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Abstract A wide general class of Ostrowski’s families without memory proposed by Behl et
al. (Int ] Comput Math 90(2):408-422, 2013) is being extended to solve systems of nonlinear
equations. This extension uses multidimensional divided differences of first order. Many more
new derivative free iterative families with higher order local convergence are presented. In
addition, the proposed iterative family for «; = R — {0} and o, = 0 are special cases of Grau
et al. (J Comput Appl Math 237:363-372, 2013) for iterative schemes of fourth and sixth
orders. The computational efficiency is compared with some known methods. It is proved that
the proposed methods are equally competent with their existing counter parts. Moreover, we
present the local convergence analysis of the proposed family of methods based on Lipschitz
constants and hypotheses on the divided difference of order one in the more general settings
of a Banach space. We expand this way the applicability of these methods, since we used
higher derivatives to show convergence of the method in Sect. 3 although such derivatives
do not appear in these methods. Numerical experiments are performed which support the
theoretical results.
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1 Introduction

One of the most basic and earliest problems of numerical analysis concerns with finding
efficiently and accurately the approximate solution of a nonlinear system

G(X) =0,

where G(X) = (G1(X), 22X), ..., X)NT, X = (x1, x2, ..., x)7 and G :
R’ — R is a sufficiently differentiable vector function. Analytical methods for solving such
problems are non-existent, and therefore, it is only possible to obtain approximate solutions,
by relying on numerical techniques based on iteration procedures. The most simple and
common iterative method for this purpose is the Newton’s method (Kelley 2003; Traub
1964), which converges quadratically and is defined by

X = xk—{6'x) k), k=0,1,2,...,

where {G’ (x* )}_1 is the inverse of first Fréchet derivative G’ (X¥) of the function of G (X).
The practice of Numerical Functional Analysis for approximating solutions iteratively is
essentially connected to Newton-like methods (Kelley 2003; Traub 1964; Amat et al. 2005,
2008, 2010; Behl et al. 2013; Grau-Sanchez et al. 2014; Ostrowski 1960; Ortega and Rhein-
boldt 1970; Petkovi¢ 2011; Sharma and Arora 2014). However, the main practical difficulty
associated with this method is to calculate first-order derivative at each step of computation,
sometimes which is very difficult and time consuming.

In 2013, Behl et al. (2013) have proposed new optimal families of Ostrowski-like methods
for solving scalar nonlinear equations having cubic scaling factor of functions in the correction
factor and is given by

. S (xm)
" S Com) '

oy, — 4 Gm) (@f + a1 = a3) f o) f m) — a1 (a1 — @) {f )}
T PG | @1 f o) — a2 f ) (@t — a2) £ ) — (e —@2) G |
ey

where 1, oy € R but choose « and «» such that neither «; = 0 nor «; = 5.

In 1964, Traub (1964) introduced the quadratically convergent scheme defined as

XM= xk— vk x5 erle e, )

where Y¥ = X* + BG(X¥), B € R — {0}. [Y*, X*; G] is defined as first-order divided
difference of G in ¢t dimensional space as an ¢ x t matrix with elements

k yk.
[Y*, X%; GJij
5ok Lk k k Lk kY 5ok Gk k k Lk k
_g,(yl,yz,...,y,-_l,yj,xH],...,x,)—gz(yl,yz,...,yj_l,xj,xjw...,x,)
- k k ’
Yi T
3)
k k k k Lk ky vk k k k k k
where X :(xl,...,xjfl,xj,xjﬂ,...,xt),Y :(yl,...,yjfl,yj,yjﬂ,...,y,)and

1 <i,j <t (see Grau-Sanchez et al. 2011; Potra and Ptak 1984). For § = 1, the Traub’s
Scheme reduces to Steffensen’s method (Steffensen 1933). Inspired from this work, recently
many researchers have approximated the derivatives using first-order divided difference oper-
ators preserving the local convergence order of iterative methods (Argyros et al. 2015;
Ezquerro et al. 2015; Ezquerro and Hernandez 2009; Grau-Sanchez and Noguera 2011;
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Grau-Sénchez et al. 2013; Sharma and Arora 2013, 2014). In this study, we will construct
higher order generalization for several variables of given families of Ostrowski’s methods (1)
using first-order divided difference operator. For the computational purpose, we used another
tool to compute X**! which is defined as

Xl =xk_x*+G,x*-G; GI7'G(x5, k=0,1,2,... )

where [X¥ + G, X* — G; G] = (G(X* + Hre') — G(X* — HFeY), ..., G(X* + HFe') —
G(x* — H*e")){H"} ™" with H* = diag(21(X*), 82(X5), ..., &/ (X5)).
The meaning of X 4+ G is X & G(X). We shall use either notation in this paper.

2 Construction of iterative family

We propose the following modification over iterative scheme (1) as follows:
Yk = xM = x* —x* 4+ 6, x* - G; 617 G (xh,
3 =i —nGWH,
Y3 =¥ —nGW),
Vi =v3 —n G,

; (5)
Vi =, —n Gy,
U=yl —n G,
This relation is true fori = 2,3,4...n.
Here,
n= r—1<— @2 — 2@ [Yk, X*: Gl + (@F + &2 — 3ejan)[XF + G, X* — G G]),
= Qo — )i, X5 GllyT. X Gl - arenlyf, X GIIX* + G, X — G: G ©

+ Qo + 03 = 3eia)[ X + G, X* - G: Gllyf. X*: G]
— (@ — 1) [X* + G, XF - G; GIIX* + G, x* - G; G).

Here o1 and « are the real parameters. From Eq. (5), the various multi-step methods can be
proposed by taking different values of «; and o as follows:

(1) Fora; =R — {0} and ay = 0, first two steps (i = 2) of family (5) reduces as follows:
k= xH1 = x*h — (xk + G, x* - 6, 617 6 (xh),
vk =yl - 2wl x5 61— 1XF + 6. xXF — GGl T Gwh). |

This is a fourth-order iterative scheme derived by Grau-Sanchez et al. (2013).
(i) Fora; =R — {0} and ay = 0, first three steps (i = 3) of family (5) reads as follows:

Yk = xH1 = x* — [x* + G, x* — G 617 G (xh),
vk =yt — a1y, X5 Gl - (X + G, xF — G; Gl) T G wb,
wk =k — [21pk, X5 61— [XF + G, XF - G; G} ' Gd).

This is a sixth-order iterative scheme derived by Grau-Sanchez et al. (2013).
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(iii) Fora; = R — {0} and oy = 0, first four steps (i = 4) of family (5) reduces as follows:
b= xH1 = x* — (xk + G, x* - 6, 617 6 (xh),
vk = yb — 2wk, x5 61— 1X* + G, XF - G: 61} T Gwb,
vh = vk - oyl X5 61— (X4 + G, XF - G: G1) ' Gwh),
vk =k — 2iyh X5 61— [XF + 6, xF — G: G} T Gwh.

This is a new eighth-order iterative scheme.

3 Convergence analysis

We consider the first-order divided difference operator of G on R as a mapping [+, - : G]:
D x D C R" x Rl — L(R"), which is defined by Grau-Sdnchez and Noguera (2011),
Grau-Sanchez et al. (2013)

1
[X* +h, X*; G] =/ G'(X*+uh)du, VX* h) € R xR. %)
0

Developing G'(X* + uh) in Taylor’s series at X* and after integrating, one can obtain
1
1 " 1 "
/ G'(X* +uh)ydu = G'(X*) + 56 (X*h + G X“n* + 0. (8)
0

Taking into account ¥ = X* — X*, we develop G (X¥) and its derivatives in a neighborhood
of X*, where X* € R is the solution of system G (X) = 0. Assuming that I’ = {G’(X*)}7l
exists, one can have

GOXH) = G'(X) e + Aa(e) + A3(") + Aa(h)' + a5(H)’ + 0 ()] ©
where A; = TGO (X*) e LR, R"), i=23,...
From Eq. (9), the derivative of G (X k) can be written as
G'(x) = G'(XH|1+245(ek) +343(¢5)” + 444(ek) +545(5) " + 0 (%) ] (10)
G"(x*) = G'(X")[242 +643(c¥) + 1244 (") +2045(e) + 0 (M) | (11)
and G"'(x*) = G'(X")[643 + 2444 (k) + 0 (9)?) | (12)
where I is an identity matrix of order t.
Setting 1//{c =X+h& e’f = 1//{( — X*, one can have h = Iﬁ'{( — Xk = elf — k.
By substituting Eqgs. (10)—(12) into Eq. (8), one gets
[Wh, X5 Gl = G X1+ Aafef +¢5) + As((€) + (1) +eber) + 0 (€7) |- 13)
In our analysis, we have considered the center difference operator

[X*+G, X*~G; G = G'(X) | 1+2A2() +4: (3+{G' )@ +0 () | (14)

which we get after replacing 6{‘ by ¢ + G(X) and ¢* by e — G(X) in Eq. (13). The
convergence of iterative schemes (5) can be proved through the following theorem:
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Theorem 1 Let X* € R! be solution of the system G(X) = 0and G : D C R! — R’ be
sufficiently differentiable in an open neighborhood D of X* at which G'(X*) is nonsingular.
Then for an initial approximation sufficiently close to X*, iterative scheme (5) will have 2 x i
local order of convergence with error equation

(1A3 — PA2) 7 (hA2A; — QA))

Ny — )it

f = (—1)it! @) + 0 ((ek)2i+1) ’

provided that o1 € R — {0}, ar € R and o) # an, where
A= ai(a —ae)1 +y?), 0= (a% — 3ajap + O{%), P = (20{12 — dojan + oz%) &
y =G'(X¥).

Proof We shall prove the theorem by induction method.
For i = 2, the relation (5) reduces as follows:
b= xH1 = x* — [xk + G, x* - 6, 617 6 (xh),
vk =yt —n . }
The inverse operator of Eq. (14) is

(15)

X+ G, Xk~ GG = ! [1 —2Azek + (442 — 433 + 7)) (N>
+2((6+ v A2A3 — 2(1 + y*) As — 443) (")’
+0 ()] (16)
Using (9) and (16) in the first step of Eq. (5), one can get the following error equation:
€f =¥ — X* = A’ + (243 + 2 + YD) A’
(= O+ Pmas+ G+ ada @ +o (@),

Expanding G(z//{c ) by Taylor’s series expansion around the solution X* using (17), one gets
G = y[ef + ax(eh) + as(e)’ + 0 (€h)*) ] (18)
By substituting Egs. (13) and (14) in Eq. (6), one can obtain

T = ylai(a) — a2) + PAyy?(eF)
+ 2203 (A + A3) — 20102(A3 + (B + D) A3) + (2 + yD)as As](€h)?

+ 0((e")),
1 (14 y))Asai (@) — an) — AP
n=—+ 27 (k)2
y yai (o — az)

——— [20 +2y) Asaf (@ — a2)® + A3 P?
yay (a1 —a2)

+2AA301 (= 30 +2(1% + Dafar — 32 + Darad + 2 + y2)a3)](eh)?
+o ((ek)4) .

The second step of Eq. (15) can be rewritten as 1,0§ —X* = w{‘ —X*—n G(l/f]k),

19)

= e =ef —nGh. (20)

@ Springer f DMAC



5812 S. Bhalla et al.

Putting the values of 6’1‘, G(wf) and n from Eqgs. (17)—(19), respectively, Eq. (20) yields

3
_AA2A3 - 0A; (ek)4
ai(o —az)
1
(AA3 = PAY)a) (a1 — @2)
203 (a1 — ) @y + D(y? + DA2A3As + of (@1 — a2)* (2 + 2)(v? + D A3
—202 (a1 — a2)22y? 4+ 12} — dajay + ad)A3Ay
fa%(al — a2)2(1 + yz)(4a%y2 — 12a1a2y2 + 40(%)/2 + 120:% —28aj0p + Sa%)A%A%
+oq (o — az)(20a‘l‘ — Raiay — HMajary? 4 126033 + T4aasy? — 3003y

—S4ay03 + Tod + 4ady? + 8afy2)A‘2‘A3](e’<)5 10 ((ek)6) . 1)

k k *
52:1//-2—X =

[ — P(a3 — 1031 + 26033 — 20a3ay + 4a) AS

Thus, the iterative family (5) has fourth order of convergence for first two steps.
For i = n, the iterative scheme (5) is written as

Yk = xH1 = x* — [ xk + G, x* — G, 617 G (xh),
vy =V -1 G,
vh =5 —n G,
vk = vk —nGuh, . 22)

Yr =Yk, —n Gy,
Yk =yt —nGuk).

Let us assume the scheme (22) has order of convergence 2 * n for first n steps, with error
equation

(rA3 — PA2)" (14245 — QAD)

k * n+1
&=y, — X* = (=1
! " o oy — o)

(ek)Zn

it WAz — PAD"3
ay (o) —ap)"

—10naies + 2nat)AS + 2n — 2)a3 (@) — @)’ 2y? + D(y? + 1) A2 A3 A4

toi (@1 — 02) (¥ +2)(y* + D7 A} — 2 (@1 — 2)*2y? + D(naf + 2 — 3n)aion

+(n — Dad)A3 Ay — a? (@) — a2)* (1 + y D (dady? — (4n + Hajary? + 2nasy?

—|—6noc12 — ldnajar + 4na%)A%A% + oy (o) — az)(l()no/f + (4 — 48n)ot?a2

—Q0n + 4ajary? + (72n — 18)a? a3 + B4n + 2)alaly? + (6 — 18n)aja3y?

+(14 — 34n)a105 + (5n — 3)ai + B3n — 2)a3y? + 4na‘1‘y2)A‘2‘A3](ek)2"+l

+0 ((ek)2n+2> ) (23)

@ Springer f bMA

+(=1) [— P((n— a3 + (4 — Tn)aday + (1510 — dajal



A family of higher order derivative free methods. . . 5813

Further, for i = n + 1, the iterative family (5) is represented as
i =xM1 = x* — (xk + G, x* - 6, 617 6 (xh),
Vi =¥ —n G,
Vi =95 —nGWy),

vy = vk —n G,
(24)

Un_1 =Vna—1 Gy _y),
"=V~ Gy,
1 =V =1 G,
Now we shall show that the result is true for i = n + 1, i.e., we have to prove that iterative
method (24) has 2(n + 1) order of convergence for first n + 1 steps.

Since we have assumed that the result is true for first n steps, therefore expanding G (%)
by Taylor’s series around the solution X*, one gets

(rA3 — PA2)" 2 (14245 — 0A3)
06?71(061 —ap)~!
| (M43 — PAZy3

af (ag — )"

Gk = y[(fu"“ ()

(=T [ P(0r= a3 + (4 = Tmader + (151 — Hafa3

—IOnafaz + 2na‘l‘)Ag

+2n = 207 (@1 — a2)* @p% + Dy + DArA3A4

+oj (@ — ) (o + (2 + 1)2A3

—202 (@) —@2)?2y% + Dma? + 2 = 3n)ajay + (0 — 1)a3)A3 Ay
—a%(al - a2)2(1 + )/2)(401%)/2 — (4n + 4)a1a2y2 + Zna%yz
+6na% — ldnajoyp + 4no{%)A%A%

+a () — @) (10nat + (4 — 48n)ajay — (20n + 4)ajany?

+(72n — 18)afa3 + (34n + 2)ata3y?

+(6 — 18maja3y? + (14 — 34n)aja3 + (5n — 3o

+3n —ady? + 4na‘1‘y2)A‘2‘A3}(e’<)2"+1

+0((ek)2"+2)]. (25)

Now last step of Eq. (24) rewritten as

v =Xt =yl X" —nGwh,
= e =en—nGEH. (26)

Substituting the values of 1, e,'f and G(W;]f) from Egs. (19), (23) and (25), respectively, in Eq.
(26) and after some simplifications, one can get the error equation

(A3 — PA2)""' (14245 — QAD)

af (o — )"

f§+1 = (=12 @) +2 4 0 <(ek)2n+3), 27
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which shows that the iterative scheme (24) has 2(n + 1) order of convergence for first n + 1
steps. That is, the result is true for i = n + 1. Hence, by induction method one deduces that
the resultistrueVi =2,3,4...n. O

4 Computational efficiency

For the estimation of efficiency of proposed families, the efficiency index has been used. The
efficiency of an iterative method is given by E = p!/€Ostrowski (1960) where p is the order
of convergence and C is the computational cost per iteration. For a system of ¢ nonlinear
equations with ¢ variables, the computational cost per iteration is given by

C,t,0) =A)v+ P(t,0), (28)

where A(t) denotes the number of evaluations of scalar functions used in the evaluation of G
and [X, Y; G] and P(¢, £) denotes the number of products needed per iteration. To express
the value of C(v, ¢, £) in terms of products, a ratio v > 0 between products and evaluations
of scalar functions, and a ratio £ > 1 between products and quotients is required.

To compute G in any iterative function, we evaluate ¢ scalar functions (g7, 22, ..., gr)
and if we compute a divided difference [X, Y; G] then we evaluate 7 (¢ — 1) scalar functions,
where G(X) and G(Y) are computed separately. In addition, for central divided difference
operator [ X + G, X — G; G], t(t + 1) scalar functions are evaluated. We must add 12 quotient
for any divided difference and 5% products for multiplication of a vector by a scalar. To
calculate an inverse linear operator, we solve a linear system where we have %
products and @ quotients in the LU decomposition, 7 (¢ — 1) products and ¢ quotients in
the resolution of two triangular linear system.

For comparison of computational efficiencies of proposed schemes 1//{‘, x/fé‘, W§ and \/f!f
order of convergence in two, four, six and eight, respectively, the efficiency indices are
denoted by C E[; and computational cost (calculated according to (28)) by C;. Taking into
account the above considerations, one can have

t

C, = 6(2t2 + 6tV + 31 4+ 91t + 12v + 3¢ — 5) and CEIL =2Y¢. (29
t

Cy = g(2r2 + 6tV + 187 + 9t + 6V + 3£ — 5) and CEL, =4Y¢ . (30
t

C; = §(2t2 +6tv+ 217 + 91t + 9v + 6¢ — 8) and CEL =65, @31

t
Cy = g(2;2 +61v 424t + 91t + 120 +9¢ — 11)  and CEL, =8¢, (32
4.1 Comparison between efficiencies

To compare the iterative families ¥;, | <i < 4, the following ratio can be defined as

L lOg CEI,' _ log(pi)Cj
" log CEI;  log(p)Ci

It is clear that if R; ; > 1, the iterative method 1; is more efficient than ;. Taking into
account that the border between two computational efficiencies is given by R; ; = 1, this
boundary is given by the equation of v written as a function of £ and ¢, thatis v = M; ; (£, t).
Here v > 0, £ > 1 and ¢ is a positive integer t > 2.
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Case 1: Iterative method /| verses iterative family 3
The boundary R3 1 = 1 expressed by v written as a function of £ and ¢ is

(4% 4421 + 1810 + 12€ — 16)log2 — (22 + 3¢ + 9t0 + 3¢ — 5)logb

M5, = . (33
31 log6(67 + 12) — log2(121 — 48) (33)

This function has the vertical asymptote for t = —3.70951. Note that the numerator of Eq.
(33) isnegative for ¢ > 25 and the denominator of Eq. (33) is positive for ¢ > 2. Consequently,
it shows that v is always positive for 2 < ¢ < 25 and for all £ > 1.

So, one can have CEIlz > CEI\, Vv>0,¢>1&2<t<?25.

Case 2: Iterative method /| verses iterative family /4

The boundary R4 1 = 1 expressed by v written as a function of £ and ¢ is
212+ 391 — 910 + 90 — 7
My = . 34
4,1 TN (34
This function has the vertical asymptote for # = —2. Note that the numerator of Eq. (34) is

negative for ¢+ > 20 and the denominator of Eq. (34) is positive for > 2. Consequently, it
shows that v is positive for 2 <t < 20 and for all £ > 1.
So, one gets CEIl4 > CEI, Vv>0,¢£>1& 2<t<?20.

Case 3: Iterative family /, verses iterative family /3
The boundary R3 > = 1 expressed by v written as a function of £ and ¢ is

(22 4+ 211 + 910 4 6¢ — 8)logd — (212 + 18t + 9¢€ + 3¢ — 5)logh

M3, =
log6(6f + 6) — logd (6t +9)

(35)

This function has the vertical asymptote for ¢ = 0.7095. Note that the numerator of Eq. (35)
is negative for > 0 and the denominator of Eq. (35) is positive for # > 0. Consequently, it
shows that v is always negative for ¢+ > 2 and for all £ > 1.

So,one can get CEIz < CEl, Vv>0,¢>1& t>2.

Case 4: Iterative family v, verses iterative family /4
The boundary R4 = 1 expressed by v written as a function of £ and ¢ is

Moo — (262 4+ 241 + 910 4+ 9¢ — 11)logd — (212 + 181 + 91£ + 3¢ — 5)log8
42 log8(6f + 6) — logd(67 + 12) ‘

(36)

This function has the vertical asymptote for + = 1. Note that the numerator of Eq. (36) is
negative for ¢+ > 0 and the denominator of Eq. (36) is positive for ¢+ > 1. Consequently, it
shows that v is always negative for t > 2 and for all £ > 1.

So, one can obtain CEIl4 < CEL, Vv>0,£¢>1& t>2.

Case 5: Iterative family /3 verses iterative family /4
The boundary R4 3 = 1 expressed by v written as a function of £ and 7 is

(21 + 241 + 910 + 9¢ — 11)log6 — (2 + 211 + 91 + 6¢ — 8)log8

Myjs = 37)
log8(6t + 9) — logb(6t 4 12)

This function has the vertical asymptote for = 1.61413. Note that the numerator of Eq. (37)
is positive for > 1 and the denominator of Eq. (37) is negative for r > 1. Consequently, it
shows that v is always negative for t > 2 and for all £ > 1.

So, one can have CEIl4 < CEI3, Vv>0,£>1& t>2.
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Fig. 1 CEI; (dashed line), C E I3 (thick line) forz > 2
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Fig. 2 CEI; (dashed line), C El4 (thick line) for r > 2

Theorem 4.1 Forallv > 0 and ¢ > 1, we have

(i)
(it)
(iii)
(v)
(v)

CELz > CEIL, for 2 <t <?25((seeFig. I).
CEly > CEL, for 2 <t <20 (seeFig. 2).
CELz < CELL, for t>2(seeFig. 3).
CEly < CEIL, for t>2((seeFig. 4).
CEly <CEL, for t>?2(seeFig.5).

5 Local convergence

In this section, we proposed the local convergence analysis of the proposed family of methods
which is based on Lipschitz constants and hypotheses on the divided difference of order one.
In this way, we further expand the applicability of the proposed methods, since we used higher
derivatives to show convergence of the proposed family in Sect. 3 although such derivatives
do not appear in method (5). The local convergence analysis of method (5) is based on
some scalar functions and parameters. This analysis is also given for G : D C B — B,
in a more general setting than in the previous sections, since B is a Banach space. Let
Ky>0, K>0,¢0>0,¢c>0, cit >0and p =1, 2, ..., be parameters. Define
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Fig.3 CEI, (dashed line), C E I3 (thick line) for r > 2
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Fig. 5 CEI; (dashed line), C El4 (thick line) for r > 2
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function g; on the interval [0, r,) by

(14 2co)Ks
gi(s) = s
—ros

where
ro =2(1 + co)Ko

and parameter 71 by
1

T (I +2c0)K +2(0 + co)Ko

r

Then, we have that g1(r;) =1, 0 < r; < r, and foreachs € [0, r1),0 < gi1(s) < L.
Let @1 and oy be real or complex parameters. Define b and b;, i = 1, 2, 3, 4, 5 by
by = —0[12 —ajan, by = 2(,¥12 +Ot% — 3y, by = —ajaa, by = 20100 — 0[%, bs =
a% + a% — 3ajap and b = by + b;. Define functions ¢ and £, in the following way:

_ (|163] + |bal)cocic
4(s) = 1b”" <|b1 Iros + [ba Ko(1 + g1(s))s + %) by #£0
and
hg(s) =q(s) — 1.
Suppose that
(1631 + 1bal)cocic < |b], (38)

we get by (38) that 4, (0) = —1 < O and hy(s) — +ooass — % It then follows from the

;
intermediate value theorem that function &, has zeros in the interval (0, r,"). Let us consider
that r, be the smallest zero among such zero. Moreover, define some functions g; and /; on

the interval [0, r,) fori =2, 3, ..., p in the following way:
) (1+|b|+ bale” ) )
gi(s) = clba gi-1(s
’ bI(1 — g (s)(1 —ros) )
i—1
|ba|c* ’
=(1+4+clbr| + 81(s),
( [B](1 — q(s))(1 —ros)
hi(s) = gi(s) — 1.
Then, we have that #;(0) = —1 < O and h;(s) - 400 as s — ry - Denote by r;, i =
2, 3, ..., p the smallest zeros of functions g; on the interval zeros of functions g; on the
interval (0, r,). Notice that h; (ri—1) = ¢ <|b2| + B q(rl;l») > 0, which imply
that
Tp <Tp_1 < -+ <r. (39)
Define
r* =min{r,, ri}. (40)
Then, we have that for each s € [0, r™*)
0<gi(s) <landO<qg(t)<1,i=1,2, ..., p.

LetU(y, p), U(y, p) stand, respectively, for the open and closed balls in X with the center
y € X and of radius p > 0. Next, we present the local convergence analysis of method (5)
using the preceding notation.
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Theorem 2 Let G : D C B — B be a continuous operator. Suppose that there exists
divided difference of order one for operator G, [-, - G]: D* — L(B), X* € D, for which
G’(X”‘)_1 exists, ay, ap € R (or C), Ko > 0, K > 0,c9 >0, ¢ >0, ¢; > 0and
p=1,2, 3, ...such that (38) holds and b # 0 for each X, Y, Z € D and G(X*) =0,
GXH ' eLX), |GX) | <ci, b#£0

|G"x* ™M (IX, ¥ G1—G'(X)| < Ko(IX — X*| + Y — X*|]) (41)
|G xH™ (X, ¥; G1—1[Z, X* G)| < KUX—Z|+ Y —X*) (42
IIX, Y; GIIl < co 43)
|G x"7'X, ¥: Gl| <c (44)
and .
U(X*, (14 co)Kp) C D. 45)

Then, the sequence generated by method (5) for X° € U(X*, r*) — {X*} is well defined,
remains in U(X*, r*) and converges to X*. Moreover, the following estimates hold:

Iy = X1l < (X" = X*DIX = X*|| < X5 = X*|| < r, (46)

foreachi =1, 2, ..., p, where the “g" functions are defined previously. Furthermore, for
T e [r*, K%) the limit point X* is the only solution of Eq. G(X) = 0in U(X*, T) N D.

Proof We shall show estimate (46) holds with the help of mathematical induction. By
hypotheses X© € U(X*, r*) — {X*}, (39), (40), and (41), we get that
|¢'x*~ (X" + G, X —G;G1-G'(XM)]

< Ko (IX° = X* + GXO)| + 1 X° = X* = G(XO)]))

< Ko (IX° = X*[ + IG(X%) = GXH + 1X° = X*[ + 1G(X®) — G(XM)]))

= 2Ko (IX° = X*|| + coll X° — X*]))

=2Ko(1 +co) | X° — X*||

=ro| X? — X*| < ror* < 1. (47)
Notice that | X0 + G — X*|| < | XO — X*|| + |G(X?) — G(X*)| < (1 +co) || X° — X*|| <
(14co)r*,s0 X0+ G € UX*, (1 +cor*)) C D. Similarly, we get that X'—Gx% e D.

Then, it follows from (47) and the Banach Lemma on invertible operators (Argyros 2008;
Argyros and Hilout 2013) that w? is well defined by the first sub step of method (5) and

[1X°+ Gx%, X = Gx%: G176 (x| = — : (48)

ol X0 — X*|°
We can write by (40) and the first sub step of method (5) that
vy - x
=x"—x*—x°+6x%, x0-cx%:; 6176 (x%)
=[x+ G6x%, x0-6x%; 617! ([XO +6x%, x0-6x%; 61x° - x*) - G(XO))
= (1IX°+ 6%, X0 = 6(x%: 617'6" (X)) (6" X)X + G(x0),

X0 = 6(x%; 61— X, X% G1)(x° - X*). (49)
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Using (39), (40) (fori = 1), (42) and (48), we obtain in turn that
Iy — X*) < [ (X° + G(x°), X°—G(X%; G17'G(x™)|
|6’ ([1x° + 6(x%), X0 = G(x%; 61— 1x°, X* G| I1x° — x*|
(1 +2c0)K
— 1 —=2Ko(1 +cp)
<g1(1X° = X*IPIX° = X*| < [1X° — X*|| <r*,

X0 — Xx*|

(50)
which shows (46) fork =0, i = 1 and 1//10 € U(X*, r*). Let us define
Ag = by X"+ G(X"), X° = G(X"): G17' [y}, X% Gl+ bl (51)
and
By =b[X"+G(x", X*-GX": Gl+balyy. X% G
+b3[X° + G(X°), X° - G(X%: GI7'yY. X% G)
X°+G6(x%, x° - Gx°%; G
+balX° + G(X), X0 —G(x"; 617 'y, X0 GP, (52)

where the “b” parameters are defined previously. Next, we shall show that B\ e Lx).
Using (39), (40), (41), (44), (50) and (52), we get in turn that since b # 0

= b1~ [ 16 ) ™! (1X0 + G, X0 = Gx®): 61— G'(xH) 1]

| (66" x) ™" 1Bo = b1 + b2 + 536 ()]

+bal | &' (1w, X% 61-6'xn)|
b3l |6 )7 X0+ 6(x%), X0 - 6x%: 6176l x )
x |6’ x% Gl [ ix°+ 6x, x° - 6x%); 6l

+bal |

'™ | iX0 + 6x%), X0 - 6x0%: 6176 (x)

d

¢’y X% 61| i), X% 6

- (Ib3] + IbaDeoere
< Ibl™! [|b1 Iroll X° = X1 + b2 Ko (I = X* I+ 10 = x*|) + 72 ——0=0

= rol X0 = X¥|
< bl [1611r0l1 X0 = X1+ b2l Ko (1+ 1 (1X° = X*1D) 1X° = X*|
(Ib3] + |b4|)coc1c]
= rol X0 = X¥|
<q(IX% = X*I) < q0*) < 1. (53)
Then, it follows from (53) that
1
< .
161 (1 = q(IX0 — X*|))

H By 'G'(X*) (54)

By (44), (48) and (51), we get that

140l < Il |IX° + GXO), X0 = G(x%: GI7'G'(XH| 16/ X 1w, X° Gl + bl
55)
Ibale (
- b
=T —xe T
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Then, using (39), (40), (50), (54), (55) and the definition of the “g” functions, we obtain
from the second sub step of method (5) that
9 — X* < 1w — X*I + Aol By ' G/ (XHING (X)) ' G|
< 1Y) — X*I + A0l By ' G'(XHING (XH ™ (G — GxH) |l
< I¥) — X*I + I Aollll By 'G' (X ING (X7 w?, X0 Glly — X

by|c?
< <1+c|b2|+ b4l )

b1(1 — q(1X° — X*ID) (1 — ro(IIX° — X*|))
g1(IX° — x*IDIx° — x|
=2(IX" = X*DIX" — X*|| < 1X° = X*|| < r*¥,

(56)
which shows (46) fori =2, k = 0 and 1//3 € U(X*, r*). Similarly, we show
|balc?
Il — X* < [ 1+clbal +
’ 1bI(1—q(IX° = X*D)(1 = ro(IX° — X*[))
g(IX = X*)1x° — Xx*|
= g3(IX = X* DX — X*|| < X0 — X*|| < r*

until . . 0 o
X' = X* | = ll, — X*|| < gn(IIX° = X*|DIIX" — X¥| 57)

< ul X0 = X*| < 1X° = X*|| < r*,
where u© = g,(r*) € (0, 1). By simply replacing 1//?, wg, ...,1//2, XY by Y
/2SN 1//1’,”, X™ in the preceding estimates we complete the induction for (46). Then,
in view of the estimates | X™t! — X*|| < u||X™ — X*||(see (57)), we deduce that {X™}
converges to X* and X € U(X*, r*) foreachm = 0, 1, 2, ... Finally, to show the

uniqueness part, let H = [X*, Y*; G] where G(Y*) = 0 and Y* € U(X*, T). Then, using
(41), we get that

|G/(X)THIXT, Y Gl = G'(X)| < Ko (IX = Y7) < L. (58)

Hence, H~! € L(B). Then, from the identity 0 = G(X*) — G(Y*) = H(X* — Y*), we
conclude that X* = Y*. O

Remark 5.2 (a) If X = R' then Theorem 2 specializes in the case studied in the earlier
sections.

(b) The convergence of method (5) in the previous sections was shown using hypothesis
limit the applicability of method (5). In Argyros et al. (2015), we have presented some
examples where the third or higher derivatives do not exist. Therefore, in Example 1,
we present another such a case for such equations where method (5) is not applicable.
However, in Theorem 2, we only use hypothesis on the divided difference of order one and
on G’ (X*), which actually appear in method (5). We expand this way the applicability of
method (5). Moreover, we present computable radius of convergence and error radius of
convergence and error bounds on the distances involved (see (46)) using only Lipschitz
constants.
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6 Numerical results

In this section, some numerical problems are considered to illustrate the convergence behav-
ior and computational efficiency of the proposed methods. The computational work and
CPU time of all the numerical experiments have been done in the programming package
Mathematica 7.1 Wolfram (2003) with multiple-precision arithmetic with 2048 digits. The
CPU time has been calculated by TimeUsed[] command in Mathematica 7.1. For compari-
son of the computational efficiencies of the proposed schemes (5) Y2 1, ¥3,1 which are special
cases of Grau-Sanchez et al. (2013) and 4 1 fora; = R—{0} & o = 0 are considered. In the
same manner, the proposed schemes (5) Y22, Y32, Y42 fora; =+ 1020 & vy = + 1071000
and Y2 3, V3.3, Y43 fora; = = V3 & ay = £+ 1072000 gre denoted and compared with exist-
ing schemes of fourth order, namely My 1, M4 > for Sharma and Arora (2013) and seventh
order §7 (Sharma and Arora 2014). To verify the theoretical order of convergence, authors
have used the computational order of convergence (COC) (Ezquerro and Hernandez 2009).

ln ”Xk+l—X*H

X5 —X*|
pzw, foreachk=1,2,... (59)

! X=X

or the approximate computational order of convergence (ACOC) (Ezquerro and Herndndez
2009)
n ”Xk+1 _Xk I
* _ I XE—XET)
g XEoxEy
In P

foreachk =2, 3,... (60)

Notice that the computational of p or p* do not require higher order derivatives to compute
the error bounds. According to the definition of the computational cost (28), an estimation
of the factors v is claimed. To do this, one can express the cost of the evaluation of the
elementary functions in terms of products which depends on the machine, the software and
the arithmetics used (Fousse and Hanrot 2007). In the following table, an estimation of the
cost of the elementary functions in number of equivalent products is shown, where running
time of one product is measured in milliseconds. For the detail of hardware and software used
in the numerical work, the computational cost of quotient with respect to product is £ = 3 is
given as follows:

Estimation of computational cost of elementary functions computed with Mathematica 7.1 in a processor
Intel(R) Core (TM) i5-2430M CPU @ 2.40 GHz (32-bit machine) Microsoft Windows 7 Ultimate 2009,
where x = /3 —land y = /5

Digits X ky x/y Jx o exn(x) In(x) sin(x) cos(x) arccos(x) arctan(x)

2048 0.030lms 3 1.5 77 78 78 77 119 118

Example 1 As a motivational example, define function Fon X =Y =R, D = [—l ;]

T’
by

Fx) =
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Table 1 Different radii of convergence

Schemes Different values of parameters which satisfy Theorem 2 CPU

time

r n r* X0 P

Yy for o) = £10%0 &y =1000 0.009951 1.8 x 10740 1.8 x 107%0  0.318309 4.0000 0.108
Yo for @ = £+/3 &ay ==£107290 0009951 0.009793 0.009793 03181  4.0000 0.088
Y3 for o) = £1020 & ay =—1000 0.009951 1.2x 1077 12 x 1077 0318309 6.000 1.033
Y3 for ap = £+/3 &ap =£107200 0,009951 0.009633 0.009633 031827  6.000 1.088
Yy for o) = £1020 &y =1000 0.009951 7.2 x 10717 7.2 x 10~'17 0318309 8.000 1.003
Yy for o = £+/3 &ay = +£1072000 0.009951 0.009471 0.009471 0.31826  8.000 1.039

Then, we have that

1
F'(x) = 2x% — x3 cos ( ) + 3x2 log(ﬂ2x2) + 5x*sin <7> ,
X

1
X
1 1
F"(x) = —8x%cos (7) +2x(5 4 3log(%x?)) + x(20x> — 1) sin <7>
X X
and

F"(x) = ! [(1 — 36x2) cos <1> +x (22 + 6log(m2x?) + (60x% — 9) sin <l>>}
T x X £ X '

One can easily find that the function F"”(x) is unbounded on ID at the point x = 0. Therefore,
the results before Sect. 5 cannot apply to show the convergence of method (5). In particu-
lar, hypotheses on the third derivative of function F or even higher are assumed to prove
convergence of method (5) in Sect. 3. However, according to this section, we just need the
hypotheses on first order. Moreover, we have

K koo B0+ 167+ (T + 121og2)7? 73
= = , Ccl = 5
0 27 + 1 T oot
8 8
co

T 2@t + D0+ + (1 +3log2)72)’ " T [0+ 7 + (1 + 3log2)m2|?

and our required zero is X* = % We obtain different radii of convergence, COC (p) and n
in Table 1.

Other such examples can be found in Argyros et al. (2015).

Example 2 Considering mixed Hammerstein integral equation (see [Ortega and Rheinboldt
(1970), pp. 19-20]).
x(s) =1+ é fol G(s, )x(r)3dr where x € C[0, 1]; s, ¢ € [0, 1] and the kernel G is

(1 =9ttt <s,

Gls, 1) = {s(l—r),sgt.

To transform the above equation into a finite-dimensional problem using Gauss Legendre

quadrature formula given as fol f()dr ~ Z?’:1 w; f(t;), where the abscissas ¢; and the
weights w; are determined for + = 8 by Gauss—Legendre quadrature formula. Denoting the
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approximations of x(#;) by x; (i = 1,2, ..., 8), one gets the system of nonlinear equations
5x; —S—Zizlaijx; =0, wherei =1,2,...,8

a,-j=:

witi(1—1),j <1,
witi(1 —t),i < j,

where the abscissas ¢; and the weights w; are known and given in the following table for

t=38.

Abscissas and weights of Gauss—Legendre quadrature formula for r = 8

J

1

wj

00O W kW=

0.01985507175123188415821957 . ..
0.10166676129318663020422303 . . .
0.23723379504183550709113047 . ..
0.40828267875217509753026193 . ..
0.59171732124782490246973807 . . .
0.76276620495816449290886952 . ..
0.89833323870681336979577696 . . .
0.98014492824876811584178043 . ..

0.05061426814518812957626567 . ..
0.11119051722668723527217800 . . .
0.15685332293894364366898110. ..
0.18134189168918099148257522 . ..
0.18134189168918099148257522 . ..
0.15685332293894364366898110. ..
0.11119051722668723527217800. ..
0.05061426814518812957626567 . ..

In addition, (¢, v) = (8, 11) are the values used in Egs. (29)—(32). The convergence of the

methods towards the root

X* = (1.00209624503115679. .., 1.00990031618748877 ..., 1.01972696099317687
1.02643574303062052 . . ., 1.02643574303062052.. . ., 1.01972696099317687 . . .,

..y

1.00990031618748877 ..., 1.00209624503115679 . ..)7 is tested in Table 2.

Example 3 (see Sharma and Arora 2013)

(1= D¥4+e™2 —x3 4341,

Gx1,x2) = , 5 )
4sin(xy — 1) —log(xi —x1 + 1) — x5.

Table 2 Performance of various iterative schemes at initial value (0.85, 0.85, ..., O.SS)T

Scheme XD —x*|  1x@ —x*  1x® —x*| p c CEI CPU time
My 6.15(=5) 1.07 (= 19) 1.03 (= 78) 4.000 3296  1.000420  0.333
My 2 6.23(=5) 1.15(=19) 1.44 (—78) 4.000 3376  1.000410  0.236
Y21 2.46 (—5) 1.62 (—21) 3.28 (—86) 4.000 2896  1.000478  0.344
%) 2.46(—5) 1.62 (—21) 3.28 (— 86) 4.000 2896  1.000478  0.326
V2.3 2.46(—5) 1.62 (—21) 3.28 (— 86) 4.000 2896  1.000478  0.293
V3,1 3.74(=17) 1.64 (—42) 1.28 (—254) 6.000 3064  1.000584  0.601
Y32 3.74(=17) 1.64 (—42) 1.28 (—254) 6.000 3064  1.000584  0.636
V3,3 3.74(=17) 1.64 (—42) 1.28 (—254) 6.000 3064  1.000584  0.615
S7 5.27(—11) 1.48(—179) 2.14(—559) 7.000 8328  1.000233  2.042
Y41 5.69(—9) 8.85(—71) 3.50 (— 565) 8.000 3232 1.000643  0.592
(7%} 5.69 (—9) 8.85(—171) 3.50 (—565) 8.000 3232 1.000643  0.628
V43 5.69(—9) 8.85(—171) 3.50 (—565) 8.000 3232 1.000643  0.617
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Table 3 Performance of various iterative schemes at initial guess (1.2, —1.)7

Scheme  IXD —x*|  1x@ —x*  x®-—x*|  p c CEI CPU time
My 1 1.09 (— 18) 1.71 (= 173) 1.04 (—292) 4.000 1500 1.00092 0.282
Myp 1.34 (—17) 1.19 (- 69) 4.49 (—278) 4.001 1508 1.00091 0.283
Y21 4.18 (—21) 2.81(—82) 5.79 (—327) 4.000 1508 1.00091 0.319
Y22 4.18 (—21) 2.81(—82) 5.79 (—327) 4.000 1508 1.00091 0.296
Y23 4.18 (—21) 2.81(—82) 5.79 (—327) 4.000 1508 1.00091 0.298
V3.1 5.04(—11) 2.56 (— 62) 433(—=370)  6.000 1756  1.00102 1398
¥32 5.04(—11) 2.56 (—62) 4.33 (—370) 6.000 1756 1.00102 1.434
Y33 5.04(—11) 2.56 (—62) 4.33 (—370) 6.000 1756 1.00102 1.442

S7 2.27(—6) 3.23(—41) 5.41 (—285) 6.999 3470 1.00056 1.486
Y41 3.70 (— 18) 9.94 (— 140) 2.69 (—1112) 8.000 2004 1.00103 1.388
/7% 3.70 (— 18) 9.94 (— 140) 2.69 (—1112) 8.000 2004 1.00103 1.445
V4,3 3.70 (— 18) 9.94 (— 140) 2.69 (—1112) 8.000 2004 1.00103 1.428

To calculate computational cost and efficiency indices the values (t,v) = (2,120)

are used in Egs. (29)—(32). The convergence of the methods towards the root X* =
(1.271384307950131633 . . ., 0.88081907310266102 . . .)T is tested in Table 3.

Example 4 (see Grau et al. 2007) Consider the following boundary value problem:

VY +y3=0, y(0) =0, y(1) = 1.

Further, assume the partition of the interval [0, 1], which is defined as follows:

Let us define yg = y(xg) =0, y; = y(x1), ...

xo=0<x1<xp<x3<---

The following discretization for the second derivative is used:

Yi—1 = 2Yk + Yk+1

1
< xp, Wwhere x; =xo9+ih, h=—.
n

s Y1 =Y&xn—1), yn=yx) = 1.

0.0828453
,0.2070970
,0.3312043
,0.4547747
,0.5769980
,0.6965086
,0.8112857

.,0.9186208

V= P , k=1,2, ..., n—1,
which reduces to a system of nonlinear equations of order n — 1
Vo1 =20k F k1 + Ry =0, k=1,2, ..., n—1.
The solution of this system X* = (0.0207113...,0.0414227...,0.0621341 . . .,
...,0.1035564 . ..,0.1242670...,0.1449769 . . ., 0.1656856 . . .,0.1863926 . ..
..., 0.2277981...0.2484946 . ..,0.2691852...,0.2898683 ...,0.3105421 . ..
...,0.3518526...,0.3724841...,0.3930958 . ..,0.4136841 ...,0.4342452 . ..
...,0.4752682...,0.4957203...,0.5161257...,0.5364781 ...,0.5567712.. ..
...,0.5971509...,0.6172219...,0.6372025 . ..,0.6570837 ...,0.6768557 . ..
...,0.7160316...,0.7354134 .. .,0.7546422 . .. ,0.7737059 . ..,0.7925915 . ..
...,0.8297745...,0.8480437 ...,0.8660785 . ..,0.8838634 ...,0.9013829.. .
.,0.9355607...,0.9521858. .., 0.9684789...,0.9844228 .. .)T by taking n = 51 and

the values (¢, v) = (50, 4) used in Eqgs. (29)—(32) are tested in Table 4.
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Table 4 Results of various iterative schemes at initial value (0.6, 0.6, ..., O.6)T

Scheme XD —x*|  1X@ —x*  1x® —x* » c CEI CPU time
My 4.67 (—4) 4.68 (—18) 6.16 (—74) 4.000 944 1.00146  5.217
My 2 4.99 (—4) 7.35(—18) 4.59(—=73) 4.000 992 1.00139  9.672
Y21 4.89 (—4) 5.33(—18) 1.04 (—73) 4.000 980 1.00141 9.421
Y22 4.89 (—4) 5.33(—18) 1.04 (—73) 4.000 980 1.00141 9.544
Y23 4.89 (—4) 5.33(—18) 1.04 (—73) 4.000 980 1.00141 7.255
V3,1 4.27(—6) 3.03(—39) 5.31(—238) 5.975 1064 1.00168 11.486
Y32 4.27(—06) 3.03(—39) 5.31(—238) 5.975 1064 1.00168 13.934
Y33 4.27(—6) 3.03(—39) 5.31(—238) 5.975 1064 1.00168 14.113
S7 1.09(—17) 3.22(=57) 1.94 (—297) 7.000 2375 1.00000  39.167
A 3.73(—38) 9.06 (— 69) 1.68 (— 553) 7.983 1058 1.00196 11.836
vy 3.73(—28) 9.06 (— 69) 1.68 (— 553) 7.983 1058 1.00196 15.429
N 3.73(—38) 9.06 (— 69) 1.68 (—553) 7.983 1058 1.00196 13.394
Table 5 Performance of various iterative schemes at initial guess (0.083, 0.083, ..., 0.083)T

Scheme XM —Xx*|  1X@ —x*  1x@ —x* c CEI CPU time
My 3.39(—16) 9.53(—67) 5.95(—269) 4.000 15336  1.00000  2.589
My» 3.39(—16) 9.53(—67) 5.95(—269) 4.000 15380  1.00000  2.852
Y21 5.81(—16) 9.19 (—67) 5.74 (—265) 3999 11132 1.00001  2.053
Y22 5.81(—16) 9.19 (—67) 5.74 (—265) 3.999 11132 1.00001 2.464
Y23 5.81(—16) 9.19 (- 67) 5.74 (—265) 3999 11132 1.00001  2.217
V31 2.09 (—22) 1.11(—135)  2.42(—815)  6.000 11414  1.00001  7.354
¥3,2 2.09 (—22) 1.11 (- 135) 2.42 (—815) 6.000 11414  1.00001  7.476
V3.3 2.09 (—22) 1.11 (- 135) 2.42 (—815) 6.000 11414  1.00001  7.191
S7 4.13(—34) 5.39 (—248) 3.46(—1745) 7.000 47602  1.00000  37.715
Va1 7.53(-29) 2.34 (—231) 1.35(—1851)  8.000 11696  1.00001 13.906
7% 7.53(—29) 2.34 (—231) 1.35(—1851)  8.000 11696  1.00001 16.121
Va3 7.53(—29) 2.34 (—231) 1.35(—1851)  8.000 11696  1.00001 15.264

Example 5 (see Grau-Sanchez et al. 2013)

20

cosil(x,')— Z (xj—x)=0, i=1,2,3...20,

j=Li#j

where (¢, v) = (20, 119) are the values used in Eqs. (29)—(32). Solution of this problem is
X* = (0.08266851975958913 ..., 0.08266851975958913.. .., ...,0.08266851975958913

...)T and comparisons of the method are displayed in Table 5.

Example 6 Considering the gravity flow discharge chute problem (see [Burden and Faires
(2014), pp. 646]).
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sin xj41 sin Xx;
— (= pwi1) —

G; = Vi+1 i
AyEl-zg]tan xi— X =0, i

20,

(I—=pwj)=0,1=<i=<19,
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Table 6 Results of various iterative schemes at initial value (0.75, 0.75, ..., 0.75)T

Scheme XD —Xx*|  1x@ —x*|  1x® —x* c CEI CPU time
My 2.36(—4) 2.95(—17) 6.13 (—69) 4.001 11232 1.00001 7.864
My, 232(—4) 2.70 (- 16) 1.24 (— 63) 4.000 11276  1.00001  7.924
V2.1 1.33(=5) 8.85(—22) 1.69 (— 86) 3.999 82592 1.00001  7.875
Y22 1.33(=5) 8.85(—22) 1.69 (— 86) 3.999 82592  1.00001  7.878
Y23 1.33(=5) 8.85(—22) 1.69 (— 86) 3.999 82592  1.00001  7.823
V3,1 9.14 (- 12) 2.76 (—70) 1.39 (—421) 5.997 84728 1.00002  25.334
Y32 9.14 (- 12) 2.76 (—70) 1.39 (—421) 5.997 84728 1.00002  24.632
3.3 9.14 (- 12) 2.76 (—70) 1.39 (—421) 5.997 84728  1.00002  19.553
S7 4.42 (—28) 5.85(—197) 3.43 (—804) 6.989 34332 1.00000  47.809
Va1 1.77 (— 20) 6.52 (— 163) 2.71(—1303) 8.041 86804  1.00002  24.259
(7% 1.77 (—20) 6.52 (—163) 2.71(—1303) 8.041 86804  1.00002  30.806
V43 1.77 (- 20) 6.52 (—163) 2.71(—1303) 8.041 86804  1.00002  28.747

where vi2 = v%—i—ZgiAy—Z,uAyleolﬁ, 1<i <20 and w; = —Ayv; Ejzolv;wls ot
1 <i<?20.

Here, vg = 0 initial velocity of the granular material, X = 2 the x-coordinate the end of
the chute, 1 = O the friction force, g = 32.17 f /s gravitational force and Ay = 0.2 has
been considered. The solution of this system X* = (0.14062...,0.19954...,0.24522 ...,
0.28413...,0.31878...,0.35045 ..., 0.37990...,0.40763...,0.43398...,0.45920.. .,
0.48348...,0.50697 ..., 0.52980...,0.55205...,0.57382...,0.59516...,0.61615...,
0.63683...,0.65726...,0.67746...)T and the values (, v) = (20, 84.8) used in Egs. (29)—
(32) are tested in Table 6.

In Tables 2, 3,4, 5, and 6, || X k) _ x* || shows the errors of approximations to the corre-
sponding solutions of Examples 3-6, (p) the computational order of convergence and C; the
computational costs given by Eqs. (29)—(32) in terms of products and the computational effi-
ciencies CEI , where b( a) denoted by b x 107, The numerical results in Tables 2,3,4,5,
and 6 demonstrate that proposed methods work more efficiently with less error as compared
to existing methods, namely M4 1, M4 and S7. In addition, the higher order methods not
only works on simple experiment, it also works on application-oriented problems as shown
in Examples 4 and 6.

7 Concluding remarks

In this work, we have proposed several families of Ostrowski’s method for solving non-
linear systems. The new families are completely derivative free, and therefore, suited to
those problems in which derivatives require lengthy computations. A development of an
inverse first-order divided difference operator for multivariable function is applied to prove
the convergence order of proposed methods. Moreover, the fourth- and sixth-order meth-
ods proposed by Grau-Sdnchez et al. (2013) have been recovered as the special cases of
the presented families. Further, the computational efficiency index is used to compare the
efficiency of these different proposed families. Computational results have conformed robust
and efficient character of the proposed families. We have also presented local convergence
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analysis based on divided differences of order one and Lipschitz constants. This way we
expand the applicability of method (5), since in Sect. 3, we have to use hypotheses on high
order derivatives to obtain convergence which may not exist (Argyros et al. 2015). Some
numerical experimentations have also being carried out for a number of problems and results
are found to be at a par with those presented here. Thus, the new methods are very suitable
and applicable to solve nonlinear systems.
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