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Abstract Awide general class of Ostrowski’s families without memory proposed by Behl et
al. (Int J Comput Math 90(2):408–422, 2013) is being extended to solve systems of nonlinear
equations. This extension usesmultidimensional divided differences of first order.Manymore
new derivative free iterative families with higher order local convergence are presented. In
addition, the proposed iterative family for α1 = R−{0} and α2 = 0 are special cases of Grau
et al. (J Comput Appl Math 237:363–372, 2013) for iterative schemes of fourth and sixth
orders. The computational efficiency is comparedwith some knownmethods. It is proved that
the proposed methods are equally competent with their existing counter parts. Moreover, we
present the local convergence analysis of the proposed family of methods based on Lipschitz
constants and hypotheses on the divided difference of order one in the more general settings
of a Banach space. We expand this way the applicability of these methods, since we used
higher derivatives to show convergence of the method in Sect. 3 although such derivatives
do not appear in these methods. Numerical experiments are performed which support the
theoretical results.
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1 Introduction

One of the most basic and earliest problems of numerical analysis concerns with finding
efficiently and accurately the approximate solution of a nonlinear system

G(X) = 0,

where G(X) = (g̃1(X), g̃2(X), . . . , g̃t (X))T , X = (x1, x2, . . . , xt )T and G :
R
t → R

t is a sufficiently differentiable vector function. Analytical methods for solving such
problems are non-existent, and therefore, it is only possible to obtain approximate solutions,
by relying on numerical techniques based on iteration procedures. The most simple and
common iterative method for this purpose is the Newton’s method (Kelley 2003; Traub
1964), which converges quadratically and is defined by

Xk+1 = Xk − {

G ′(Xk)
}−1

G(Xk), k = 0, 1, 2, . . . ,

where
{

G ′(Xk)
}−1

is the inverse of first Fréchet derivative G ′(Xk) of the function of G(X).
The practice of Numerical Functional Analysis for approximating solutions iteratively is
essentially connected to Newton-like methods (Kelley 2003; Traub 1964; Amat et al. 2005,
2008, 2010; Behl et al. 2013; Grau-Sánchez et al. 2014; Ostrowski 1960; Ortega and Rhein-
boldt 1970; Petković 2011; Sharma and Arora 2014). However, the main practical difficulty
associated with this method is to calculate first-order derivative at each step of computation,
sometimes which is very difficult and time consuming.

In 2013, Behl et al. (2013) have proposed new optimal families of Ostrowski-like methods
for solving scalar nonlinear equations having cubic scaling factor of functions in the correction
factor and is given by

ym = xm − f (xm)

f ′(xm)
,

xm+1 = xm − f (xm)

f ′(xm)

[

(α2
1 + α1α2 − α2

2) f (xm) f (ym) − α1(α1 − α2){ f (xm)}2
(α1 f (xm) − α2 f (ym))((2α1 − α2) f (ym) − (α1 − α2) f (xm))

]

,

(1)
where α1, α2 ∈ R but choose α1 and α2 such that neither α1 = 0 nor α1 = α2.

In 1964, Traub (1964) introduced the quadratically convergent scheme defined as

Xk+1 = Xk − [Y k, Xk;G]−1G(Xk), (2)

where Y k = Xk + βG(Xk), β ∈ R − {0}. [Y k, Xk;G] is defined as first-order divided
difference of G in t dimensional space as an t × t matrix with elements

[Y k, Xk;G]i j

= g̃i (yk1 , y
k
2 , . . . , y

k
j−1, y

k
j , x

k
j+1, . . . , x

k
t ) − g̃i (yk1 , y

k
2 , . . . , y

k
j−1, x

k
j , x

k
j+1, . . . , x

k
t )

ykj − xkj
,

(3)

where Xk = (xk1 , . . . , x
k
j−1, x

k
j , x

k
j+1, . . . , x

k
t ), Y

k = (yk1 , . . . , y
k
j−1, y

k
j , y

k
j+1, . . . , y

k
t ) and

1 ≤ i, j ≤ t (see Grau-Sánchez et al. 2011; Potrá and Pták 1984). For β = 1, the Traub’s
Scheme reduces to Steffensen’s method (Steffensen 1933). Inspired from this work, recently
many researchers have approximated the derivatives using first-order divided difference oper-
ators preserving the local convergence order of iterative methods (Argyros et al. 2015;
Ezquerro et al. 2015; Ezquerro and Hernández 2009; Grau-Sánchez and Noguera 2011;
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Grau-Sánchez et al. 2013; Sharma and Arora 2013, 2014). In this study, we will construct
higher order generalization for several variables of given families of Ostrowski’s methods (1)
using first-order divided difference operator. For the computational purpose, we used another
tool to compute Xk+1 which is defined as

Xk+1 = Xk − [Xk + G, Xk − G; G]−1G(Xk), k = 0, 1, 2, . . . (4)

where [Xk + G, Xk − G;G] = (

G(Xk + Hke1) − G(Xk − Hke1), . . . ,G(Xk + Hket ) −
G(Xk − Hket )

){Hk}−1 with Hk = diag(g̃1(Xk), g̃2(Xk), . . . , g̃t (Xk)).

The meaning of X ± G is X ± G(X). We shall use either notation in this paper.

2 Construction of iterative family

We propose the following modification over iterative scheme (1) as follows:

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − η G(ψk
1 ),

ψk
3 = ψk

2 − η G(ψk
2 ),

ψk
4 = ψk

3 − η G(ψk
3 ),

...

ψk
i−1 = ψk

i−2 − η G(ψk
i−2),

ψk
i = ψk

i−1 − η G(ψk
i−1).

This relation is true for i = 2, 3, 4 . . . n.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (5)

Here,

η = τ−1
(

− (α2
2 − 2α1α2)[ψk

1 , Xk;G] + (α2
1 + α2

2 − 3α1α2)[Xk + G, Xk − G;G]
)

,

τ = (2α1α2 − α2
2)[ψk

1 , Xk;G][ψk
1 , Xk;G] − α1α2[ψk

1 , Xk;G][Xk + G, Xk − G;G]
+ (2α2

1 + α2
2 − 3α1α2)[Xk + G, Xk − G;G][ψk

1 , Xk;G]
− (α2

1 − α1α2)[Xk + G, Xk − G;G][Xk + G, Xk − G;G].

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

. (6)

Here α1 and α2 are the real parameters. From Eq. (5), the various multi-step methods can be
proposed by taking different values of α1 and α2 as follows:

(i) For α1 = R − {0} and α2 = 0, first two steps (i = 2) of family (5) reduces as follows:

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − {

2[ψk
1 , Xk;G] − [Xk + G, Xk − G;G]}−1

G(ψk
1 ).

}

.

This is a fourth-order iterative scheme derived by Grau-Sánchez et al. (2013).
(ii) For α1 = R − {0} and α2 = 0, first three steps (i = 3) of family (5) reads as follows:

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − {

2[ψk
1 , Xk;G] − [Xk + G, Xk − G;G]}−1

G(ψk
1 ),

ψk
3 = ψk

2 − {

2[ψk
1 , Xk;G] − [Xk + G, Xk − G;G]}−1

G(ψk
2 ).

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

This is a sixth-order iterative scheme derived by Grau-Sánchez et al. (2013).
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(iii) For α1 = R − {0} and α2 = 0, first four steps (i = 4) of family (5) reduces as follows:

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − {

2[ψk
1 , Xk;G] − [Xk + G, Xk − G;G]}−1

G(ψk
1 ),

ψk
3 = ψk

2 − {

2[ψk
1 , Xk;G] − [Xk + G, Xk − G;G]}−1

G(ψk
2 ),

ψk
4 = ψk

3 − {

2[ψk
1 , Xk;G] − [Xk + G, Xk − G;G]}−1

G(ψk
3 ).

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

.

This is a new eighth-order iterative scheme.

3 Convergence analysis

We consider the first-order divided difference operator of G on Rt as a mapping [·, · : G] :
D × D ⊂ R

t × R
t → L(Rt ), which is defined by Grau-Sánchez and Noguera (2011),

Grau-Sánchez et al. (2013)

[

Xk + h, Xk;G] =
∫

0

1

G ′(Xk + uh)du, ∀(Xk, h) ∈ R
t × R

t . (7)

Developing G ′(Xk + uh) in Taylor’s series at Xk and after integrating, one can obtain
∫

0

1

G ′(Xk + uh)du = G ′(Xk) + 1

2
G

′′
(Xk)h + 1

6
G

′′′
(Xk)h2 + O(h3). (8)

Taking into account ek = Xk − X∗, we developG(Xk) and its derivatives in a neighborhood
of X∗, where X∗ ∈ R

t is the solution of system G(X) = 0. Assuming that � = {

G ′(X∗)
}−1

exists, one can have

G(Xk) = G ′(X∗)
[

ek + A2
(

ek
)2 + A3

(

ek
)3 + A4

(

ek
)4 + A5

(

ek
)5 + O

(

(ek)6
) ]

, (9)

where Ai = 1
i !�G

(i)(X∗) ∈ Li (R
t ,Rt ), i = 2, 3, . . .

From Eq. (9), the derivative of G(Xk) can be written as

G′(Xk ) = G′(X∗)
[

I + 2A2
(

ek
) + 3A3

(

ek
)2 + 4A4

(

ek
)3 + 5A5

(

ek
)4 + O

(

(ek )5
) ]

, (10)

G′′(Xk ) = G′(X∗)
[

2A2 + 6A3
(

ek
) + 12A4

(

ek
)2 + 20A5

(

ek
)3 + O

(

(ek )4
) ]

, (11)

and G′′′(Xk ) = G′(X∗)
[

6A3 + 24A4
(

ek
) + O

(

(ek )2
) ]

, (12)

where I is an identity matrix of order t.
Setting ψk

1 = Xk + h & εk1 = ψk
1 − X∗, one can have h = ψk

1 − Xk = εk1 − ek .
By substituting Eqs. (10)–(12) into Eq. (8), one gets

[ψk
1 , Xk;G] = G ′(X∗)

[

I + A2
(

εk1 + ek
)+ A3

((

εk1
)2 + (

ek
)2 + εk1e

k)+ O
(

(ek)3
) ]

. (13)

In our analysis, we have considered the center difference operator

[Xk+G, Xk−G;G] = G ′(X∗)
[

I+2A2
(

ek
)+A3

(

3+{

G ′(r)
}2)

(ek)2+O
(

(ek)3
) ]

, (14)

which we get after replacing εk1 by ek + G(X) and ek by ek − G(X) in Eq. (13). The
convergence of iterative schemes (5) can be proved through the following theorem:
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Theorem 1 Let X∗ ∈ R
t be solution of the system G(X) = 0 and G : D ⊂ R

t → R
t be

sufficiently differentiable in an open neighborhood D of X∗ at which G ′(X∗) is nonsingular.
Then for an initial approximation sufficiently close to X∗, iterative scheme (5) will have 2× i
local order of convergence with error equation

εki = (−1)i+1

(

λA3 − PA2
2

)i−2(
λA2A3 − QA3

2

)

αi−1
1 (α1 − α2)i−1

(ek)2i + O
(

(ek)2i+1
)

,

provided that α1 ∈ R − {0}, α2 ∈ R and α1 	= α2, where
λ = α1(α1 − α2)(1 + γ 2), Q = (α2

1 − 3α1α2 + α2
2), P = (2α2

1 − 4α1α2 + α2
2) &

γ = G ′(X∗).

Proof We shall prove the theorem by induction method.
For i = 2, the relation (5) reduces as follows:

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − η G(ψk
1 ).

}

. (15)

The inverse operator of Eq. (14) is

[Xk + G, Xk − G;G]−1 = γ −1
[

I − 2A2e
k + (

4A2
2 − A3(3 + γ 2)

)

(ek)2

+2
(

(6 + γ 2)A2A3 − 2(1 + γ 2)A4 − 4A3
4

)

(ek)3

+O
(

(ek)4
) ]

. (16)

Using (9) and (16) in the first step of Eq. (5), one can get the following error equation:

εk1 = ψk
1 − X∗ = A2(e

k)2 + (−2A2
2 + (2 + γ 2)A3)(e

k)3

+ ( − (7 + γ 2)A2A3 + (3 + 4γ 2)A4 + 4A3
2

)

(ek)4 + O
(

(ek)5
)

.
(17)

Expanding G(ψk
1 ) by Taylor’s series expansion around the solution X∗ using (17), one gets

G(ψk
1 ) = γ

[

εk1 + A2
(

εk1
)2 + A3

(

εk1
)3 + O

(

(εk1)
4
) ]

. (18)

By substituting Eqs. (13) and (14) in Eq. (6), one can obtain

τ = γ 2α1(α1 − α2) + PA2γ
2(ek

)

+ γ 2[2α2
1(A

2
2 + A3) − 2α1α2(A

2
2 + (3 + γ 2)A3) + (2 + γ 2)α2

2 A3
]

(ek)2

+ O((ek)3),

η = 1

γ
+ (1 + γ 2)A3α1(α1 − α2) − A2

2P

γα1(α1 − α2)
(ek)2

+ 1

γα2
1(α1 − α2)2

[

2(1 + 2γ 2)A4α
2
1(α1 − α2)

2 + A3
2P

2

+ 2A2A3α1
( − 3α3

1 + 2(γ 2 + 5)α2
1α2 − 3(γ 2 + 3)α1α

2
2 + (2 + γ 2)α3

2

)]

(ek)3

+ O
(

(ek)4
)

.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(19)
The second step of Eq. (15) can be rewritten as ψk

2 − X∗ = ψk
1 − X∗ − η G(ψk

1 ),

⇒ εk2 = εk1 − η G(ψk
1 ). (20)
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Putting the values of εk1 , G(ψk
1 ) and η from Eqs. (17)–(19), respectively, Eq. (20) yields

εk2 = ψk
2 − X∗ = −λA2A3 − QA3

2

α1(α1 − α2)
(ek)4

− 1

(λA3 − PA2
2)α1(α1 − α2)

[

− P(α4
2 − 10α3

2α1 + 26α2
1α

2
2 − 20α3

1α2 + 4α4
1)A

6
2

+2α3
1(α1 − α2)

3(2γ 2 + 1)(γ 2 + 1)A2A3A4 + α3
1(α1 − α2)

3(γ 2 + 2)(γ 2 + 1)2A3
3

−2α2
1(α1 − α2)

2(2γ 2 + 1)(2α2
1 − 4α1α2 + α2

2)A
3
2A4

−α2
1(α1 − α2)

2(1 + γ 2)(4α2
1γ

2 − 12α1α2γ
2 + 4α2

2γ
2 + 12α2

1 − 28α1α2 + 8α2
2)A

2
2A

2
3

+α1(α1 − α2)
(

20α4
1 − 92α3

1α2 − 44α3
1α2γ

2 + 126α2
1α

2
2 + 74α2

1α
2
2γ

2 − 30α1α
3
2γ

2

−54α1α
3
2 + 7α4

2 + 4α4
2γ

2 + 8α4
1γ

2)A4
2A3

]

(ek)5 + O
(

(ek)6
)

. (21)

Thus, the iterative family (5) has fourth order of convergence for first two steps.
For i = n, the iterative scheme (5) is written as

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − η G(ψk
1 ),

ψk
3 = ψk

2 − η G(ψk
2 ),

ψk
4 = ψk

3 − η G(ψk
3 ),

...

ψk
n−1 = ψk

n−2 − η G(ψk
n−2),

ψk
n = ψk

n−1 − η G(ψk
n−1).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (22)

Let us assume the scheme (22) has order of convergence 2 ∗ n for first n steps, with error
equation

εkn = ψn − X∗ = (−1)n+1

(

λA3 − PA2
2

)n−2(
λA2A3 − QA3

2

)

αn−1
1 (α1 − α2)n−1

(ek)2n

+(−1)n+1 (λA3 − PA2
2)

n−3

αn
1 (α1 − α2)n

[

− P
(

(n − 1)α4
2 + (4 − 7n)α3

2α1 + (15n − 4)α2
1α

2
2

−10nα3
1α2 + 2nα4

1

)

A6
2 + (2n − 2)α3

1(α1 − α2)
3(2γ 2 + 1)(γ 2 + 1)A2A3A4

+α3
1(α1 − α2)

3(γ 2 + 2)(γ 2 + 1)2A3
3 − 2α2

1(α1 − α2)
2(2γ 2 + 1)(nα2

1 + (2 − 3n)α1α2

+(n − 1)α2
2)A

3
2A4 − α2

1(α1 − α2)
2(1 + γ 2)(4α2

1γ
2 − (4n + 4)α1α2γ

2 + 2nα2
2γ

2

+6nα2
1 − 14nα1α2 + 4nα2

2)A
2
2A

2
3 + α1(α1 − α2)

(

10nα4
1 + (4 − 48n)α3

1α2

−(20n + 4)α3
1α2γ

2 + (72n − 18)α2
1α

2
2 + (34n + 2)α2

1α
2
2γ

2 + (6 − 18n)α1α
3
2γ

2

+(14 − 34n)α1α
3
2 + (5n − 3)α4

2 + (3n − 2)α4
2γ

2 + 4nα4
1γ

2)A4
2A3

]

(ek)2n+1

+O
(

(ek)2n+2
)

. (23)
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Further, for i = n + 1, the iterative family (5) is represented as

ψk
1 = Xk+1 = Xk − [Xk + G, Xk − G;G]−1G(Xk),

ψk
2 = ψk

1 − η G(ψk
1 ),

ψk
3 = ψk

2 − η G(ψk
2 ),

ψk
4 = ψk

3 − η G(ψk
3 ),

...

ψk
n−1 = ψk

n−2 − η G(ψk
n−2),

ψk
n = ψk

n−1 − η G(ψk
n−1),

ψk
n+1 = ψk

n − η G(ψk
n ).

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (24)

Now we shall show that the result is true for i = n + 1, i.e., we have to prove that iterative
method (24) has 2(n + 1) order of convergence for first n + 1 steps.

Since we have assumed that the result is true for first n steps, therefore expanding G(ψk
n )

by Taylor’s series around the solution X∗, one gets

G(ψk
n ) = γ

[

(−1)n+1
(

λA3 − PA22
)n−2(

λA2A3 − QA32
)

αn−1
1 (α1 − α2)

n−1
(ek )2n

+(−1)n+1 (λA3 − PA22)
n−3

αn1 (α1 − α2)
n

[

− P
(

(n − 1)α42 + (4 − 7n)α32α1 + (15n − 4)α21α22

−10nα31α2 + 2nα41
)

A62

+(2n − 2)α31(α1 − α2)
3(2γ 2 + 1)(γ 2 + 1)A2A3A4

+α31(α1 − α2)
3(γ 2 + 2)(γ 2 + 1)2A33

−2α21(α1 − α2)
2(2γ 2 + 1)(nα21 + (2 − 3n)α1α2 + (n − 1)α22)A32A4

−α21(α1 − α2)
2(1 + γ 2)(4α21γ 2 − (4n + 4)α1α2γ

2 + 2nα22γ 2

+6nα21 − 14nα1α2 + 4nα22)A22A
2
3

+α1(α1 − α2)
(

10nα41 + (4 − 48n)α31α2 − (20n + 4)α31α2γ
2

+(72n − 18)α21α22 + (34n + 2)α21α22γ 2

+(6 − 18n)α1α
3
2γ 2 + (14 − 34n)α1α

3
2 + (5n − 3)α42

+(3n − 2)α42γ 2 + 4nα41γ 2)A42A3
]

(ek )2n+1

+O((ek )2n+2)

]

. (25)

Now last step of Eq. (24) rewritten as

ψk
n+1 − X∗ = ψk

n − X∗ − η G(ψk
n ),

⇒ εkn+1 = εkn − η G(ψk
n ). (26)

Substituting the values of η, εkn and G(ψk
n ) from Eqs. (19), (23) and (25), respectively, in Eq.

(26) and after some simplifications, one can get the error equation

εkn+1 = (−1)n+2

(

λA3 − PA2
2

)n−1(
λA2A3 − QA3

2

)

αn
1 (α1 − α2)n

(ek)2n+2 + O
(

(ek)2n+3
)

, (27)
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which shows that the iterative scheme (24) has 2(n + 1) order of convergence for first n + 1
steps. That is, the result is true for i = n + 1. Hence, by induction method one deduces that
the result is true ∀ i = 2, 3, 4 . . . n. ��

4 Computational efficiency

For the estimation of efficiency of proposed families, the efficiency index has been used. The
efficiency of an iterative method is given by E = ρ1/COstrowski (1960) where ρ is the order
of convergence and C is the computational cost per iteration. For a system of t nonlinear
equations with t variables, the computational cost per iteration is given by

C(ν, t, ) = A(t)ν + P(t, ), (28)

where A(t) denotes the number of evaluations of scalar functions used in the evaluation of G
and [X, Y ;G] and P(t, ) denotes the number of products needed per iteration. To express
the value of C(ν, t, ) in terms of products, a ratio ν > 0 between products and evaluations
of scalar functions, and a ratio  ≥ 1 between products and quotients is required.

To compute G in any iterative function, we evaluate t scalar functions (g̃1, g̃2, . . . , g̃t )
and if we compute a divided difference [X, Y ;G] then we evaluate t (t − 1) scalar functions,
where G(X) and G(Y) are computed separately. In addition, for central divided difference
operator [X +G, X −G;G], t (t+1) scalar functions are evaluated. Wemust add t2 quotient
for any divided difference and 5t2 products for multiplication of a vector by a scalar. To
calculate an inverse linear operator, we solve a linear system where we have t (t−1)(2t−1)

6

products and t (t−1)
2 quotients in the LU decomposition, t (t − 1) products and t quotients in

the resolution of two triangular linear system.
For comparison of computational efficiencies of proposed schemes ψk

1 , ψk
2 , ψk

3 and ψk
4

order of convergence in two, four, six and eight, respectively, the efficiency indices are
denoted by CE Ii and computational cost (calculated according to (28)) by Ci . Taking into
account the above considerations, one can have

C1 = t

6
(2t2 + 6tν + 3t + 9lt + 12ν + 3 − 5) and CE I1 = 21/C1 . (29)

C2 = t

3
(2t2 + 6tν + 18t + 9lt + 6ν + 3 − 5) and CE I2 = 41/C2 . (30)

C3 = t

3
(2t2 + 6tν + 21t + 9lt + 9ν + 6 − 8) and CE I3 = 61/C3 . (31)

C4 = t

3
(2t2 + 6tν + 24t + 9lt + 12ν + 9 − 11) and CE I4 = 81/C4 . (32)

4.1 Comparison between efficiencies

To compare the iterative families ψi , 1 ≤ i ≤ 4, the following ratio can be defined as

Ri, j = log CE Ii
log CE I j

= log(ρi )C j

log(ρ j )Ci
.

It is clear that if Ri, j > 1, the iterative method ψi is more efficient than ψ j . Taking into
account that the border between two computational efficiencies is given by Ri, j = 1, this
boundary is given by the equation of ν written as a function of  and t , that is ν = Mi, j (, t).
Here ν > 0,  ≥ 1 and t is a positive integer t ≥ 2.
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Case 1: Iterative method ψ1 verses iterative family ψ3

The boundary R3,1 = 1 expressed by ν written as a function of  and t is

M3,1 = (4t2 + 42t + 18t + 12 − 16)log2 − (2t2 + 3t + 9t + 3 − 5)log6

log6(6t + 12) − log2(12t − 48)
. (33)

This function has the vertical asymptote for t = −3.70951. Note that the numerator of Eq.
(33) is negative for t ≥ 25 and the denominator of Eq. (33) is positive for t ≥ 2. Consequently,
it shows that ν is always positive for 2 ≤ t < 25 and for all  ≥ 1.

So, one can have CE I3 > CE I1, ∀ ν > 0,  ≥ 1 & 2 ≤ t < 25.

Case 2: Iterative method ψ1 verses iterative family ψ4

The boundary R4,1 = 1 expressed by ν written as a function of  and t is

M4,1 = −2t2 + 39t − 9t + 9 − 7

6t + 12
. (34)

This function has the vertical asymptote for t = −2. Note that the numerator of Eq. (34) is
negative for t > 20 and the denominator of Eq. (34) is positive for t ≥ 2. Consequently, it
shows that ν is positive for 2 ≤ t < 20 and for all  ≥ 1.

So, one gets CE I4 > CE I1, ∀ ν > 0,  ≥ 1 & 2 ≤ t < 20.

Case 3: Iterative family ψ2 verses iterative family ψ3

The boundary R3,2 = 1 expressed by ν written as a function of  and t is

M3,2 = (2t2 + 21t + 9t + 6 − 8)log4 − (2t2 + 18t + 9t + 3 − 5)log6

log6(6t + 6) − log4(6t + 9)
. (35)

This function has the vertical asymptote for t = 0.7095. Note that the numerator of Eq. (35)
is negative for t ≥ 0 and the denominator of Eq. (35) is positive for t > 0. Consequently, it
shows that ν is always negative for t ≥ 2 and for all  ≥ 1.

So, one can get CE I3 < CE I2, ∀ ν > 0,  ≥ 1 & t ≥ 2.

Case 4: Iterative family ψ2 verses iterative family ψ4

The boundary R4,2 = 1 expressed by ν written as a function of  and t is

M4,2 = (2t2 + 24t + 9t + 9 − 11)log4 − (2t2 + 18t + 9t + 3 − 5)log8

log8(6t + 6) − log4(6t + 12)
. (36)

This function has the vertical asymptote for t = 1. Note that the numerator of Eq. (36) is
negative for t ≥ 0 and the denominator of Eq. (36) is positive for t > 1. Consequently, it
shows that ν is always negative for t ≥ 2 and for all  ≥ 1.

So, one can obtain CE I4 < CE I2, ∀ ν > 0,  ≥ 1 & t ≥ 2.

Case 5: Iterative family ψ3 verses iterative family ψ4

The boundary R4,3 = 1 expressed by ν written as a function of  and t is

M4,3 = (2t2 + 24t + 9t + 9 − 11)log6 − (2t2 + 21t + 9t + 6 − 8)log8

log8(6t + 9) − log6(6t + 12)
. (37)

This function has the vertical asymptote for t = 1.61413.Note that the numerator of Eq. (37)
is positive for t ≥ 1 and the denominator of Eq. (37) is negative for t > 1. Consequently, it
shows that ν is always negative for t ≥ 2 and for all  ≥ 1.

So, one can have CE I4 < CE I3, ∀ ν > 0,  ≥ 1 & t ≥ 2.
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Fig. 1 CE I1 (dashed line), CE I3 (thick line) for t ≥ 2
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Fig. 2 CE I1 (dashed line), CE I4 (thick line) for t ≥ 2

Theorem 4.1 For all ν > 0 and  ≥ 1, we have

(i) CE I3 > CE I1, f or 2 ≤ t < 25 (see Fig. 1).
(ii) CE I4 > CE I1, f or 2 ≤ t < 20 (see Fig. 2).
(iii) CE I3 < CE I2, f or t ≥ 2 (see Fig. 3).
(iv) CE I4 < CE I2, f or t ≥ 2 (see Fig. 4).
(v) CE I4 < CE I3, f or t ≥ 2 (see Fig. 5).

5 Local convergence

In this section, we proposed the local convergence analysis of the proposed family ofmethods
which is based on Lipschitz constants and hypotheses on the divided difference of order one.
In this way, we further expand the applicability of the proposedmethods, sincewe used higher
derivatives to show convergence of the proposed family in Sect. 3 although such derivatives
do not appear in method (5). The local convergence analysis of method (5) is based on
some scalar functions and parameters. This analysis is also given for G : D ⊂ B → B,

in a more general setting than in the previous sections, since B is a Banach space. Let
K0 > 0, K > 0, c0 > 0, c > 0, c1 > 0 and p = 1, 2, . . . , be parameters. Define
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Fig. 3 CE I2 (dashed line), CE I3 (thick line) for t ≥ 2
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function g1 on the interval [0, r−
0 ) by

g1(s) = (1 + 2c0)Ks

1 − r0s
,

where
r0 = 2(1 + c0)K0

and parameter r1 by

r1 = 1

(1 + 2c0)K + 2(1 + c0)K0
.

Then, we have that g1(r1) = 1, 0 < r1 < r−
0 and for each s ∈ [0, r1), 0 ≤ g1(s) < 1.

Let α1 and α2 be real or complex parameters. Define b and bi , i = 1, 2, 3, 4, 5 by
b1 = −α2

1 − α1α2, b2 = 2α2
1 + α2

2 − 3α1α2, b3 = −α1α2, b4 = 2α1α2 − α2
2, b5 =

α2
1 + α2

2 − 3α1α2 and b = b1 + b2. Define functions q and hq in the following way:

q(s) = |b|−1
(

|b1|r0s + |b2|K0(1 + g1(s))s + (|b3| + |b4|)c0c1c
1 − r0s

)

, b0 	= 0

and
hq(s) = q(s) − 1.

Suppose that
(|b3| + |b4|)c0c1c < |b|, (38)

we get by (38) that hq(0) = −1 < 0 and hq(s) → +∞ as s → 1−
r0
. It then follows from the

intermediate value theorem that function hq has zeros in the interval (0, r−
0 ). Let us consider

that rq be the smallest zero among such zero. Moreover, define some functions gi and hi on
the interval [0, rq) for i = 2, 3, . . . , p in the following way:

gi (s) =
(

1 + c|b2| + |b4|c2
|b|(1 − q(s))(1 − r0s)

)

gi−1(s)

=
(

1 + c|b2| + |b4|c2
|b|(1 − q(s))(1 − r0s)

)i−1

g1(s),

hi (s) = gi (s) − 1.

Then, we have that hi (0) = −1 < 0 and hi (s) → +∞ as s → r−
q . Denote by ri , i =

2, 3, . . . , p the smallest zeros of functions gi on the interval zeros of functions gi on the

interval (0, rq). Notice that hi (ri−1) = c
(

|b2| + |b4|c|b|(1−r0ri−1)(1−q(ri−1))

)

> 0, which imply

that
rn < rn−1 < · · · < r2. (39)

Define
r∗ = min{rp, r1}. (40)

Then, we have that for each s ∈ [0, r∗)

0 ≤ gi (s) < 1 and 0 ≤ q(t) < 1, i = 1, 2, . . . , p.

LetU (γ, ρ), Ū (γ, ρ) stand, respectively, for the open and closed balls in X with the center
γ ∈ X and of radius ρ > 0. Next, we present the local convergence analysis of method (5)
using the preceding notation.
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Theorem 2 Let G : D ⊂ B → B be a continuous operator. Suppose that there exists
divided difference of order one for operator G, [·, ·; G] : D2 → L(B), X∗ ∈ D, for which
G ′(X∗)−1 exists, α1, α2 ∈ R (or C), K0 > 0, K > 0, c0 > 0, c > 0, c1 > 0 and
p = 1, 2, 3, . . . such that (38) holds and b 	= 0 for each X, Y, Z ∈ D and G(X∗) = 0,
G ′(X∗)−1 ∈ L(X),

∥

∥G ′(X∗)−1
∥

∥ ≤ c1, b 	= 0

∥

∥G ′(X∗)−1 ([X, Y ; G] − G ′(X∗)
)∥

∥ ≤ K0(‖X − X∗‖ + ‖Y − X∗‖) (41)
∥

∥G ′(X∗)−1 ([X, Y ; G] − [Z , X∗; G])∥∥ ≤ K (‖X − Z‖ + ‖Y − X∗‖) (42)

‖[X, Y ; G]‖ ≤ c0 (43)
∥

∥G ′(X∗)−1[X, Y ; G]∥∥ ≤ c (44)

and
Ū (X∗, (1 + c0)K0) ⊂ D. (45)

Then, the sequence generated by method (5) for X0 ∈ U (X∗, r∗) − {X∗} is well defined,
remains in U (X∗, r∗) and converges to X∗. Moreover, the following estimates hold:

‖ψk
i − X∗‖ ≤ gi (‖Xk − X∗‖)‖Xk − X∗‖ < ‖Xk − X∗‖ < r∗, (46)

for each i = 1, 2, . . . , p, where the “g′′ functions are defined previously. Furthermore, for
T ∈

[

r∗, 1
K0

)

, the limit point X∗ is the only solution of Eq. G(X) = 0 in Ū (X∗, T ) ∩ D.

Proof We shall show estimate (46) holds with the help of mathematical induction. By
hypotheses X0 ∈ U (X∗, r∗) − {X∗}, (39), (40), and (41), we get that

∥

∥G ′(X∗)−1 ([X0 + G, X0 − G;G] − G ′(X∗)
)∥

∥

≤ K0
(‖X0 − X∗ + G(X0)‖ + ‖X0 − X∗ − G(X0)‖)

≤ K0
(‖X0 − X∗‖ + ‖G(X0) − G(X∗)‖ + ‖X0 − X∗‖ + ‖G(X0) − G(X∗)‖)

= 2K0
(‖X0 − X∗‖ + c0‖X0 − X∗‖)

= 2K0(1 + c0)‖X0 − X∗‖
= r0‖X0 − X∗‖ < r0r

∗ < 1. (47)

Notice that ‖X0 + G − X∗‖ ≤ ‖X0 − X∗‖ + ‖G(X0) − G(X∗)‖ ≤ (1+ c0)‖X0 − X∗‖ <

(1+ c0)r∗, so X0 +G ∈ Ū (X∗, (1+ c0r∗)) ⊂ D. Similarly, we get that X0 −G(X0) ∈ D.
Then, it follows from (47) and the Banach Lemma on invertible operators (Argyros 2008;
Argyros and Hilout 2013) that ψ0

1 is well defined by the first sub step of method (5) and

∥

∥[X0 + G(X0), X0 − G(X0);G]−1G ′(X∗)
∥

∥ ≤ 1

1 − r0‖X0 − X∗‖ . (48)

We can write by (40) and the first sub step of method (5) that

ψ0
1 − X∗

= X0 − X∗ − [X0 + G(X0), X0 − G(X0);G]−1G(X0)

= [X0 + G(X0), X0 − G(X0); G]−1
(

[X0 + G(X0), X0 − G(X0);G](X0 − X∗) − G(X0)
)

=
(

[X0 + G(X0), X0 − G(X0); G]−1G′(X∗)
)(

G′(X∗)−1[X0 + G(X0),

X0 − G(X0);G] − [X0, X0;G]
)

(X0 − X∗). (49)
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Using (39), (40) (for i = 1), (42) and (48), we obtain in turn that

‖ψ0
1 − X∗‖ ≤ ∥

∥[X0 + G(X0), X0 − G(X0);G]−1G(X∗)
∥

∥

= ∥

∥G ′(X∗)−1 ([X0 + G(X0), X0 − G(X0);G] − [X0, X∗;G])∥∥ ‖X0 − X∗‖
≤ (1 + 2c0)K

1 − 2K0(1 + c0)
‖X0 − X∗‖

≤ g1(‖X0 − X∗‖)‖X0 − X∗‖ < ‖X0 − X∗‖ < r∗,
(50)

which shows (46) for k = 0, i = 1 and ψ0
1 ∈ U (X∗, r∗). Let us define

A0 = b4[X0 + G(X0), X0 − G(X0);G]−1[ψ0
1 , X0; G] + b2 I (51)

and

B0 = b1[X0 + G(X0), X0 − G(X0); G] + b2[ψ0
1 , X0; G]

+b3[X0 + G(X0), X0 − G(X0); G]−1[ψ0
1 , X0; G]

[X0 + G(X0), X0 − G(X0); G]
+b4[X0 + G(X0), X0 − G(X0);G]−1[ψ0

1 , X0; G]2, (52)

where the “b” parameters are defined previously. Next, we shall show that B−1
0 ∈ L(X).

Using (39), (40), (41), (44), (50) and (52), we get in turn that since b 	= 0
∥

∥

∥

(

bG′(X∗)
)−1 [B0 − (b1 + b2 + b3)G

′(x∗)]
∥

∥

∥

≤ |b|−1
[

|b1|‖G′(X∗)−1
(

[X0 + G(X0), X0 − G(X0); G] − G′(X∗)
)

‖
]

+|b2|
∥

∥

∥G′(X∗)−1
(

[ψ0
1 , X0; G] − G′(X∗)

)∥

∥

∥

+|b3|
∥

∥

∥G′(X∗)−1
∥

∥

∥

∥

∥

∥[X0 + G(X0), X0 − G(X0);G]−1G′(X∗)

∥

∥

∥

×
∥

∥

∥G′(X∗)−1[ψ0
1 , X0; G]

∥

∥

∥

∥

∥

∥[X0 + G(X0), X0 − G(X0); G]
∥

∥

∥

+|b4|
∥

∥

∥G′(X∗)−1
∥

∥

∥

∥

∥

∥[X0 + G(X0), X0 − G(X0);G]−1G′(X∗)

∥

∥

∥

×
∥

∥

∥G′(X∗)−1[ψ0
1 , X0; G]

∥

∥

∥

∥

∥

∥[ψ0
1 , X0; G]

∥

∥

∥

≤ |b|−1
[

|b1|r0‖X0 − X∗‖ + |b2|K0

(

‖ψ0
1 − X∗‖ + ‖X0 − X∗‖

)

+ (|b3| + |b4|)c0c1c
1 − r0‖X0 − X∗‖

]

≤ |b|−1
[

|b1|r0‖X0 − X∗‖ + |b2|K0

(

1 + g1(‖X0 − X∗‖)
)

‖X0 − X∗‖

+ (|b3| + |b4|)c0c1c
1 − r0‖X0 − X∗‖

]

≤ q(‖X0 − X∗‖) < q(r∗) < 1. (53)

Then, it follows from (53) that
∥

∥

∥B−1
0 G ′(X∗)

∣

∣

∣ ≤ 1

|b| (1 − q(‖X0 − X∗‖)) . (54)

By (44), (48) and (51), we get that

‖A0‖ ≤ |b4|
∥

∥

∥[X0 + G(X0), X0 − G(X0); G]−1G ′(X∗)
∥

∥

∥ ‖G ′(X∗)−1[ψ0
1 , X0; G]‖ + |b2|

≤ |b4|c
1 − r0‖X0 − X∗‖ + |b2|

(55)
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Then, using (39), (40), (50), (54), (55) and the definition of the “g′′ functions, we obtain
from the second sub step of method (5) that

‖ψ0
2 − X∗‖ ≤ ‖ψ0

1 − X∗‖ + ‖A0‖‖B−1
0 G ′(X∗)‖‖G ′(X∗)−1G(ψ0

1 )‖
≤ ‖ψ0

1 − X∗‖ + ‖A0‖‖B−1
0 G ′(X∗)‖‖G ′(X∗)−1 (G(ψ0

1 ) − G(X∗)
) ‖

≤ ‖ψ0
1 − X∗‖ + ‖A0‖‖B−1

0 G ′(X∗)‖‖G ′(X∗)−1[ψ0
1 , X0; G]‖‖ψ0

1 − X∗‖

≤
(

1 + c|b2| + |b4|c2
|b|(1 − q(‖X0 − X∗‖))(1 − r0(‖X0 − X∗‖))

)

g1(‖X0 − X∗‖)‖X0 − X∗‖
= g2(‖X0 − X∗‖)‖X0 − X∗‖ < ‖X0 − X∗‖ < r∗,

(56)
which shows (46) for i = 2, k = 0 and ψ0

2 ∈ U (X∗, r∗). Similarly, we show

‖ψ0
3 − X∗‖ ≤

(

1 + c|b2| + |b4|c2
|b|(1 − q(‖X0 − X∗‖))(1 − r0(‖X0 − X∗‖))

)

g2(‖X0 − X∗‖)‖X0 − X∗‖
= g3(‖X0 − X∗‖)‖X0 − X∗‖ < ‖X0 − X∗‖ < r∗

until
‖X1 − X∗‖ = ‖ψk

n − X∗‖ ≤ gn(‖X0 − X∗‖)‖X0 − X∗‖
≤ μ‖X0 − X∗‖ < ‖X0 − X∗‖ < r∗,

(57)

where μ = gp(r∗) ∈ (0, 1). By simply replacing ψ0
1 , ψ0

2 , . . . , ψ0
p, X0 by ψm

1 ,
ψm
2 , . . . , ψm

p , Xm in the preceding estimates we complete the induction for (46). Then,
in view of the estimates ‖Xm+1 − X∗‖ ≤ μ‖Xm − X∗‖(see (57)), we deduce that {Xm}
converges to X∗ and Xm ∈ U (X∗, r∗) for each m = 0, 1, 2, . . . Finally, to show the
uniqueness part, let H = [X∗, Y ∗;G] where G(Y ∗) = 0 and Y ∗ ∈ Ū (X∗, T ). Then, using
(41), we get that

∣

∣G ′(X∗)−1([X∗, Y ∗;G] − G ′(X∗))
∣

∣ ≤ K0
(‖X∗ − Y ∗‖) < 1. (58)

Hence, H−1 ∈ L(B). Then, from the identity 0 = G(X∗) − G(Y ∗) = H(X∗ − Y ∗), we
conclude that X∗ = Y ∗. ��

Remark 5.2 (a) If X = Rt then Theorem 2 specializes in the case studied in the earlier
sections.

(b) The convergence of method (5) in the previous sections was shown using hypothesis
limit the applicability of method (5). In Argyros et al. (2015), we have presented some
examples where the third or higher derivatives do not exist. Therefore, in Example 1,
we present another such a case for such equations where method (5) is not applicable.
However, in Theorem2,we only use hypothesis on the divided difference of order one and
on G ′(X∗), which actually appear in method (5). We expand this way the applicability of
method (5). Moreover, we present computable radius of convergence and error radius of
convergence and error bounds on the distances involved (see (46)) using only Lipschitz
constants.
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6 Numerical results

In this section, some numerical problems are considered to illustrate the convergence behav-
ior and computational efficiency of the proposed methods. The computational work and
CPU time of all the numerical experiments have been done in the programming package
Mathematica 7.1Wolfram (2003) with multiple-precision arithmetic with 2048 digits. The
CPU time has been calculated by TimeUsed[] command in Mathematica 7.1. For compari-
son of the computational efficiencies of the proposed schemes (5)ψ2,1, ψ3,1 which are special
cases ofGrau-Sánchez et al. (2013) andψ4,1 forα1 = R−{0}&α2 = 0 are considered. In the
same manner, the proposed schemes (5)ψ2,2, ψ3,2, ψ4,2 for α1 = ± 1020 & α2 = ± 10−1000

andψ2,3, ψ3,3, ψ4,3 for α1 = ± √
3& α2 = ± 10−2000 are denoted and compared with exist-

ing schemes of fourth order, namely M4,1, M4,2 for Sharma and Arora (2013) and seventh
order S7 (Sharma and Arora 2014). To verify the theoretical order of convergence, authors
have used the computational order of convergence (COC) (Ezquerro and Hernández 2009).

ρ =
ln ‖Xk+1−X∗‖

‖Xk−X∗‖
ln ‖Xk−X∗‖

‖Xk−1−X∗‖
, for each k = 1, 2, . . . (59)

or the approximate computational order of convergence (ACOC) (Ezquerro and Hernández
2009)

ρ∗ =
ln ‖Xk+1−Xk‖

‖Xk−Xk−1‖
ln ‖Xk−Xk−1‖

‖Xk−1−Xk−2‖
, for each k = 2, 3, . . . (60)

Notice that the computational of ρ or ρ∗ do not require higher order derivatives to compute
the error bounds. According to the definition of the computational cost (28), an estimation
of the factors ν is claimed. To do this, one can express the cost of the evaluation of the
elementary functions in terms of products which depends on the machine, the software and
the arithmetics used (Fousse and Hanrot 2007). In the following table, an estimation of the
cost of the elementary functions in number of equivalent products is shown, where running
time of one product is measured in milliseconds. For the detail of hardware and software used
in the numerical work, the computational cost of quotient with respect to product is  = 3 is
given as follows:

Estimation of computational cost of elementary functions computed with Mathematica 7.1 in a processor
Intel(R) Core (TM) i5-2430M CPU @ 2.40 GHz (32-bit machine) Microsoft Windows 7 Ultimate 2009,
where x = √

3 − 1 and y = √
5

Digits x ∗ y x/y
√
x exn(x) ln(x) sin(x) cos(x) arccos(x) arctan(x)

2048 0.0301ms 3 1.5 77 78 78 77 119 118

Example 1 As a motivational example, define function F on X = Y = R, D = [− 1
π
, 2

π
]

by

F(x) =
⎧

⎨

⎩

x3 log(π2x2) + x5 sin

(

1

x

)

, x 	= 0

0, x = 0
.
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Table 1 Different radii of convergence

Schemes Different values of parameters which satisfy Theorem 2 CPU
time

r1 rn r∗ x0 ρ

ψ2 for α1 = ± 1020 &α2 =−1000 0.009951 1.8 × 10−40 1.8 × 10−40 0.318309 4.0000 0.108

ψ2 for α1 = ± √
3 &α2 = ± 10−2000 0.009951 0.009793 0.009793 0.3181 4.0000 0.088

ψ3 for α1 = ± 1020 &α2 =−1000 0.009951 1.2 × 10−78 1.2 × 10−78 0.318309 6.000 1.033

ψ3 for α1 = ± √
3 &α2 = ± 10−2000 0.009951 0.009633 0.009633 0.31827 6.000 1.088

ψ4 for α1 = ± 1020 &α2 =−1000 0.009951 7.2 × 10−117 7.2 × 10−117 0.318309 8.000 1.003

ψ4 for α1 = ± √
3 &α2 = ± 10−2000 0.009951 0.009471 0.009471 0.31826 8.000 1.039

Then, we have that

F ′(x) = 2x2 − x3 cos

(

1

x

)

+ 3x2 log(π2x2) + 5x4 sin

(

1

x

)

,

F ′′(x) = −8x2 cos

(

1

x

)

+ 2x(5 + 3 log(π2x2)) + x(20x2 − 1) sin

(

1

x

)

and

F ′′′(x) = 1

x

[

(1 − 36x2) cos

(

1

x

)

+ x

(

22 + 6 log(π2x2) + (60x2 − 9) sin

(

1

x

))]

.

One can easily find that the function F ′′′(x) is unbounded onD at the point x = 0. Therefore,
the results before Sect. 5 cannot apply to show the convergence of method (5). In particu-
lar, hypotheses on the third derivative of function F or even higher are assumed to prove
convergence of method (5) in Sect. 3. However, according to this section, we just need the
hypotheses on first order. Moreover, we have

K = K0 = 80 + 16π + (π + 12 log 2)π2

2π + 1
, c1 = π3

2π + 1
,

c = 8

π(2π + 1)(10 + π + (1 + 3 log 2)π2)
, c0 = 8

[10 + π + (1 + 3 log 2)π2]π4

and our required zero is X∗ = 1
π
. We obtain different radii of convergence, COC (ρ) and n

in Table 1.

Other such examples can be found in Argyros et al. (2015).

Example 2 Considering mixed Hammerstein integral equation (see [Ortega and Rheinboldt
(1970), pp. 19–20]).

x(s) = 1 + 1
5

∫ 1
0 G(s, t)x(t)3dt where x ∈ C[0, 1]; s, t ∈ [0, 1] and the kernel G is

G(s, t) =
{

(1 − s)t, t ≤ s,
s(1 − t), s ≤ t.

To transform the above equation into a finite-dimensional problem using Gauss Legendre
quadrature formula given as

∫ 1
0 f (t)dt � ∑8

j=1 w j f (t j ), where the abscissas t j and the
weights w j are determined for t = 8 by Gauss–Legendre quadrature formula. Denoting the
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approximations of x(ti ) by xi (i = 1, 2, . . . , 8), one gets the system of nonlinear equations
5xi − 5 − ∑8

j=1 ai j x
3
j = 0, where i = 1, 2, . . . , 8

ai j =
{

w j t j (1 − ti ), j ≤ i,
w j ti (1 − t j ), i < j,

where the abscissas t j and the weights w j are known and given in the following table for
t = 8.

Abscissas and weights of Gauss–Legendre quadrature formula for t = 8

j t j w j

1 0.01985507175123188415821957 . . . 0.05061426814518812957626567 . . .

2 0.10166676129318663020422303 . . . 0.11119051722668723527217800 . . .

3 0.23723379504183550709113047 . . . 0.15685332293894364366898110 . . .

4 0.40828267875217509753026193 . . . 0.18134189168918099148257522 . . .

5 0.59171732124782490246973807 . . . 0.18134189168918099148257522 . . .

6 0.76276620495816449290886952 . . . 0.15685332293894364366898110 . . .

7 0.89833323870681336979577696 . . . 0.11119051722668723527217800 . . .

8 0.98014492824876811584178043 . . . 0.05061426814518812957626567 . . .

In addition, (t, ν) = (8, 11) are the values used in Eqs. (29)–(32). The convergence of the
methods towards the root

X∗ = (1.00209624503115679 . . . , 1.00990031618748877 . . . , 1.01972696099317687
. . ., 1.02643574303062052 . . . , 1.02643574303062052 . . . , 1.01972696099317687 . . .,
1.00990031618748877 . . . , 1.00209624503115679 . . .)T is tested in Table 2.

Example 3 (see Sharma and Arora 2013)

G(x1, x2) =
{

(x1 − 1)4 + e−x2 − x22 + 3x2 + 1,

4sin(x1 − 1) − log(x21 − x1 + 1) − x22 .

Table 2 Performance of various iterative schemes at initial value (0.85, 0.85, . . . , 0.85)T

Scheme ‖X (1) − X∗‖ ‖X (2) − X∗‖ ‖X (3) − X∗‖ ρ C CEI CPU time

M4,1 6.15 (− 5) 1.07 (− 19) 1.03 (− 78) 4.000 3296 1.000420 0.333

M4,2 6.23 (− 5) 1.15 (− 19) 1.44 (− 78) 4.000 3376 1.000410 0.236

ψ2,1 2.46 (− 5) 1.62 (− 21) 3.28 (− 86) 4.000 2896 1.000478 0.344

ψ2,2 2.46 (− 5) 1.62 (− 21) 3.28 (− 86) 4.000 2896 1.000478 0.326

ψ2,3 2.46 (− 5) 1.62 (− 21) 3.28 (− 86) 4.000 2896 1.000478 0.293

ψ3,1 3.74 (− 7) 1.64 (− 42) 1.28 (− 254) 6.000 3064 1.000584 0.601

ψ3,2 3.74 (− 7) 1.64 (− 42) 1.28 (− 254) 6.000 3064 1.000584 0.636

ψ3,3 3.74 (− 7) 1.64 (− 42) 1.28 (− 254) 6.000 3064 1.000584 0.615

S7 5.27(− 11) 1.48(− 79) 2.14(− 559) 7.000 8328 1.000233 2.042

ψ4,1 5.69 (− 9) 8.85 (− 71) 3.50 (− 565) 8.000 3232 1.000643 0.592

ψ4,2 5.69 (− 9) 8.85 (− 71) 3.50 (− 565) 8.000 3232 1.000643 0.628

ψ4,3 5.69 (− 9) 8.85 (− 71) 3.50 (− 565) 8.000 3232 1.000643 0.617
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Table 3 Performance of various iterative schemes at initial guess (1.2, −1.2)T

Scheme ‖X (1) − X∗‖ ‖X (2) − X∗‖ ‖X (3) − X∗‖ ρ C CEI CPU time

M4,1 1.09 (− 18) 1.71 (− 73) 1.04 (− 292) 4.000 1500 1.00092 0.282

M4,2 1.34 (− 17) 1.19 (− 69) 4.49 (− 278) 4.001 1508 1.00091 0.283

ψ2,1 4.18 (− 21) 2.81 (− 82) 5.79 (− 327) 4.000 1508 1.00091 0.319

ψ2,2 4.18 (− 21) 2.81 (− 82) 5.79 (− 327) 4.000 1508 1.00091 0.296

ψ2,3 4.18 (− 21) 2.81 (− 82) 5.79 (− 327) 4.000 1508 1.00091 0.298

ψ3,1 5.04 (− 11) 2.56 (− 62) 4.33 (− 370) 6.000 1756 1.00102 1.398

ψ3,2 5.04 (− 11) 2.56 (− 62) 4.33 (− 370) 6.000 1756 1.00102 1.434

ψ3,3 5.04 (− 11) 2.56 (− 62) 4.33 (− 370) 6.000 1756 1.00102 1.442

S7 2.27 (− 6) 3.23 (− 41) 5.41 (− 285) 6.999 3470 1.00056 1.486

ψ4,1 3.70 (− 18) 9.94 (− 140) 2.69 (− 1112) 8.000 2004 1.00103 1.388

ψ4,2 3.70 (− 18) 9.94 (− 140) 2.69 (− 1112) 8.000 2004 1.00103 1.445

ψ4,3 3.70 (− 18) 9.94 (− 140) 2.69 (− 1112) 8.000 2004 1.00103 1.428

To calculate computational cost and efficiency indices the values (t, ν) = (2, 120)
are used in Eqs. (29)–(32). The convergence of the methods towards the root X∗ =
(1.271384307950131633 . . ., 0.88081907310266102 . . .)T is tested in Table 3.

Example 4 (see Grau et al. 2007) Consider the following boundary value problem:

y′′ + y3 = 0, y(0) = 0, y(1) = 1.

Further, assume the partition of the interval [0, 1], which is defined as follows:

x0 = 0 < x1 < x2 < x3 < · · · < xn, where xi = x0 + ih, h = 1

n
.

Let us define y0 = y(x0) = 0, y1 = y(x1), . . . , yn−1 = y(xn−1), yn = y(xn) = 1.
The following discretization for the second derivative is used:

y′′
k = yk−1 − 2yk + yk+1

h2
, k = 1, 2, . . . , n − 1,

which reduces to a system of nonlinear equations of order n − 1

yk−1 − 2yk + yk+1 + h2y3k = 0, k = 1, 2, . . . , n − 1.

The solution of this system X∗ = (0.0207113 . . . , 0.0414227 . . .,0.0621341 . . ., 0.0828453
. . . , 0.1035564 . . . , 0.1242670 . . .,0.1449769 . . . , 0.1656856 . . ., 0.1863926 . . . ,0.2070970
. . . , 0.2277981 . . . 0.2484946 . . . , 0.2691852 . . ., 0.2898683 . . . , 0.3105421 . . . ,0.3312043
. . . , 0.3518526 . . . , 0.3724841 . . .,0.3930958 . . . ,0.4136841 . . . ,0.4342452 . . . ,0.4547747
. . . , 0.4752682 . . . , 0.4957203 . . ., 0.5161257 . . . ,0.5364781 . . . ,0.5567712 . . . ,0.5769980
. . . , 0.5971509 . . . , 0.6172219 . . .,0.6372025 . . . , 0.6570837 . . . ,0.6768557 . . . ,0.6965086
. . . ,0.7160316 . . . , 0.7354134 . . ., 0.7546422 . . . ,0.7737059 . . . ,0.7925915 . . . ,0.8112857
. . . , 0.8297745 . . . , 0.8480437 . . .,0.8660785 . . . ,0.8838634 . . . ,0.9013829 . . . ,0.9186208
. . . , 0.9355607 . . . , 0.9521858 . . ., 0.9684789 . . . , 0.9844228 . . .)T by taking n = 51 and
the values (t, ν) = (50, 4) used in Eqs. (29)–(32) are tested in Table 4.
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Table 4 Results of various iterative schemes at initial value (0.6, 0.6, . . . , 0.6)T

Scheme ‖X (1) − X∗‖ ‖X (2) − X∗‖ ‖X (3) − X∗‖ ρ C CEI CPU time

M4,1 4.67 (− 4) 4.68 (− 18) 6.16 (− 74) 4.000 944 1.00146 5.217

M4,2 4.99 (− 4) 7.35 (− 18) 4.59 (− 73) 4.000 992 1.00139 9.672

ψ2,1 4.89 (− 4) 5.33 (− 18) 1.04 (− 73) 4.000 980 1.00141 9.421

ψ2,2 4.89 (− 4) 5.33 (− 18) 1.04 (− 73) 4.000 980 1.00141 9.544

ψ2,3 4.89 (− 4) 5.33 (− 18) 1.04 (− 73) 4.000 980 1.00141 7.255

ψ3,1 4.27 (− 6) 3.03 (− 39) 5.31 (− 238) 5.975 1064 1.00168 11.486

ψ3,2 4.27 (− 6) 3.03 (− 39) 5.31 (− 238) 5.975 1064 1.00168 13.934

ψ3,3 4.27 (− 6) 3.03 (− 39) 5.31 (− 238) 5.975 1064 1.00168 14.113

S7 1.09 (− 7) 3.22 (− 57) 1.94 (− 297) 7.000 2375 1.00000 39.167

ψ4 3.73 (− 8) 9.06 (− 69) 1.68 (− 553) 7.983 1058 1.00196 11.836

ψ4 3.73 (− 8) 9.06 (− 69) 1.68 (− 553) 7.983 1058 1.00196 15.429

ψ4 3.73 (− 8) 9.06 (− 69) 1.68 (− 553) 7.983 1058 1.00196 13.394

Table 5 Performance of various iterative schemes at initial guess (0.083, 0.083, . . . , 0.083)T

Scheme ‖X (1) − X∗‖ ‖X (2) − X∗‖ ‖X (3) − X∗‖ ρ C CEI CPU time

M4,1 3.39 (− 16) 9.53 (− 67) 5.95 (− 269) 4.000 15336 1.00000 2.589

M4,2 3.39 (− 16) 9.53 (− 67) 5.95 (− 269) 4.000 15380 1.00000 2.852

ψ2,1 5.81 (− 16) 9.19 (− 67) 5.74 (− 265) 3.999 11132 1.00001 2.053

ψ2,2 5.81 (− 16) 9.19 (− 67) 5.74 (− 265) 3.999 11132 1.00001 2.464

ψ2,3 5.81 (− 16) 9.19 (− 67) 5.74 (− 265) 3.999 11132 1.00001 2.217

ψ3,1 2.09 (− 22) 1.11 (− 135) 2.42 (− 815) 6.000 11414 1.00001 7.354

ψ3,2 2.09 (− 22) 1.11 (− 135) 2.42 (− 815) 6.000 11414 1.00001 7.476

ψ3,3 2.09 (− 22) 1.11 (− 135) 2.42 (− 815) 6.000 11414 1.00001 7.191

S7 4.13 (− 34) 5.39 (− 248) 3.46 (− 1745) 7.000 47602 1.00000 37.715

ψ4,1 7.53 (− 29) 2.34 (− 231) 1.35 (− 1851) 8.000 11696 1.00001 13.906

ψ4,2 7.53 (− 29) 2.34 (− 231) 1.35 (− 1851) 8.000 11696 1.00001 16.121

ψ4,3 7.53 (− 29) 2.34 (− 231) 1.35 (− 1851) 8.000 11696 1.00001 15.264

Example 5 (see Grau-Sánchez et al. 2013)

cos−1(xi ) −
20
∑

j=1,i 	= j

(x j − xi ) = 0, i = 1, 2, 3 . . . 20,

where (t, ν) = (20, 119) are the values used in Eqs. (29)–(32). Solution of this problem is
X∗ = (0.08266851975958913 . . . , 0.08266851975958913 . . . , . . . ,0.08266851975958913
. . .)T and comparisons of the method are displayed in Table 5.

Example 6 Considering the gravity flow discharge chute problem (see [Burden and Faires
(2014), pp. 646]).

Gi =
⎧

⎨

⎩

sin xi+1

vi+1
(1 − μwi+1) − sin xi

vi
(1 − μwi ) = 0, 1 ≤ i ≤ 19,

�y�20
i=1tan xi − X = 0, i = 20,
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Table 6 Results of various iterative schemes at initial value (0.75, 0.75, . . . , 0.75)T

Scheme ‖X (1) − X∗‖ ‖X (2) − X∗‖ ‖X (3) − X∗‖ ρ C CEI CPU time

M4,1 2.36 (− 4) 2.95 (− 17) 6.13 (− 69) 4.001 11232 1.00001 7.864

M4,2 2.32 (− 4) 2.70 (− 16) 1.24 (− 63) 4.000 11276 1.00001 7.924

ψ2,1 1.33 (− 5) 8.85 (− 22) 1.69 (− 86) 3.999 82592 1.00001 7.875

ψ2,2 1.33 (− 5) 8.85 (− 22) 1.69 (− 86) 3.999 82592 1.00001 7.878

ψ2,3 1.33 (− 5) 8.85 (− 22) 1.69 (− 86) 3.999 82592 1.00001 7.823

ψ3,1 9.14 (− 12) 2.76 (− 70) 1.39 (− 421) 5.997 84728 1.00002 25.334

ψ3,2 9.14 (− 12) 2.76 (− 70) 1.39 (− 421) 5.997 84728 1.00002 24.632

ψ3,3 9.14 (− 12) 2.76 (− 70) 1.39 (− 421) 5.997 84728 1.00002 19.553

S7 4.42 (− 28) 5.85 (− 197) 3.43 (− 804) 6.989 34332 1.00000 47.809

ψ4,1 1.77 (− 20) 6.52 (− 163) 2.71 (− 1303) 8.041 86804 1.00002 24.259

ψ4,2 1.77 (− 20) 6.52 (− 163) 2.71 (− 1303) 8.041 86804 1.00002 30.806

ψ4,3 1.77 (− 20) 6.52 (− 163) 2.71 (− 1303) 8.041 86804 1.00002 28.747

where v2i = v20 + 2gi�y − 2μ�y�20
j=1

1
cos x j

, 1 ≤ i ≤ 20 and wi = −�yvi�20
j=1

1
v3j cos x j

,

1 ≤ i ≤ 20.
Here, v0 = 0 initial velocity of the granular material, X = 2 the x-coordinate the end of

the chute, μ = 0 the friction force, g = 32.17 f t/s2 gravitational force and �y = 0.2 has
been considered. The solution of this system X∗ = (0.14062 . . . , 0.19954 . . . , 0.24522 . . . ,

0.28413 . . . , 0.31878 . . . , 0.35045 . . ., 0.37990 . . . , 0.40763 . . . , 0.43398 . . . , 0.45920 . . .,
0.48348 . . . , 0.50697 . . ., 0.52980 . . . , 0.55205 . . . , 0.57382 . . . , 0.59516 . . ., 0.61615 . . . ,

0.63683 . . .,0.65726 . . . , 0.67746 . . .)T and the values (t, ν) = (20, 84.8) used in Eqs. (29)–
(32) are tested in Table 6.

In Tables 2, 3, 4, 5, and 6, ‖X (k) − X∗‖ shows the errors of approximations to the corre-
sponding solutions of Examples 3–6, (ρ) the computational order of convergence and Ci the
computational costs given by Eqs. (29)–(32) in terms of products and the computational effi-
ciencies CEI , where˜b(− a) denoted by˜b× 10−a . The numerical results in Tables 2, 3, 4, 5,
and 6 demonstrate that proposed methods work more efficiently with less error as compared
to existing methods, namely M4,1, M4,2 and S7. In addition, the higher order methods not
only works on simple experiment, it also works on application-oriented problems as shown
in Examples 4 and 6.

7 Concluding remarks

In this work, we have proposed several families of Ostrowski’s method for solving non-
linear systems. The new families are completely derivative free, and therefore, suited to
those problems in which derivatives require lengthy computations. A development of an
inverse first-order divided difference operator for multivariable function is applied to prove
the convergence order of proposed methods. Moreover, the fourth- and sixth-order meth-
ods proposed by Grau-Sánchez et al. (2013) have been recovered as the special cases of
the presented families. Further, the computational efficiency index is used to compare the
efficiency of these different proposed families. Computational results have conformed robust
and efficient character of the proposed families. We have also presented local convergence
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analysis based on divided differences of order one and Lipschitz constants. This way we
expand the applicability of method (5), since in Sect. 3, we have to use hypotheses on high
order derivatives to obtain convergence which may not exist (Argyros et al. 2015). Some
numerical experimentations have also being carried out for a number of problems and results
are found to be at a par with those presented here. Thus, the new methods are very suitable
and applicable to solve nonlinear systems.
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