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Abstract
This paper presents a computational method to solve nonlinear boundary value problems
with multi-point boundary conditions. These problems have important applications in the
theoretical physics and engineering problems. The method is based on reproducing kernel
Hilbert spaces operational matrices and an iterative technique is used to overcome the non-
linearity of the problem. Furthermore, a rigorous convergence analysis is provided and some
numerical tests reveal the high efficiency and versatility of the proposed method. The results
of numerical experiments are compared with analytical solutions and the best results reported
in the literature to confirm the good accuracy of the presented method.

Keywords Multi-point boundary condition · Reproducing kernel Hilbert spaces · Nonlinear
Bitsadze–Samarskii boundary value problem · Iterative method · Convergence

Mathematics Subject Classification 74S25 · 34B15 · 65L20 · 65L10

1 Introduction

The developments of the numerical methods for the solution of multi-point boundary value
problems are important since such problems arise in many branches of science as mathe-
matical models of various real-world processes. Multi-point boundary value problems arise
in several branches of engineering, applied mathematical sciences and physics, for instance
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modeling large-size bridges (Geng and Cui 2010), problems in the theory of elastic stability
(Timoshenko 1961) and the flow of fluid such as water, oil and gas through ground layers and
fluid flow through multi-layer porous medium (Hajji 2009). Bitsadze and Samarskii (1969)
have studied a new problem in which the multi-point boundary conditions depend on the
values of the solution in the interior and boundary of the domain. The Bitsadze–Samarskii
multi-point boundary value problems (Bitsadze and Samarskii 1969) arise in mathematical
modeling of plasma physics processes. The well-posedness, existence, uniqueness and mul-
tiplicity of solutions of Bitsadze–Samarskii-type multi-point boundary value problems have
been investigated by many authors, see Hajji (2009), Kapanadze (1987), Ma (2004), Ashyra-
lyev and Ozturk (2014) and the references given there. However, research for numerical
solutions of the Bitsadze–Samarskii-type boundary value problems, has proceeded slowly.
In recent years, the approximate solutions to multi-point boundary value problems were
given by shooting method (Zou et al. 2007), the Sinc-collocation method (Saadatmandi and
Dehghan 2012), shooting reproducing kernel Hilbert spacemethod (Abbasbandy et al. 2015),
difference scheme (Ashyralyev and Ozturk 2014) and method of successive iteration (Yao
2005). Methods of solution of the Bitsadze–Samarskii multi-point boundary value problems
have been considered by some researchers (Geng and Cui 2010; Zou et al. 2007; Saadatmandi
and Dehghan 2012; Ali et al. 2010; Tatari and Dehghan 2006; Reutskiy 2014; Azarnavid
and Parand 2018; Ascher et al. 1994). Here, we use an iterative reproducing kernel Hilbert
space pseudospectral (RKHS–PS) method for the solution of nonlinear Bitsadze–Samarskii
boundary value problems with multi-point boundary conditions. In this article, we consider
the nonlinear boundary value problems in the following form

u′′ = g(x, u, u′), x ∈ [a, b] (1.1)

with the nonhomogeneous Bitsadze–Samarskii-type multi-point boundary conditions

u(a) =
J∑

j=1

α j u(ξ j ) + ψ1, u(b) =
J∑

j=1

β j u(ξ j ) + ψ2, (1.2)

where ψ1, ψ2 are some constant and ξ1, ξ2, . . . , ξJ are some points in the interior of the
domain and also

a < ξ1 < ξ2 < · · · < ξJ < b. (1.3)

Recently, several techniques based on the reproducing kernel Hilbert spaces have attracted
great attention and are extensively used for the numerical solving of the various types of
ordinary and partial differential equations (Abbasbandy andAzarnavid 2016; Azarnavid et al.
2015, 2018a, b; Emamjome et al. 2017; Arqub 2016a, b, 2017a, b; Arqub et al. 2013, 2016,
2017; Al-Smadi et al. 2016; Niu et al. 2012a, b, 2018; Lin et al. 2012; Akgül and Baleanu
2017; Akgül and Karatas 2015; Akgül et al. 2015, 2017; Inc et al. 2012, 2013a, b; Sakar
et al. 2017; Inc and Akgül 2014; Akgül 2015). This paper presents an iterative approach
based on reproducing kernel Hilbert space pseudospectral method to find the numerical
solution of nonlinear boundary value problems with multi-point boundary conditions. There
are two main techniques to deal with the boundary conditions for pseudospectral methods,
restrict attention to the basis functions that satisfy the boundary conditions exactly or do
not restrict the basis functions, but the boundary conditions are enforced by adding some
additional equations. Using the basis functions that satisfy exactly the boundary conditions,
is great if one can manage it, but it is often very difficult to achieve. Here, the reproducing
kernels are constructed in such way that they satisfy the multi-point boundary conditions
exactly, so the approximate solution also satisfies the boundary conditions exactly. Then,
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the operational matrices are constructed using the reproducing kernel Hilbert spaces and an
iterative technique is used to overcome the nonlinearity of the problem. The convergence
of the iterated technique for the nonlinear boundary problems with multi-point boundary
conditions is proved and some test examples are presented to demonstrate the accuracy and
versatility of the proposed method.

The advantages of the proposed reproducing kernel pseudospectral method lie in the
following; first, the method eliminates the treatment of boundary conditions using the repro-
ducing kernels which satisfies the boundary conditions exactly; second, the method can
produce good globally smooth numerical solutions, and with the ability to solve many prob-
lems with complex conditions, such as multi-point boundary conditions; third, the numerical
solutions and their derivatives are converging uniformly to the exact solutions and their deriva-
tives, respectively; fourth, the numerical solutions and all their derivatives are calculable for
each arbitrary point in the given domain.

2 Reproducing kernel Hilbert space pseudospectral method

In this section, we give a brief review of reproducing kernel Hilbert space pseudospectral
(RKHS–PS) method. Here, the operational matrices are constructed using the reproducing
kernel Hilbert spaces. In pseudospectral methods, we usually seek an approximate solution
of the differential equation in the form

uN (x) =
N∑

j=1

λ jφ j (x), (2.1)

where {λ j }Nj=1 are unknown coefficients and {φi }Nj=1 are the basis functions. An important
feature of pseudospectral methods is the fact that we want to obtain an approximation of the
solution on a discrete set of grid points. Here, for the grid points xi , i = 1, . . . , N , we use
the basis functions φi (x) = K (x, xi ), where K (., .) is the reproducing kernel of a Hilbert
space. If we evaluate the unknown function uN (x) at grid points xi , i = 1, . . . , N , then we
have,

uN (xi ) =
N∑

j=1

λ jφ j (xi ), i = 1, . . . , N , (2.2)

or in matrix notation,
u = Aλ, (2.3)

where λ = [λ1, . . . , λN ]T is the coefficient vector, the evaluation matrix A has the entries
Ai, j = φ j (xi ) and u = [uN (x1), . . . , uN (xN )]T. Let L be a linear operator, we can use the
expansion (2.1) to compute the LuN by operating L on the basis functions,

LuN (x) =
N∑

j=1

λ j Lφ j (x), x ∈ R. (2.4)

If we again evaluate at the grid points xi , i = 1, . . . , N , then we get in matrix notation,

Lu = ALλ, (2.5)

where u and λ are as above and the matrix AL has entries Lφ j (xi ). Then, we can use (2.3)
to solve the coefficient vector λ = A−1u, and then (2.5) yields,
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Lu = AL A
−1u, (2.6)

so that the operational matrix L corresponding to linear operator L is given by,

L = AL A
−1. (2.7)

To obtain the differentiation matrix L we need to ensure invertibility of the evaluation matrix
A. This generally depends both on the basis functions and the locations of the grid points
xi , i = 0, . . . , N . The reproducing kernel of a Hilbert space is positive definite and then the
evaluation matrix A is invertible for any set of distinct grid points. Suppose we have a linear
differential equation of the form

Lu = f , (2.8)

by ignoring boundary conditions. An approximate solution at the grid points can be obtained
by solving the discrete linear system

Lu = f , (2.9)

where u = [uN (x1), . . . , uN (xN )]T and f = [ f (x1), . . . , f (xN )]T contain the value of u
and f at grid points and L is the mentioned operational matrix that corresponds to linear
differential operator L .

3 Multi-point boundary condition

Multi-point boundary value problems have received considerable interest in the mathemat-
ical applications in different areas of science and engineering. In this chapter, we consider
nonlinear boundary value problem (1.1) with multi-point boundary conditions (1.2). Let

h1(x) = ψ1
x − b

a − b
�J

i=1
x − ξi

a − ξi
, h2(x) = ψ2

x − a

b − a
�J

i=1
x − ξi

b − ξi
, (3.1)

then the boundary conditions (1.2) can be homogenized using

u(x) = v(x) + h1(x) + h2(x), (3.2)

and if

v(a) −
J∑

j=1

α jv(ξ j ) = 0, v(b) −
J∑

j=1

β jv(ξ j ) = 0, (3.3)

then u satisfies themulti-point boundary conditions (1.2).After homogenization of the bound-
ary conditions, the problem (1.1) and (1.2) can be converted in the following form

{
v′′ = G(x, v, v′), x ∈ [a, b],
v(a) − ∑J

j=1 α jv(ξ j ) = 0, v(b) − ∑J
j=1 β jv(ξ j ) = 0.

(3.4)

where G(x, v) = g(x, v + h1 + h2, v′ + h′
1 + h′

2) − h′′
1(x) − h′′

2(x). To solve the problem
(3.4), reproducing kernel spaces Ws

2 [a, b] with s = 1, 2, 3, . . . are defined in the following,
for more details and proofs we refer to Cui and Lin (2009).

Definition 3.1 The inner product space Ws
2 [a, b] is defined as Ws

2 [a, b] = {u(x)|u(s−1) is
absolutely continuous real-valued function, u(s) ∈ L2[a, b]}. The inner product in Ws

2 [a, b]
is given by

(u(.), v(.))Ws
2

=
s−1∑

i=0

u(i)(a)v(i)(a) +
∫ b

a
u(s)(x)v(s)(x)dx, (3.5)
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and the norm ‖u‖Ws
2
is denoted by ‖u‖Ws

2
=

√
(u, u)Ws

2
,where u, v ∈ Ws

2 [a, b].

Theorem 3.1 (Cui and Lin 2009) The space Ws
2 [a, b] is a reproducing kernel space. That is,

for any u(.) ∈ Ws
2 [a, b] and each fixed x ∈ [a, b], there exists K (x, .) ∈ Ws

2 [a, b], such that
(u(.), K (x, .))Ws

2
= u(x). The reproducing kernel K (x, .) can be denoted by

K (x, y) =
{∑2s

i=1 ci (y)x
i−1 , x ≤ y,∑2s

i=1 di (y)x
i−1 , x > y,

(3.6)

where ci and di are the coefficients of reproducing kernel and can be determined by solving
a uniquely solvable linear system of algebraic equations, which is completely explained in
Cui and Lin (2009). For more details about the method of obtaining kernel K (x, y), refer to
Cui and Lin (2009), Geng and Cui (2007), and Li and Cui (2003). Ws

2,0[a, b] is defined as

Ws
2,0[a, b] = {u ∈ Ws

2 [a, b] : u(a) − ∑J
j=1 α j u(ξ j ) = 0, u(b) − ∑J

j=1 β j u(ξ j ) = 0}.
Clearly, Ws

2,0[a, b] is a closed subspace of Ws
2 [a, b] and, therefore, it is also a reproducing

kernel space. In the following theorem (Geng and Cui 2012), the reproducing kernel of
Ws

2,0[a, b] is introduced.
Theorem 3.2 Let Lau(x) = u(a) − ∑J

j=1 α j u(ξ j ), Lbu(x) = u(b) − ∑J
j=1 β j u(ξ j ),

K1(x, y) = K (x, y) − La,x K (x, y)La,y K (x, y)

La,x La,y K (x, y)
, (3.7)

and

K2(x, y) = K1(x, y) − Lb,x K1(x, y)Lb,y K1(x, y)

Lb,x Lb,y K1(x, y)
. (3.8)

where the subscript x, y on the operators indicates that the operators are applied to the
function of x, y, respectively. If La,x La,y K (x, y) �= 0 and Lb,x Lb,y K1(x, y) �= 0, then
K2(x, y) is the reproducing kernel of Ws

2,0[a, b].
In Azarnavid and Parand (2016), the authors show that the new constructed kernel satisfies
required conditions and if the reference kernel is positive definite then new constructed
kernel is positive definite, also. In the proposed method, first, the nonhomogeneous problem
is reduced to a homogeneous one, after that we determine the reproducing kernel ofWs

2 [a, b]
for some s > 2. Then, K2(x, .) the reproducing kernel of Ws

2,0[a, b] is constructed using
(3.7) and (3.8) and then the functions φ j (x) = K2(x, x j ), j = 1, . . . , N are used as the
basis functions in (2.1) to approximate the solution of the homogenized problem, hence the
approximate solution satisfies the boundary conditions (3.3) exactly.

Theorem 3.3 Suppose that the boundary value problem (3.4) has a unique solution and
G(x, v, v′) satisfies Lipschitz condition, i.e., there exists constants l1 and l2 such that

|G(x, u, u′) − G(x, v, v′)| ≤ l1|u − v| + l2|u′ − v′|, u, v ∈ C1[a, b], (3.9)

If (
(b−a)2

8 l1 + b−a
2 l2) < 1 then the sequence vn is the solution of the following iterative

scheme
{

v′′
n+1 = G(x, vn, v′

n), x ∈ [a, b],
vn+1(a) − ∑J

j=1 α jvn+1(ξ j ) = 0, vn+1(b) − ∑J
j=1 β jvn+1(ξ j ) = 0.

(3.10)

converges to the unique solution of (3.4).
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Proof Let C1[a, b] be a Banach space with norm defined by

‖v‖ = max
a≤x≤b

(l1|v(x)| + l2|v′(x)|), v ∈ C1[a, b]. (3.11)

Suppose that v be the unique solution of problem (3.4) and let v(ξ j ) = v j , j = 0, . . . , J +1
where ξ0 = a and ξJ+1 = b. Now, we divide problem (3.4) into J + 1 subproblems as
follows:

Pj :
{

v′′ = G(x, v, v′), x ∈ [ξ j−1, ξ j ],
v(ξ j−1) = v j−1, v(ξ j ) = v j ,

(3.12)

for j = 1, . . . , J + 1. Let h j (x) = ξ j−1v j−ξ jv j−1+(v j−1−v j )x
ξ j−1−ξ j

, the solution of the two-point
boundary value problem Pj for j = 1, . . . , J + 1 has the following form

v(x) = h j (x) +
∫ ξ j

ξ j−1

Hj (x, s)G(s, v(s), v′(s))ds, (3.13)

where

Hj (x, s) =
⎧
⎨

⎩

(ξ j−x)(s−ξ j−1)

ξ j−1−ξ j
, ξ j−1 ≤ s ≤ x ≤ ξ j ,

(ξ j−s)(x−ξ j−1)

ξ j−1−ξ j
, ξ j−1 ≤ x ≤ s ≤ ξ j ,

(3.14)

is the Green’s function of problem Pj . For j = 1, . . . , J + 1, we define T j : C1[a, b] →
C1[a, b] as

T jv = h j (x) +
∫ ξ j

ξ j−1

Hj (x, s)G(s, v(s), v′(s))ds. (3.15)

For any u, v ∈ C1[a, b] we have

|T j u − T jv| =
∣∣∣∣∣

∫ ξ j

ξ j−1

Hj (x, s)(G(s, u(s), u′(s)) − G(s, v(s), v′(s)))ds
∣∣∣∣∣

≤
∫ ξ j

ξ j−1

|Hj (x, s)| × |(G(s, u(s), u′(s)) − G(s, v(s), v′(s)))|ds

≤
(∫ ξ j

ξ j−1

|Hj (x, s)|ds
)

(
maxa≤x≤b(l1|u(x) − v(x)| + l2|u′(x) − v′(x)|))

≤ (b−a)2

8 ‖u − v‖,
(3.16)

and also

| d
dx (T j u − T jv)| =

∣∣∣∣∣

∫ ξ j

ξ j−1

d

dx
(Hj (x, s))(G(s, u(s), u′(s)) − G(s, v(s), v′(s)))ds

∣∣∣∣∣

≤
∫ ξ j

ξ j−1

| d
dx

(Hj (x, s))| × |(G(s, u(s), u′(s)) − G(s, v(s), v′(s)))|ds

≤
(∫ ξ j

ξ j−1

| d
dx

(Hj (x, s))|ds
)

(
maxa≤x≤b(l1|u(x) − v(x)| + l2|u′(x) − v′(x)|))

≤ b−a
2 ‖u − v‖,

(3.17)
it is easy to see that

∫ ξ j

ξ j−1

|Hj (x, s)|ds ≤ (ξ j − ξ j−1)
2

8
≤ (b − a)2

8
(3.18)
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and ∫ ξ j

ξ j−1

∣∣∣∣
d

dx
(Hj (x, s))

∣∣∣∣ ds ≤ ξ j − ξ j−1

2
≤ b − a

2
. (3.19)

Combining (3.16) and (3.17), we have

‖T j u − T jv‖ ≤
(

(b − a)2

8
l1 + b − a

2
l2

)
‖u − v‖. (3.20)

If (
(b−a)2

8 l1 + b−a
2 l2) < 1, then T j : C1[a, b] → C1[a, b] is a contraction mapping and

Banach fixed-point theorem implies that operator has a unique fixed point v j = T jv j . If we
let v(x) = v j (x) for x ∈ [ξ j−1, ξ j ] the v is the unique solution of problem (3.4) and if we
let vn(x) = v j,n(x) for x ∈ [ξ j−1, ξ j ] then it is easy to see that vn satisfies the boundary
condition (3.3) for each n and is the solution of problem (3.10). Hence, the sequence vn , the
solution of the iterative scheme (3.10) converges to the unique solution of (3.4). �	

4 Iterative RKHS-PSmethod

In this section, we consider the general form of the differential equation

Lun+1 = N (un) + f (x), x ∈ [a, b] (4.1)

whereL is a linear differential operator,N is a nonlinear operator involving spatial derivatives
and f is the nonhomogeneous term.Anapproximate solution at the grid points canbeobtained
by solving the discrete linear system

Lun+1 = Nun + f , (4.2)

where un and f contains the value of the nth approximate solution un and f at grid points
and L is the operational matrix corresponds to the linear differential operator L as defined
in Sect. 2. Then, the (n + 1)th approximate solution at the grid points is given by

un+1 = L−1 (Nun + f ) . (4.3)

The condition number and the spectral radius of the matrix L are dependent on the basis
functions and the number of collocation points.

Theorem 4.1 Suppose that N (u) satisfies the Lipschitz condition with respect to u

|N (u) − N (v)| ≤ L|u − v|, ∀u, v (4.4)

where L is the Lipschitz constant. The proposed scheme (4.3) for the operator problem (4.1)
is convergent, if ρ(L−1) < 1

L , where ρ(L−1) is the spectral radius of iteration matrix.

Proof Let ‖u‖∞ = max1≤i≤N |u(xi )| for any u ∈ R
N . Using the Lipschitz condition, it is

easy to see that
‖N (u) − N (v)‖∞ ≤ L‖u − v‖∞. (4.5)

Then, from (4.3) we have

un+1 − un = L−1 (Nun − Nun−1) . (4.6)
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Fig. 1 Comparison of approximate solutions obtained by the presented method with N = 50 data points and
n = 15 iteration and successive iteration method (Yao 2005) with 5 and 10 iterations, for Example 5.1

Let n ∈ N and q := L × ρ(L−1) then we have

‖un+1 − un‖∞ < q‖un − un−1‖∞ < q2‖un−1 − un−2‖∞ < · · · < qn‖u1 − u0‖∞. (4.7)

Let m, n ∈ N such that m > n then

‖um − un‖∞ ≤ ‖um − um−1‖∞ + ‖um−1 − um−2‖∞ + · · · + ‖un+1 − un‖∞
< qm−1‖u1 − u0‖∞ + qm−2‖u1 − u0‖∞ + · · · + qn‖u1 − u0‖∞

= qn
(
m−n−1∑

i=0

qi
)

‖u1 − u0‖∞

≤ qn
( ∞∑

i=0

qi
)

‖u1 − u0‖∞

= qn
(

1

1 − q

)
‖u1 − u0‖∞. (4.8)

Let ε > 0 be arbitrary, since q ∈ [0, 1), there exists an enough large p ∈ N such that

q p <
ε(1 − q)

‖u1 − u0‖∞
; (4.9)

therefore, for m > n > p we have

‖um − un‖∞ ≤ ε, (4.10)

this proves that un is a cauchy sequence in R
N and it is convergent. �	

From the previous section it is easy to see that the approximate solution satisfies the boundary
conditions exactly.

5 Numerical experiments

In this section, we show the efficiency of the proposed method with the numerical results of
two examples. To access both the applicability and the accuracy of the method, we apply the
algorithm to the multi-point boundary value problem as follows. The reproducing kernel of
W 10

2,0[a, b] is used for all examples, except those that are specified. To show the efficiency
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Fig. 2 Graph of absolute error for Example 5.2 with N = 50 data points and n = 5, 10, 15 iterations,
respectively

of the proposed method in comparison with the other methods in the literature and the exact
solution, we report maximum absolute errors of the approximate solutions, defined by

L∞ = max1<i<N |ui − ûi |, (5.1)

where N is the number of the collocation points and ui and ûi are the exact and computed
values of solution u at point i . We report results of a very high accuracy even when we have
used the proposed method with a relatively small number of data points and iterations.

Example 5.1 Here, we consider the following three-point second-order nonlinear differential
equation

y′′(x) + 3

8
y(x) + 2

1089
y′2(x) + 1 = 0, 0 ≤ x ≤ 1 (5.2)

with the boundary conditions {
y(0) = 0,
y
( 1
3

) = y(1).
(5.3)

Since the exact solution of this problem is unknown, the approximated solutions are com-
pared with the approximated solutions given by Yao (2005). The comparison of approximate
solutions obtained by presented method and successive iteration method (Yao 2005) are
given in Fig. 1. The comparison of the values of approximate solutions obtained by different
methods given in the literature are reported in Table 1. In the absence of the exact solution,
we compare the obtained approximate solution using the proposed method with the reported
approximate solutions in the literature. The results reported in Fig. 1 and Table 1 show the
good agreements between the approximate solutions obtained by the proposed method and
other approved methods.
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Fig. 3 Graph of absolute error for Example 5.2 with N = 20 data points and n = 15 iterations in
W 8
2,0,W

10
2,0,W

12
2,0 reproducing kernel Hilbert spaces, respectively

Example 5.2 In this example, we consider the four-point second-order nonlinear differential
equation

y′′(x) + (x3 + x + 1)y2(x) = f (x), 0 ≤ x ≤ 1 (5.4)

with the boundary conditions
{
y(0) = 1

6 y
( 2
9

) + 1
3 y

( 7
9

) − 0.0286634,

y(1) = 1
5 y

( 2
9

) + 1
2 y

( 7
9

) − 0.0401287,
(5.5)

where

f (x) = 1

9
(−6 cos(x − x2)+ sin(x − x2)(−3(1− 2x)2 + (1+ x + x3) sin(x − x2))). (5.6)

The exact solution is given by y(x) = 1
3 sin(x − x2). The proposed method is applied

on Example 5.2 using various n and N and the results are as follows. The absolute error of
approximate solutions with N = 50 data points and n = 5, 10, 15 iterations are given in
Fig. 2.

The absolute errors for Example 5.2 with N = 20 data points and n = 15 iterations
in W 8

2,0,W
10
2,0,W

12
2,0 reproducing kernel Hilbert spaces are presented in Fig. 3. The maxi-

mal absolute errors and comparison with the best results reported in Geng and Cui (2010),
Saadatmandi and Dehghan (2012), Reutskiy (2014), and Azarnavid and Parand (2018) for
Example 5.2 are shown in Table 2 with different numbers of data points N = 20, 30, 40 and
n = 15 iteration. Table 2 shows the good accuracy of presentedmethod even using a relatively
small number of data points and iterations. Results show that more accurate approximations
can be obtained using more data points, more iterations, and smoother reproducing kernel
spaces.
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6 Conclusions

In this paper, an iterative technique based on the reproducing kernel Hilbert spaces opera-
tional matrices and pseudospectral method is used to solve the nonlinear Bitsadze–Samarskii
boundary value problems with multi-point boundary conditions. Furthermore, the conver-
gence of the presented method is proved and some numerical tests reveal the high efficiency
and versatility of the proposedmethod. To show how good and accurate the presentedmethod
is, the results of numerical experiments are compared with analytical solutions and the best
results reported in the literature. The results confirm the good accuracy of the proposed
technique.
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