9609

We have demonstrated eigenvalues graphically at a specific time. During the run of the
algorithm, we have observed that eigenvalues are almost less then 1 at all the time steps.
Similar treatments can be carried out for other test problems and found absolute value of the
eigenvalues which are less then 1, as well. Hence, the solution of the recursive formula is
unconditionally stable.

6 Conclusion

A collocation algorithm based on trigonometric cubic B-splines is build up for getting solu-
tions of the system of reaction–diffusion equation. Some basic reaction–diffusion equations
known as Brusselator model, Schnakenbergmodel andGray–Scott model are studied to show
efficiency of the algorithm. First, linear reaction–diffusion problem which has the analytical
solution is dealt with to make comparison with earlier studies and the suggested algorithm
produces similar accuracy with polynomial cubic B-spline algorithm, CN-MG method and
IIF2 methods. Exponential cubic B-spline collocation method with free parameters produces
least error as shown in Tables 3, 4, 5. Time pointwise rate of order of convergence is calcu-
lated as 2 approximately for some parameters as given in Tables 3, 4, 5. Thus, the order of
the Crank–Nicolson method is verified for the suggested algorithm. Each reaction–diffusion
model is studied with a delicate test problem in terms of numerical computation to express
usage of the algorithm. Especially, the method copes with solutions having sharp variations.
Eigenvalues of iterative matrix are drawn in Figs. 11 and 12, and found to be less than 1, so
that the iterative scheme of the integrated reaction–diffusion equation is stable. Consequently,
trigonometric cubic B-spline collocation algorithm is an effectivemethodwith simplicity and
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cheap cost and produce the acceptable results for the solutions of the reaction–diffusion sys-
tems. This algorithm can be reliably used to solve some other nonlinear differential equations.
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