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Abstract
Double-diffusive natural convection flow in a trapezoidal cavity with various aspect ratios in
the presence of water-based nanofluid and applied magnetic field in the direction perpendic-
ular to the bottom and top parallel walls is investigated. The bottom and top parallel walls
are considered to be insulated, whereas left and right walls are assumed to be uniformly
heated and cold, respectively. The numerical computation is carried out to find the stream-
lines, isotherms, isoconcentrations, average Nusselt number, and average Sherwood number.
This study is done for various values of Rayleigh number (105 ≤ Ra ≤ 107), Hartmann
number (0 ≤ Ha ≤ 120), various aspect ratios (0.5 ≤ A ≤ 2), the solid volume fraction
(0 ≤ ϕ ≤ 0.1), and the inclination angle of cavity (φ). It is found that the strength of vortex
decreases/increases as the magnetic field parameter/aspect ratio increases. It is also found
that increase in the Rayleigh number causes natural convection due to the increase in the
buoyancy forces. In nanofluid, mass transfer ratio is more effective than base fluid.

Keywords Trapezoidal enclosure · Natural convection flow · Magnetic field · Nanofluid ·
Aspect ratio of a cavity

Mathematics Subject Classification 65N06 · 65N22 · 76D05 · 76W05 · 76R10 · 76R50

List of symbols
x, y Distance along x and y coordinate, m
X , Y Dimensionless distance along x and y coordinate
u, v x and y component of velocity, m s−1

U , V x and y component of dimensionless velocity

Communicated by Corina Giurgea.

B T. R. Mahapatra
trmahapatra@yahoo.com

Bikash C. Saha
bcsaha87@gmail.com

Dulal Pal
dulalp123@rediffmail.com

1 Department of Mathematics, Visva-Bharati (A Central University), Santiniketan,
West Bengal 731 235, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-018-0676-5&domain=pdf
http://orcid.org/0000-0003-3715-4532


Magnetohydrodynamic double-diffusive natural convection. . . 6133

g Acceleration due to gravity, m s−2

T , Th, Tc Temperature of fluid, hot and cold wall, K
p Pressure, Pa
P Dimensionless pressure
L Length of the base of the trapezoidal cavity, m
D Mass diffusivity, m2 s−1

Cp Specific heat, J kg−1 K−1

k Thermal conductivity, W m−1 K−1

n Normal vector to the plane
Nu, Nu Local and average Nusselt number
Pr Prandtl number
Ra Rayleigh number
B0 Magnetic field strength
Ha Hartmann number
Le Lewis number
ch, cc Concentration of hot and cold walls
Sh, Sh Local and average Sherwood number
N Buoyancy ratio
c Concentration
C Dimensionless concentration

Greek symbols
θ Dimensionless temperature
φ Inclination angle with positive direction of x axis
β Volume expansion coefficient, K−1

μ Dynamic viscosity, kg m−1 s−1

ν Kinematic viscosity, m2 s−1

ψ Dimensionless stream function
ρ Density, kg m−3

σ Electrical conductivity, kg−1 m−3 s3 A2

α Thermal diffusivity, m2 s−1

ϕ Volume fraction of the nanoparticle

Subscripts
p Solid particles
r Right wall
l Left wall
nf Nanofluid
f Base fluid

1 Introduction

Fluid flow of water-based nanofluids, and heat and mass transfer due to natural convection
induced by applied magnetic field in a trapezoidal enclosure have practical importance in
many engineering applications and geophysical problems. Effects of magnetic field and
aspect ratio of a cavity occur in a wide range of scientific field, such as geology, biology,
oceanography, astrophysics, and chemical processes. These include solar collectors, nuclear
reactors, solar ponds, electronic cooling, geothermal reservoirs, and chemical processing
equipments.
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6134 T. R. Mahapatra et al.

During past few decades, studies on natural convection in a trapezoidal cavities have
been under taken by many researchers. Lyiean et al. (1980) studied rate of heat transfer
in natural convection within a trapezoidal cavity. Basak et al. (2009) investigated flow due
to natural convection in a trapezoidal enclosure filled with porous medium. Peric (1993)
examined natural convection within a trapezoidal cavity with various aspect ratios. On the
other hand, some of the important studies on natural convection of nanofluid in a various
enclosure can be found in Sheremet et al. (2016), Mahmoodi (2011), Ghasemi et al. (2011),
Mahmoudi and Abu-Nada (2013), Das and Oha (2009), Corcione (2010), and Nasrin and
Parvin (2012). Sheremet et al. (2016) investigated numerically entropy generation due to
natural convection in a square cavity filled with nanofluid with hot solid object inserted by
cooling the top wall and left bottom corners. Mahmoodi (2011) studied heat transfer in free
convection and fluid flow in a square cavity containing nanofluid in the presence of an inside
heater. Ghasemi et al. (2011) numerically examined natural convection in a square cavity
filled with a water–Al2O3 nanofluid in the presence of horizontally applied magnetic field.
Mahmoudi andAbu-Nada (2013) studied combined effect of themagnetic field andnanofluids
on natural convection within a square cavity. Das and Oha (2009) examined heat transfer in
natural convection within a partially heated and cooled square cavity filled with nanofluids
for various thermal boundary conditions. Corcione (2010) studied buoyancy-driven heat
transfer in rectangular cavity with differentially heated side walls. Nasrin and Parvin (2012)
numerically investigated buoyancy-driven flow and heat transfer in a trapezoidal cavity filled
with nanofluid for different temperature conditions.

Apart from these studies, there have been considerable interest to study double-diffusive
natural convection of base fluid and nanoparticles in enclosure of different shapes. Chen
et al. (2016) studied double-diffusive natural convection in a square enclosure filled with
water-based SiO2 nanofluid. They observed that the influences of addition of nanoparticles
into base fluid are quite different between the laminar and turbulent regimes. Mahapatra
et al. (2013) studied magnetohydrodynamic-mixed convection flow in an inclined enclosure
with thermal radiation and heat generation. Dastmalchi et al. (2015) studied double-diffusive
natural convection in a porous square cavity filledwith nanofluid. It was performed for several
physical conditions with various values of temperature difference between the hot and cold
walls, bulk volume fraction of nanoparticles, and porosity. Tofaneli and de Lemos (2009)
studied double-diffusive turbulent natural convection in a porous square cavity with opposing
temperature and concentration gradients. Chen et al. (2012) studied numerically double-
diffusive turbulent natural convection in a square cavity by LES-based lattice Boltzmann
model with Rayleigh number up to 1011 and buoyancy ratio varying from 0.1 to 2. Parvin
et al. (2013) investigated the effect of natural convection parameter Rayleigh number on
double-diffusive natural convection in a partially heated square cavity filled with water-based
Al2O3 nanofluid. Esfahani and Bordbar (2011) studied double-diffusive natural convection
in a square cavity filled with different nanofluids. They observed that increasing the values of
nanoparticle volume fraction, theflowstrengthwill be reduced in the cavity.Arani et al. (2014)
investigated double-diffusive natural convection of Al2O3–water nanofluid in a square cavity
with partially heated side walls. Sivasankaran and Kandaswamy (2006) examined double-
diffusive natural convection of water in a partitioned enclosure with temperature-dependent
species diffusivity. Arefmanesh et al. (2015) studied the mixed convection fluid flow and heat
transfer in a trapezoidal cavity filled with nanofluids by considering the effect of Brownian
motion. Nayak et al. (2015) numerically studied mixed convection and entropy generation
of nanofluid in a differentially heated skewed enclosure. A numerical work was carried out
by Teamah and Shehata (2016) to study the effect of magnetic field on double diffusion
within a trapezoidal cavity. Uddin et al. (2016) investigated unsteady double diffusion mixed
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Fig. 1 Schematic diagram of the
physical domain

convection flow due to uniform and nonuniform heating at the bottom side wall in lid-driven
trapezoidal cavity in the presence of magnetic field . A few investigations on stagnation-point
flow of nanofluids appear in the works of earlier researchers (Pal et al. 2014; Pal and Mandal
2015; Pal et al. 2015).

Over the years, the primitive variable and stream function–vorticity formulation are used
to compute incompressible viscous flows governed by the Navier–Stokes equations. The
primitive variable formulation is difficult because of the presence of the pressure term in the
governing equations, whereas the stream function–vorticity formulation is difficult, because
the vorticity prescribed on the boundaries. Due to these facts, the biharmonic pure stream
function form of the Navier–Stokes equations, which eliminates the need to compute both
pressure and vorticity, is emerging as an attractive alternative (Gupta 1975; Gupta and Kalita
2005; Kalita and Sen 2012; Pandit 2008). It is worth mentioning here that we have adopted
this biharmonic strategy in our formulation.

The prime objective of this paper is to analyze numerically the flow and thermal charac-
teristics of water-based nanofluid confined within a trapezoidal cavity by considering heating
of side walls in presence of magnetic field. We also want to study the effects of aspect ratio
of a trapezoidal cavity on heat and mass transfer with various angles and nanoparticles. The
numerical results for streamline contours, isotherms, isoconcentrations, averageNusselt num-
ber, and average Sherwood number are presented graphically. It is found that the conduction
mode of heat transfer dominates the convection mode with increase in the magnetic field. It is
interesting to find that, due to the growth of number of the nanoparticles, effective viscosity is
more prominent than the growth of the effective thermal conductivity at a large aspect ratio.

This paper is organized in five sections. Section 2 deals with the mathematical formula-
tion, Sect. 3 provides numerical solution procedure, and Sect. 4 gives numerical results and
discussion. In Sect. 5, we summarize the results of the present investigation.

2 Mathematical formulation

2.1 Governing equations and boundary conditions

Consider the trapezoidal cavity filled with water-based nanofluid and a laminar flow is ini-
tiated due to the imposition of different kinds of temperatures and concentration conditions
at the different walls under the influence of magnetic field applied in the horizontal direc-
tion. The displacement current, induced magnetic field, dissipation, and Joule heating are
neglected. This is justified for the flow where magnetic Reynolds number is small. The phys-
ical domain of a trapezoidal cavity is shown in Fig. 1 with the left and the right wall inclined
at angles (π − φ) and φ, with x-axis. The governing equations for steady two-dimensional
natural convection flow of a water-based nanofluid in dimensional form can be written as:
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∂u

∂x
+ ∂v

∂ y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂ y
= − 1

ρnf

∂ p

∂x
+ νnf

[
∂2u

∂x2
+ ∂2u

∂ y2

]
− σnf B2

0 u

ρnf
, (2)

u
∂v

∂x
+ v

∂v

∂ y
= − 1

ρnf

∂ p

∂ y
+ νnf

[
∂2v

∂x2
+ ∂2v

∂ y2

]

+ g(ρβT)nf

ρnf
(T − Tc) − g(ρβS)nf

ρnf
(c − cc), (3)

u
∂T

∂x
+ v

∂T

∂ y
= αnf

[
∂2T

∂x2
+ ∂2T

∂ y2

]
, (4)

u
∂c

∂x
+ v

∂c

∂ y
= D

[
∂2c

∂x2
+ ∂2c

∂ y2

]
. (5)

The boundary conditions of the physical problem are as follows: in all the four walls, no
slip condition prevails. This condition gives u = 0, v = 0 at the four walls. The bottom
and top walls are adiabatic ( ∂T

∂ y = 0), whereas left wall is hot (T = Th) and right wall is
cold (T = Tc). The concentration gradients at the bottom and top walls are considered to
be zero and concentration at left and right walls are assumed constants which are ch and cc,
respectively. Using the dimensionless quantities:

X = x

L
, Y = y

L
, U = uL

αf
, V = vL

αf
, C = c − cc

ch − cc
, θ = T − Tc

Th − Tc
, P = pL2

ρnfα
2
f

,

Pr = νf

αf
, Ha =

√
ρf

μf
B0L, Le = αf

D
, Ra = g βf (Th − Tc)L3

ν f αf
, N = βS(ch − cc)

βT(Th − Tc)
.

The governing Eqs. (1)–(5) reduce to dimensionless form:

∂U

∂X
+ ∂V

∂Y
= 0, (6)

U
∂U

∂X
+ V

∂U

∂Y
= −∂P

∂X
+ μnf

ρnfαf

[
∂2U

∂X2 + ∂2U

∂Y 2

]
− σnfρf

σfρnf
Ha2 U , (7)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ μnf

ρnfαf

[
∂2V

∂X2 + ∂2V

∂Y 2

]
+ (ρβ)nf

ρnfβf
Ra Pr (θ − N C), (8)

U
∂θ

∂X
+ V

∂θ

∂Y
= αnf

αf

[
∂2θ

∂X2 + ∂2θ

∂Y 2

]
, (9)

U
∂C

∂X
+ V

∂C

∂Y
= 1

Le

[
∂2C

∂X2 + ∂2C

∂Y 2

]
. (10)

The dimensionless initial boundary conditions are as follows:

U = 0, V = 0 at all the four walls,
∂θ

∂Y
= 0 = ∂C

∂Y
at the bottom and top walls,

θ = 1 = C at the left wall,

θ = 0 = C at the right wall.
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We introduce stream function (ψ) and vorticity (ω) in the following manner:

U = ∂ψ

∂Y
, V = −∂ψ

∂X
, ω = ∂V

∂X
− ∂U

∂Y
. (11)

Using Eq. (6) and eliminating P from Eqs. (7) and (8), we get

P1

[
∂2ω

∂X2 + ∂2ω

∂Y 2

]
−

[
U

∂ω

∂X
+ V

∂ω

∂Y

]
+ P2

∂U

∂Y
+ P3

(
∂θ

∂X
− N

∂C

∂X

)
= 0, (12)

where P1, P2, P3 are defined in Appendix. Combining three equations in Eq. (11), we get
the governing equation for ψ as

∂2ψ

∂X2 + ∂2ψ

∂Y 2 = −ω. (13)

2.2 Thermophysical properties of the nanofluid

The effective density, the heat capacity, thermal expansion coefficient, and electrical con-
ductivity of the nanofluid (see, Kefayati 2015; Xuan and Roetzel 2000) are given by the
following relations:

ρnf = (1 − ϕ)ρf + ϕρp, (ρCp)nf = (1 − ϕ)(ρCp)f + ϕ(ρCp)p,

(ρβ)nf = (1 − ϕ)(ρβ)f + ϕ(ρβ)p, σnf = σ f

(
1 + 3(ζ − 1)ϕ

(ζ + 2) − (ζ − 1)ϕ

)
,

respectively, whereϕ is the volume fraction of the nanoparticle, ζ = σp/σf , and the subscripts
f and p refer to the base fluid and nanoparticle, respectively. Thermal diffusivity of the
nanofluid is αnf = knf/(ρCp)nf , where knf is effective thermal conductivity and is given by
the following expression:

knf = kf

[
kp + 2k f − 2ϕ(kf − kp)

kp + 2kf + ϕ(kf − kp)

]
.

Here, kf and kp are thermal conductivity of the base fluid and nanoparticle, respectively.
The effective viscosity of the nanofluid is obtained from the Brinkman model (see, Brinkman
1952) which is expressed by

μnf = μf (1 − ϕ)−2.5,

where μf is the viscosity of the base fluid. The thermophysical properties of the base fluid
(pure water) and the solid particle are given in Table 1.

2.3 Coordinate transformation and biharmonic formulation

Application of the boundary conditions at the various boundaries is a difficult task. The
prescription of conditions at boundaries not conforming to the coordinate lines leads to
severe interpolation errors. For this reason, a transformation is introduced to map irregular
physical domain to square computational domain. In this study, the physical (X, Y ) plane is
transformed into the computational (ξ, η) plane using the mapping:

ξ = X + Y cot φ

1 + 2Y cot φ
, η = Y

A
,
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Table 1 Thermophysical properties of the base fluid (pure water) and nanoparticle

Properties Pure water Al2 O3 Cu Ag TiO2

Cp (J kg−1 K−1) 4179 765 385 235 686.2

k (W m−1 K−1) 0.623 40 400 429 8.9538

ρ (kg m−3) 997.1 3970 8933 10500 4250

β (K−1) 21 × 10−5 0.8 × 10−5 1.67 × 10−5 1.8 × 10−5 0.9 × 10−5

σ (kg−1 m−3 s3 A2) 0.05 3.69 × 107 5.69 × 107 6.30 × 107 2.38 × 106

μ (kg m−1 s−1) 0.001003 – – – –

α (m2 s−1) 0.143 × 10−6 – – – –

Fig. 2 Mapping of the trapezoidal domain to a square domain

where A is aspect ratio of a cavity. This mapping is employed the physical trapezoidal flow
domain to computational square flow domain which is shown in Fig. 2. Equations (9), (10),
(12), and (13) are transformed to

P4F
∂2θ

∂ξ2
+ EP4

∂2θ

∂ξ∂η
+ P4

A2

∂2θ

∂η2
= −B

∂θ

∂ξ
+ V

A

∂θ

∂η
, (14)

F
∂2C

∂ξ2
+ E

∂2C

∂ξ∂η
+ 1

A2

∂2C

∂η2
= −Le P6

∂C

∂ξ
+ Le V

A

∂C

∂η
, (15)

P1F
∂2ω

∂ξ2
+ P1E

∂2ω

∂ξ∂η
+ P1

A2

∂2ω

∂η2
+ M

∂ω

∂ξ
− V

A

∂ω

∂η

+P3G

(
∂θ

∂ξ
− N

∂C

∂ξ

)
+ P2

(
E A

2

∂U

∂ξ
+ 1

A

∂U

∂η

)
= 0, (16)

F
∂2ψ

∂ξ2
+ E

∂2ψ

∂ξ∂η
+ 1

A2

∂2ψ

∂η2
+ H

∂ψ

∂ξ
= −ω, (17)

where

U =
(
E A

2
ψξ

)
+

(
1

A
ψη

)
, V = − (

Gψξ

)
. (18)
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Eliminating ω from Eq. (16), with the help of Eq. (17), we get

P1F
2 ∂4ψ

∂ξ4
+ 2P1EF

∂4ψ

∂ξ3∂η
+ T5

∂4ψ

∂ξ2∂η2
+ 2P1E

A2

∂4ψ

∂ξ∂η3
+ P1

A4

∂4ψ

∂η4

+ T1
∂3ψ

∂ξ3
+ T2

∂3ψ

∂ξ2∂η
+ T3

∂3ψ

∂ξ∂η2

− V

A3

∂3ψ

∂η3
+ T4

∂2ψ

∂ξ2
+ T6

∂2ψ

∂ξ∂η
+ T7

∂ψ

∂ξ

− P3G

(
∂θ

∂ξ
− N

∂C

∂ξ

)
− P2

(
E A

2

∂U

∂ξ
+ 1

A

∂U

∂η

)
= 0, (19)

which is biharmonic equation in stream function–velocity formulation, where B, E, F,

G, H , M, P4, P6, T1, T2, T3, T4, T5, T6, and T7 are defined in the Appendix.

2.4 Nusselt number

The heat transfer rate in terms of the local Nusselt number (Nu) is defined by

Nu = −knf
kf

∂θ

∂n
,

where n is the normal direction on a plane. The local Nusselt number at right wall (Nur) and
left wall (Nul) is defined as follows:

Nur = − sin φ
knf
kf

∂θ

∂X
+ cosφ

knf
kf

∂θ

∂Y
, Nul = sin φ

knf
kf

∂θ

∂X
+ cosφ

knf
kf

∂θ

∂Y
.

The average Nusselt number at left wall (Nul) and right (Nur) walls are given by

Nul = sin φ

A

∫ A
sin φ

0
NuldS1, Nur = sin φ

A

∫ A
sin φ

0
NurdS2,

where dS1 and dS2 are small element lengths along the left and right walls, respectively. The
average Nusselt number (Nu) is defined by Nu = 1

2 (Nul + Nur).

2.5 Sherwood number

The mass transfer rate in terms of the local Sherwood number (Sh) is defined by

Sh = −∂C

∂n
,

where n is the normal direction on a plane. The local Sherwood number at right wall (Shr)
and left wall (Shl) are given by

Shr = − sin φ
∂C

∂X
+ cosφ

∂C

∂Y
, Shl = sin φ

∂C

∂X
+ cosφ

∂C

∂Y
.

The average Sherwood number at left and right walls are defined as follows:

Shl = sin φ

A

∫ A
sin φ

0
ShldS1, Shr = sin φ

A

∫ A
sin φ

0
ShrdS2,

where dS1 and dS2 are small element lengths along the left and right walls, respectively. The
average Sherwood number (Sh) is defined by Sh = 1

2 (Shl + Shr).
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3 Numerical solution procedure

The second-order finite-difference approximation of Eqs. (14), (15), and (19) usingAppendix
may be rewritten in the matrix form as follows:

Qθ = 0, (20)

RC = 0, (21)

Sψ = f
(
Ra, Pr , Ha, U , V , θξ , Cξ , ψξ , ψη

)
, (22)

where ψξ and ψη can be obtained solving the following equations by Thomas algorithm:

(ψξ )i+1, j + 4(ψξ )i, j + (ψξ )i−1, j = 3

h
(ψi+1, j − ψi−1, j ), (23)

(ψη)i, j+1 + 4(ψη)i, j + (ψη)i, j−1 = 3

h
(ψi, j+1 − ψi, j−1). (24)

For a grid of size m × n, the coefficient matrices Q, R, and S are of order mn and
ψ, θ, C and f are mn-component vectors. We solve this problem using outer–inner iteration
procedure as described by Gupta and Kalita (2005). We solve Eqs. (20), (21), and (22) using
the biconjugate gradient stabilized (BiCGStab) method which constitutes inner iterations.
Once both the Eqs. (20), (21), and (22) are solved, then we solve for ψξ and ψη using
Thomas algorithm for the tridiagonal linear systems arising from Eqs. (23) and (24). This
constitutes one outer iteration cycle. We use same relaxation parameter λ inside both the
inner and outer iteration cycles for ψ , θ , and C . After calculating ψξ and ψη, we computeU
and V from Eq. (18). The computations were stopped when the maximum ψ error, θ error,
and C error between two successive outer iteration steps were smaller than 0.5 × 10−6.

4 Results and discussion

In the present study, we simulate double-diffusive convection flow due to both the thermal
and solutal effects in a trapezoidal cavity filled with water-based nanofluid. The effects of
volume fraction of nanoparticles, type of nanoparticles, Rayleigh number, and Hartmann
number on fluid flow, heat transfer characteristics, and solutal transfer characteristics in the
cavity are discussed in terms of streamlines, isotherms, isoconcentrations, average Nusselt
numbers, and average Sherwood numbers. Prandtl number in the present paper is considered
to be 0.7.

4.1 Code validation and grid independence study

Our code is validated by comparing the results with the benchmark results of Basak et al.
(2012) and Davis (1982) when pure working fluid is used in the square cavity (φ = 90◦)
for different values of Rayleigh number and Pr = 0.71 as shown in Table 2. In addition,
validation of present results with those of Ghasemi et al. (2011) for ψmin is given in Table 3
using 81 × 81 grids. It is observed from these tables that our results agree very well with
those of the previous researchers’ results.

The grid independence test is done using different grid sizes within trapezoidal enclosure
with different aspect ratios (A = 0.5, 1) and is presented in Table 4 for Ra = 106, Ha = 40,
N = −2, Le = 1, φ = 60◦, and ϕ = 0.05. Considering various grids 21 × 21, 41 × 41,
81× 81 and 161× 161, thus we conclude that 81× 81 grid is enough for all the calculations.
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Table 2 Code validation for
|ψmax| and average Nusselt
number (Nu)

Ra Basak et al. (2012) Davis (1982) Present

|ψmax| Nu |ψmax| Nu |ψmax| Nu

103 1.1746 1.1179 – 1.118 1.1733 1.1173

104 5.0737 2.2482 – 2.243 5.0739 2.2482

105 9.6158 4.5640 9.612 4.519 9.6211 4.5158

Table 3 Code validation for ψmin

Ha Ghasemi et al. (2011) Present

0 30 60 0 30 60

Ra = 103 − 0.95 − 0.11 − 0.03 − 0.9552 − 0.1130 − 0.0299

Ra = 105 − 11.44 − 5.66 − 2.47 − 11.4353 − 5.6712 − 2.4773

Table 4 Grid independence test
for |ψmax| A |ψmax|

21 × 21 41 × 41 81 × 81 161 × 161

0.5 7.0155 6.9688 6.9622 6.9618

1 13.2434 13.3110 13.3287 13.3228

4.2 Effects of Hartmann number

The effects of the Hartmann number on the streamlines, isotherms, and isoconcentrations are
presented in Fig. 3a–c, respectively, for Ra = 106, Le = 1, A = 0.5, N = −2, φ = 60◦. The
enclosure is filled with a water-based Al2O3 nanofluid, which has solid volume fraction ϕ=
0.03. The buoyancy-driven circulating flows within the enclosure are evident for all values of
the Hartmann numbers. The strength of these circulations decreases as the value of Hartmann
number increases. This is evident from the fact that the maximum value of stream function in
an enclosure decreases with the increase in strength of the magnetic field which is the effect
of Lorentz force. It means that as strength of magnetic field increases, conduction mode of
heat transfer becomes dominant to convection mode of heat transfer. The maximum values
of ψ are 8.48, 6.9, 4.74, and 3.21 for Ha = 0, 40, 80, and 120, respectively. The results
also show a conduction-dominated regime with vertical isotherms and isoconcentrations at
high Hartmann number and a convection-dominated regime with horizontal isotherms and
isoconcentrations at lowHartmann number. The isotherms and isoconcentrations are affected
by variations in the Hartmann number. These effects are more noticeable at Ha = 0 and
40, where an increase in the Hartmann number results in the change of path of isotherms
and isoconcentrations from horizontal to vertical. This is an indication of weaker convection
flows at higher Hartmann number. Figure 4a, b shows how the average Nusselt number and
average Sherwood number, respectively, vary with the Hartmann number at different values
of the solid volume fraction (0 ≤ ϕ ≤ 0.1), for Ra = 106, where the heat and mass transfer
are only due to conduction. The average Nusselt number and average Sherwood number
decrease when the Hartmann number increases. In addition, the average Nusselt number and
average Sherwood number decrease when the volume friction of the nanofluid increases. In
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(a)

(b)

(c)

Fig. 3 Effects of Hartmann number (Ha) astream function (ψ), b isotherms (θ), and c isoconcentrations (C)

for Le = 1, A = 0.5, N = −2, Ra = 106, and ϕ = 0.03, φ = 60◦

(a) (b)

Fig. 4 Effects of Hartmann number (Ha) versus a average Nusselt number, and b average Sherwood number
for Le = 1, A = 0.5, N = −2, Ra = 106, 0 ≤ ϕ ≤ 0.1, and φ = 60◦

fact, the increase in volume friction (ϕ)means that more nanoparticles were added in the base
fluid which makes the nanofluid more viscous which in turn slowdown the fluid movement.

4.3 Effects of inclination angle

The effects of inclination angle on the streamlines, isotherms, and isoconcentrations are
presented in Fig. 5a–c, respectively, for Ra = 106, Le = 1, A = 1, N = −2, and Ha = 40.
The enclosure is filled with a water-based Al2O3 nanofluid, which has a solid volume fraction
ϕ= 0.03. The buoyancy-driven circulating flowswithin the enclosure are evident for all values
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(a)

(b)

(c)

Fig. 5 Effects of inclination angle (φ): a stream function (ψ), b isotherms (θ), and c isoconcentrations (C)

for Le = 1, A = 1, N = −2, Ra = 106, and ϕ = 0.03, Ha = 40

of inclination angles of a trapezoidal cavity. The strength of circulation (the maximum values
of ψ) decreases as φ = 30◦ is increased 60◦, buts when φ is increase from 60◦ to 90◦, the
strength of this circulation increases. When inclination angle (φ) is more than 45◦ nature of
heat transfer becomes less convective but more conductive and so the curvature of streamline
is reduced. As observed from Fig. 5, the inclination angle (φ) of the cavity has an important
role on the eddy strength. It is interesting to note two circulation (smallest) zones exist for
φ = 60◦ and 90◦. The maximum values of ψ are 13.8, 13.3, 13, and 13.4 for φ = 30◦,
45◦, 60◦ and 90◦, respectively. Comparing Figs. 3a and 5a for Ha = 40, the maximum
values of ψ increase with the increase in A. From Fig. 4b, c it is evident that the isotherms
and isoconcentrations are affected by variations of inclination angle (φ), i.e., the line of
isotherms and isoconcentrations in the core of the cavity tends to be horizontal as inclination
angle increased. Figure 6a, b shows how the average Nusselt number and average Sherwood
number, respectively, vary with inclination angle at different values of the solid volume
fractions (0 ≤ ϕ ≤ 0.1), for fixed values of other parameters. The average Nusselt number
and average Sherwood number are increased when the inclination angle is increased. The
average Sherwood number decreases when the volume fraction of nanofluid increases. For
small values of inclination angle, moreover, average Nusselt number decreases when volume
fraction nanoparticles (ϕ) increases, but, for more than a certain value of inclination angle,
the opposite trend is observed.

4.4 Effects of aspect ratio

The effects of the aspect ratio on the streamlines, isotherms, and isoconcentrations are pre-
sented in Fig. 7a–c, respectively, for Ra = 106, Le = 1, Ha = 40, N = −10, φ = 60◦,
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(a) (b)

Fig. 6 Effects of inclination angle (φ) versus a average Nusselt number, and b average Sherwood number for
Le = 1, A = 1, N = −2, Ra = 106, 0 ≤ ϕ ≤ 0.1, and Ha = 40

and ϕ = 0.03, when water-based Al2O3 nanofluid is used. The buoyancy-driven circulat-
ing flows within the enclosure are evident for all values of the aspect ratio. The strength of
these circulations increases as aspect ratio increases. Actually, once the Rayleigh number,
Ra, is assigned, the increase of the cavity aspect ratio is obtained by increasing volume of
the cavity. This implies that the resistance encountered by the fluid to flow across the cav-
ity increases, and, consequently, due to the increase in the volume fraction of the nanofluid
effective viscosity starts becoming excessive in comparison with the growth of the effective
thermal conductivity at a larger aspect ratio. The maximum values of ψ are 7.76, 20.4, 27,
and 33.2 for A = 0.5, 1, 1.5, and 2, respectively. Comparing Figs. 3a and 7a, it is seen
that, for A = 0.5, Ha = 40, the maximum strength (ψ) of these circulations increases with
the decrease in values of N . Also one small circulation zone exists for N = −2, but two
small circulation zone exists for N = −10. The results also show a conduction-dominated
regime with vertical isotherms at a small value of A(= 0.5) and a convection-dominated
regime with horizontal isotherms and isoconcentrations at high aspect ratio (1 ≤ A ≤ 2).
The large values of A, the isotherms, and isoconcentrations remain horizontal. Figure 8a,
b, respectively, shows how the average Nusselt number and average Sherwood number vary
with aspect ratio (A) for various values of the solid volume fraction (0 ≤ ϕ ≤ 0.1). The
average Nusselt number and average Sherwood number increase when aspect ratio increases.
It is seen that the Sherwood number, a measure of rate of mass transfer, is optimized at the
highest Ra and lowest A for both base fluid and nanofluid. In addition, mass transfer rate
is more effective for nanofluid than the base fluid. This mitigation of heat transfer is mainly
attributed to the effective dynamic viscosity which is predominant in the natural convection
of nanofluid for low effective thermal conductivity. In addition, the average Nusselt number
almost remains unchanged when the volume fraction of nanofluid increases.

4.5 Effects of Rayleigh number

Figure 8a–c illustrate streamlines (ψ), isotherms (θ), and isoconcentrations (C) for vari-
ous values of Ra. The strength of these circulations increases as the Ra increases. As Ra
increases, the strength of fluid flow increases and that leads to increase in thermal energy
transport due to enhanced convection. This happens due to the fact that increasing buoyancy
force causes natural convection in the cavity with the increase of Rayleigh number. The
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(a)

(b)

(c)

Fig. 7 Effects of aspect ratio (A) a stream function (ψ), b isotherms (θ), and c isoconcentrations (C) for
Le = 1, φ = 60◦, N = −10, Ra = 106, and ϕ = 0.03, Ha = 40

(a) (b)

Fig. 8 Effects of aspect ratio (A) versus a averageNusselt number and b average Sherwood number for Le = 1,
φ = 60◦, N = −10, Ra = 106, 0 ≤ ϕ ≤ 0.1, and Ha = 40

maximum values of ψ are 1.58, 6.9, and 16.75 for Ra = 105, 106, and 107, respectively.
Comparison of Figs. 5a and 9a shows that, as the aspect ratio increases from 0.5 to 1, the
maximum value of ψ increases for Ra = 106. It is also noted that, when the aspect ratio
A = 0.5, single small circulation zone exists, but, for the aspect ratio A = 1, two small
circulation zones exist. Comparing Figs. 7a and 8a, it is seen that, when N increases from
−10 to −2, the maximum values of ψ increase for Ra = 106, A = 0.5, and Ha = 40.
The results also show a conduction-dominated regime with almost vertical isotherms and
isoconcentrations at low Ra(= 105) and a convection-dominated regime with almost hori-
zontal isotherms and isoconcentrations at high Ra(= 107). Comparison of Figs. 7c and 9c
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(a)

(b)

(c)

Fig. 9 Effects of Rayleigh (Ra) a stream function (ψ), b isotherms (θ), and c isoconcentrations (C) for
Le = 1, φ = 60◦, N = −2, A = 0.5, ϕ = 0.03, and Ha = 40

(a) (b)

Fig. 10 Effects of Rayleigh (Ra) versus a average Nusselt number, and b average Sherwood number for
Le = 1, φ = 60◦, N = −2, A = 0.5, 0 ≤ ϕ ≤ 0.1, and Ha = 40

shows that, as N increases, the pattern of isoconcentrations remains almost horizontal but
the pattern of isoconcentrations remains almost vertical for Ra = 106, A = 0.5, Ha = 40,
ϕ = 0.03, Le = 1, and φ = 60◦. Figure 10a, b shows that the average Nusselt number and
average Sherwood number, respectively, vary with Ra for different values of the solid volume
fraction (0 ≤ ϕ ≤ 0.1). The average Nusselt number and average Sherwood number increase
with increasing the value of Ra. It is interesting to note that if the solid volume fraction of
water-based Al2O3 nanofluid increases, then average Nusselt number increases, but average
Sherwood number decreases. It is found that the addition of nanoparticles has an effect on
the average Nusselt number, indicating a better heat transfer. In addition, the effect of the
nanoparticles is more significant at low Rayleigh number than at high Rayleigh number.
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(a) (b)

Fig. 11 Average Nusselt number (left) and average Sherwood number (right) versus volume fraction for
different nanoparticles, Le = 1, A = 0.5, N = −10, Ra = 106, and φ = 60◦

4.6 Effects of nanoparticles

Finally, variations of average Nusselt number and average Sherwood number with nanopar-
ticle volume fraction for different kinds of nanoparticles consisting of Cu, Ag, Al2O3, and
TiO2 are compared in Fig. 11a, b. It can be seen from these figures that, for nanoparticles
with larger thermal conductivity, the average Nusselt number and average Sherwood number
are large. In other words, by increasing the value of volume fraction, both the average Nus-
selt number and average Sherwood number are decreased. For the same physical conditions,
the minimum solutal transfer occurs when Al2O3 or TiO2 nanoparticles with small thermal
conductivity are used and the maximum heat transfer occurs when Ag or Cu nanoparticles
with large thermal conductivity are used.

5 Conclusion

Fluid flow, and heat andmass transfer in a trapezoidal cavity filledwithwater-based nanofluid
with different inclination angle (φ), aspect ratio (A), magnetic field parameter (Ha), and
Rayleigh number (Ra) are studied. The main findings can be summarized as follows:

• The recirculation eddy in the cavity is reduced as the magnetic field strength increases
which results in decrease of the convection heat transfer. In such case, conduction heat
transfer becomes dominant.

• The maximum values of ψ , average Nusselt number and average Sherwood number
increase when the value of A increases keeping other parameters fixed.

• The convective heat transfer is an increasing function of Rayleigh number, and hence,
the mass transfer also follows this fashion.

• Increasing Hartmann number has the opposite effect than that of increasing Rayleigh
number. Higher Hartmann number weakens convection for both nanofluid and base fluid.
However, nanofluid provides higher value of the average Nusselt number than base fluid
even when magnetic field is applied.

• The maximum value of ψ increases for (30◦ ≤ φ ≤ 60◦) and decreases for (60◦ ≤ φ ≤
90◦) for increasing values of ψ when other parameters are fixed.
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• In addition, we see that the average Nusselt number decreases when we use Cu, Ag,
Al2O3, and TiO2 as nanoparticles and the lowest value of the average Nusselt number
was obtained forTiO2 nanoparticle. This can be justified by the fact that TiO2 nanoparticle
has less thermal conductivity compared to the other type of nanoparticles.
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Appendix

P1 = μnf

ρnfαf
, P2 = σnfρf

σfρnf
Ha2, P3 = (ρβ)nf

ρnfβf
RaPr , P4 = αnf

αf
,

B = UG + 0.5V E A − H P4, P6 = UG + 0.5V E A − H

Le
,

G = 1

1 + 2ηA cot φ
, E = −2G cot φ(2ξ − 1)

A
, F = G2[1 + cot2 φ(2ξ − 1)2],

H = 4G2 cot2 φ(2ξ − 1), M = −UG + VG(2ξ − 1) cot φ + P1H ,

T1 = −8P1FG
2(1 − 2ξ) cot2 φ + P1FH

+FM − 4AG3 cot φ[1 + (1 − 2ξ)2 cot2 φ],
T2 = − 8

A
P1FG cot φ − 8P1EG

2(1 − 2ξ) cot2 φ

+P1EH − 8

A
G3P1 cot φ[1 + (1 − 2ξ)2 cot2 φ] + ME − V E

A
,

T3 = − 4

A
P1EG cot φ − 8

A2 P1G
2(1 − 2ξ) cot2 φ + P1H

A2 + M

A2 − V E

A
,

T4 = 24G2P1 cot
2 φ + 32P1EG

3A(1 − 2ξ) cot3 φ

+ 24G4P1 cot
2 φ[1 + (1 − 2ξ)2 cot2 φ]

− 4MG2(1 − 2ξ) cot2 φ + MH + 4VG3 cot φ[1 + (1 − 2ξ)2 cot2 φ],
T5 = 2P1F

A2 + P1E
2,

T6 = 16G2P1E cot2 φ + 32

A
P1G

3(1 − 2ξ) cot3 φ − 4

A
MG cot φ

+ 4

A
VG2(1 − 2ξ) cot2 φ − V H

A
,

T7 = −32P1EG
3A cot3 φ − 96P1G

4(1 − 2ξ) cot4 φ

+ 8MG2 cot2 φ − 16VG3(1 − 2ξ) cot3 φ,

∂ψ

∂ξ
= 1

2h
(ψi+1, j − ψi−1, j ) + O(h2),

∂ψ

∂η
= 1

2h
(ψi, j+1 − ψi, j−1) + O(h2),

∂2ψ

∂ξ2
= 1

h2
(ψi+1, j − 2ψi, j + ψi−1, j ) + O(h2),
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∂2ψ

∂η2
= 1

h2
(ψi, j+1 − 2ψi, j + ψi, j−1) + O(h2),

∂2ψ

∂ξ∂η
= 1

4h2
(ψi−1, j−1 − ψi+1, j−1 + ψi+1, j+1 − ψi−1, j+1) + O(h2),

∂3ψ

∂ξ2∂η
= 1

2h3
(2ψi, j−1 − 2ψi, j+1 − ψi−1, j−1

−ψi+1, j−1 + ψi+1, j+1 + ψi−1, j+1) + O(h2),

∂3ψ

∂ξ3
= 1

h2
(ψξ i+1, j − 2ψξ i, j + ψξ i−1, j ) + O(h2),

∂3ψ

∂η3
= 1

h2
(ψηi, j+1 − 2ψηi, j + ψηi, j−1) + O(h2),

∂3ψ

∂ξ∂η2
= 1

2h3
[2ψi−1, j − 2ψi+1, j − ψi−1, j−1

+ψi+1, j−1 + ψi+1, j+1 − ψi−1, j+1] + O(h2),

∂4ψ

∂ξ4
= 6

h4
[h(ψξ i+1, j − ψξ i−1, j ) − 2(ψi+1, j − 2ψi, j + ψi−1, j )] + O(h2),

∂4ψ

∂η4
= 6

h4
[h(ψηi, j+1 − ψηi, j−1) − 2(ψi, j+1 − 2ψi, j + ψi, j−1)] + O(h2),

∂4ψ

∂ξ3∂η
= 1

2h3
[2ψξ i, j−1 − 2ψξ i, j+1 − ψξ i−1, j−1

−ψξ i+1, j−1 + ψξ i+1, j+1 + ψξ i−1, j+1] + O(h2),

∂4ψ

∂ξ∂η3
= 1

2h3
[2ψηi−1, j − 2ψηi+1, j − ψηi−1, j−1

+ψηi+1, j−1 + ψηi+1, j+1 − ψηi−1, j+1] + O(h2),

∂4ψ

∂ξ2∂η2
= 1

h4
[4ψi, j − 2(ψi−1, j + ψi+1, j + ψi, j−1 + ψi, j+1) + ψi−1, j−1

+ψi+1, j−1 + ψi+1, j+1 − ψi−1, j+1] + O(h2).

Here, h is the step length on a uniform rectangular mesh in the transformed domain.
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