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Abstract In this work, we propose a modified inertial and forward–backward splitting
method for solving the fixed point problem of a quasi-nonexpansive multivalued mapping
and the inclusion problem. Then, we establish the weak convergence theorem of the proposed
method. The strongly convergent theorem is also established under suitable assumptions in
Hilbert spaces using the shrinking projection method. Some preliminary numerical experi-
ments are tested to illustrate the advantage performance of our methods.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖, respectively. LetCB(H)

and K (H) denote the families of nonempty closed bounded subsets and nonempty compact
subsets of H , respectively. The Hausdorff metric on CB(H) is defined by the following:

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}
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for all A, B ∈ CB(H), where d(x, B) = infb∈B ‖x − b‖. A single-valued mapping T :
H → H is said to be nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖
for all x, y ∈ H . A multivalued mapping T : H → CB(H) is said to be nonexpansive if

H(T x, T y) ≤ ‖x − y‖
for all x, y ∈ H . An element z ∈ H is called a fixed point of T : H → H (resp., T : H →
CB(H)) if z = T z (resp., z ∈ T z). The fixed point set of T is denoted by F(T ). If F(T ) �= ∅
and

H(T x, T p) ≤ ‖x − p‖
for all x ∈ H and p ∈ F(T ), then T is said to be quasi-nonexpansive. We write xn ⇀ x
to indicate that the sequence {xn} converges weakly to x and xn → x implies that {xn}
converges strongly to x .

For solving the fixed point problem of a single-valued nonlinear mapping, the Noor iter-
ation [see Noor (2000)] is defined by x1 ∈ H and⎧⎨

⎩
yn = γnxn + (1 − γn)T xn
zn = βnxn + (1 − βn)T yn
xn+1 = αnxn + (1 − αn)T zn,

(1.1)

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences in [0,1]. The iterative process Eq. (1.1) is
generalized form of the Mann(one-step) iterative process by Mann (1953) and the Ishikawa
(two-step) iterative process by Ishikawa (1974). Phuengrattana and Suantai (2011), in 2011,
introduced the new process using the concept of the Noor iteration and it is called the SP
iteration. These iteration is generated by x1 ∈ H and⎧⎨

⎩
yn = γnxn + (1 − γn)T xn
zn = βn yn + (1 − βn)T yn
xn+1 = αnzn + (1 − αn)T zn,

(1.2)

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences in [0,1]. They compared the convergence
speed of Mann, Ishikawa, Noor, and SP iteration, and obtained the SP iteration converges
faster than the others for the class of continuous and nondecreasing functions. However, the
Noor iteration and the SP iteration have only weak convergence even in a Hilbert space.

Let T : H → CB(H) be a multivalued mapping, I − T (I is an identity mapping) is said
to be demiclosed at y ∈ H if {xn}∞n=1 ⊂ H , such that xn ⇀ x and {xn − zn} → y, where
zn ∈ T xn imply x − y ∈ T x .

Since 1969, fixed point theorems and the existence of fixed points ofmultivaluedmappings
have been intensively studied and considered by many authors (see, for examples, Assad
and Kirk 1972; Nadler 1969; Pietramala 1991; Song and Wang 2009; Shahzad and Zegeye
2009). The study multivalued mapping is much more complicated and difficult more than
single-valued mapping. Many of the results have found nontrivial applications in pure and
applied science. Examples of such applications are in control theory, convex optimization,
differential inclusions, game theory, and economics. For the early results involving fixed
points of multivalued mappings and their applications, see Assad and Kirk (1972), Brouwer
(1912), Chidume et al. (2013), Daffer and Kaneko (1995), Deimling (1992), Dominguez
Benavides and Gavira (2007), Downing and Kirk (1977), Feng and Liu (2006), Geanakoplos
(2003), Goebel and Reich (1984), Jung (2007), Kakutani (1941), Khan et al. (2011), Liu

123



5752 W. Cholamjiak et al.

(2013), Reich (1978), Reich and Zaslavski (2002), Song and Cho (2011), Turkoglu and
Altun (2007), and references therein.

In 2008, Kohsaka and Takahashi (2008a, b) presented a new mapping which is called a
nonspreading mapping and obtained fixed point theorems for a single nonspreading mapping
and also a common fixed point theorems for a commutative family of nonspreading mapping
inBanach spaces. Let H be aHilbert space.Amapping T : H → H is said to be nonspreading
if

2‖T x − T y‖2 ≤ ‖x − T y‖2 + ‖y − T x‖2
for all x, y ∈ H . Recently, Iemoto and Takahashi (2009) showed that T : H → H is
nonspreading if and only if

‖T x − T y‖2 ≤ ‖x − y‖2 + 2〈x − T y, y − T y〉 ∀x, y ∈ H.

Furthermore, Takahashi (2010) defined a class of nonlinear mappings which is called hybrid
as follows:

‖T x − T y‖2 ≤ ‖x − y‖2 + 〈x − T x, y − T y〉
for all x, y ∈ H . It was shown that a mapping T : H → H is hybrid if and only if

3‖T x − T y‖2 ≤ ‖x − y‖2 + ‖y − T x‖2 + ‖x − T y‖2

for all x, y ∈ H .
In addition, recently, in 2013, Liu (2013) introduced the following class of multivalued

mappings: A mapping T : H → CB(H) is said to be nonspreading if

2‖ux − uy‖2 ≤ ‖ux − y‖2 + ‖uy − x‖2

for ux ∈ T x and uy ∈ T y for all x, y ∈ H . In addition, he obtained a weak convergence
theorem for finding a commonfixed point of a finite family of nonspreading and nonexpansive
multivalued mappings.

Very recently,Cholamjiak andCholamjiak (2016) introduced anewconcept ofmultivalued
mappings in Hilbert spaces using Hausdorff metric. A multivalued mapping T : H →
CB(H) is said to be hybrid if

3H(T x, T y)2 ≤ ‖x − y‖2 + d(y, T x)2 + d(x, T y)2

for all x, y ∈ H . They showed that ifT is hybrid and F(T ) �= ∅, thenT is quasi-nonexpansive.
Moreover, they gave an example of a hybrid multivalued mapping which is not nonexpansive
(see Cholamjiak and Cholamjiak (2016)) and proved some properties and the existence of
fixed points of these mappings. Furthermore, they also proved weak and strong convergence
theorems for a finite family of hybrid multivalued mappings.

Moreover, we study the following inclusion problem: find x̂ ∈ H , such that

0 ∈ Ax̂ + Bx̂, (1.3)

where A : H → H is an operator and B : H → 2H is a multivalued operator. We denote
the solution set of Eq. (1.3) by (A+ B)−1(0). This problem has received much attention due
to its applications in large variety of problems arising in convex programming, variational
inequalities, split feasibility problem, and minimization problem. To be more precise, some
concrete problems in machine learning, image processing, and linear inverse problem can be
modeled mathematically as this formulation.

For solving the problem (1.3), the forward–backward splitting method (Bauschke and
Combettes 2011; Cholamjiak 1994; Combettes and Wajs 2005; López et al. 2012; Lorenz
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and Pock 2015; Passty 1979; Tseng 2000) is usually employed and is defined by the following
manner: x1 ∈ H and

xn+1 = (I + r B)−1(xn − r Axn), n ≥ 1, (1.4)

where r > 0. In this case, each step of iterates involves only with A as the forward step
and B as the backward step, but not the sum of operators. This method includes, as special
cases, the proximal point algorithm (Rockafellar 1976) and the gradient method. In Lions
and Mercier (1979), Lions and Mercier introduced the following splitting iterative methods
in a real Hilbert space:

xn+1 = (2J A
r − I )(2J B

r − I )xn, n ≥ 1 (1.5)

and
xn+1 = J A

r (2J B
r − I )xn + (I − J B

r )xn, n ≥ 1, (1.6)

where J Tr = (I + rT )−1 with r > 0. The first one is often called Peaceman–Rachford
algorithm (Peaceman and Rachford 1955) and the second one is called Douglas–Rachford
algorithm (Douglas and Rachford 1956).We note that both algorithms are weakly convergent
in general (Bauschke and Combettes 2001; Lions and Mercier 1979).

Many problems can be formulated as a problemof fromEq. (1.3). For instance, a stationary
solution to the initial valued problem of the evolution equation:

0 ∈ ∂u

∂t
− Fu, u(0) = u0 (1.7)

can be recast as Eq. (1.3) when the governingmaximal monotone F is of the form F = A+B
(Lions andMercier 1979). In optimization, it often needs (Combettes andWajs 2005) to solve
a minimization problem of the form:

min
x∈H f (x) + g(x), (1.8)

where f and g are proper and lower semicontinuous convex functions from H1 to the extended
real line R̄ = (−∞,∞], such that f is differentiable with L-Lipschitz continuous gradient,
and the proximal mapping of g is as follows:

x �→ argmin
y∈H g(y) + ‖x − y‖2

2r
. (1.9)

In particular, if A := ∇ f and B := ∂g, where ∇ f is the gradient of f and ∂g is the
subdifferential of g which is defined by ∂g(x) := {

s ∈ H : g(y) ≥ g(x)+〈s, y− x〉, ∀y ∈
H

}
, then problem (1.3) becomes Eqs. (1.4) and (1.8) also becomes

xn+1 = proxrg(xn − r∇ f (xn)), n ≥ 1, (1.10)

where r > 0 is the stepsize and proxrg = (I + r∂g)−1 is the proximity operator of g.
In 2001, Alvarez and Attouch (2001) employed the heavy ball method which was studied

in Polyak (1987, 1964) for maximal monotone operators by the proximal point algorithm.
This algorithm is called the inertial proximal point algorithm and it is of the following form:{

yn = xn + θn(xn − xn−1)

xn+1 = (I + rn B)−1yn, n ≥ 1.
(1.11)

It was proved that if {rn} is nondecreasing and {θn} ⊂ [0, 1) with
∞∑
n=1

θn‖xn − xn−1‖2 < ∞, (1.12)
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then algorithm (1.11) converges weakly to a zero of B. In particular, Condition (1.12) is true
for θn < 1/3. Here, θn is an extrapolation factor and the inertia is represented by the term
θn(xn−xn−1). It is remarkable that the inertial terminology greatly improves the performance
of the algorithm and has a nice convergence properties (Alvarez 2004; Dang et al. 2017; Dong
et al. 2018; Nesterov 1983).

Recently, Moudafi and Oliny (2003) proposed the following inertial proximal point algo-
rithm for solving the zero-finding problem of the sum of two monotone operators:{

yn = xn + θn(xn − xn−1)

xn+1 = (I + rn B)−1(yn − rn Axn), n ≥ 1,
(1.13)

where A : H → H and B : H → 2H . They obtained the weak convergence theorem
provided rn < 2/L with L the Lipschitz constant of A and the condition (1.12) holds. It is
observed that, for θn > 0, the algorithm (1.13) does not take the form of a forward–backward
splitting algorithm, since operator A is still evaluated at the point xn .

Recently, Lorenz and Pock (2015) proposed the following inertial forward–backward
algorithm for monotone operators:{

yn = xn + θn(xn − xn−1)

xn+1 = (I + rn B)−1(yn − rn Ayn), n ≥ 1,
(1.14)

where {rn} is a positive real sequence. It is observed that algorithm (1.14) differs from that
of Moudafi and Oliny insofar that they evaluated the operator B as the inertial extrapolate
yn . The algorithms involving the inertial term mentioned above have weak convergence, and
however, in some applied disciplines, the norm convergence is more desirable that the weak
convergence (Bauschke and Combettes 2001).

In this work, we introduce a new algorithm combining the SP iteration with the inertial
technical term for approximating common elements of the set of solutions of fixed point
problems for a quasi-nonexpansive mapping and the set of solutions of inclusion problems.
We prove some weak convergence theorems of the sequences generated by our iterative
process under appropriate additional assumptions in Hilbert spaces. We aim to introduce
an algorithm that ensures the strong convergence. To this end, using the idea of Takahashi
et al. (2008), we employ the following projection method which is defined by: For C1 = C ,
x1 = PC1x0 and ⎧⎨

⎩
yn = αnxn + (1 − αn)T xn,
Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, ∀n ∈ N,

(1.15)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. It was proved that the sequence {xn} generated by (1.15)
converges strongly to a fixed point of a nonexpansive mapping T . This method is usually
called the shrinking projectionmethod [see also Nakajo and Takahashi (2003)]. Furthermore,
we then establish the strong convergence result under some suitable conditions. Finally, we
test some numerical experiments for supporting our main results and give a comparison
between our inertial projection method and the standard projection method. It is remarkable
that the convergence behavior of our method has a good convergence rate.

2 Preliminaries and lemmas

Let C be a nonempty, closed, and convex subset of a Hilbert space H . The nearest point
projection of H onto C is denoted by PC , that is, ‖x − PCx‖ ≤ ‖x − y‖ for all x ∈ H
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and y ∈ C . Such PC is called the metric projection of H onto C . We know that the metric
projection PC is firmly nonexpansive, that is

‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉
for all x, y ∈ H . Furthermore, 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and y ∈ C ; see
(Takahashi 2000).

Lemma 2.1 (Takahashi 2000) Let H be a real Hilbert space. Then, the following equations
hold:

(1) ‖x − y‖2 = ‖x‖2 − ‖y‖2 − 2〈x − y, y〉 for all x, y ∈ H.
(2) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉 for all x, y ∈ H.
(3) ‖t x + (1 − t)y‖2 = t‖x‖2 + (1 − t)‖y‖2 − t (1 − t)‖x − y‖2 for all t ∈ [0, 1] and

x, y ∈ H.

Lemma 2.2 (Martinez-Yanes and Xu 2006) Let C be a nonempty closed and convex subset
of a real Hilbert space H1. For each x, y ∈ H1, and a ∈ R, the set

D = {v ∈ C : ‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉 + a}
is closed and convex.

In what follows, we shall use the following notation:

T A,B
r = J B

r (I − r A) = (I + r B)−1(I − r A), r > 0. (2.1)

Lemma 2.3 (López et al. 2012) Let X be a Banach space. Let A : X → X be an α-inverse
strongly accretive of order q and B : X → 2X an m-accretive operator. Then, we have

(i) For r > 0, F(T A,B
r ) = (A + B)−1(0).

(ii) For 0 < s ≤ r and x ∈ X, ‖x − T A,B
s x‖ ≤ 2‖x − T A,B

r x‖.
Lemma 2.4 (López et al. 2012)Let X be a uniformly convex and q-uniformly smoothBanach
space for some q ∈ (0, 2]. Assume that A is a single-valued α-inverse strongly accretive of
order q in X. Then, given r > 0, there exists a continuous, strictly increasing, and convex
function φq : R+ → R

+ with φq(0) = 0, such that, for all x, y ∈ Br ,

‖T A,B
r x − T A,B

r y‖q ≤ ‖x − y‖q − r(αq − rq−1kq)‖Ax − Ay‖q
−φq(‖(I − J B

r )(I − r A)x − (I − J B
r )(I − r A)y‖),

where kq is the q-uniform smoothness coefficient of X.

Lemma 2.5 (Alvarez and Attouch 2001) Let {ψn}, {δn}, and {αn} be the sequences in
[0,+∞), such that ψn+1 ≤ ψn + αn(ψn − ψn−1) + δn for all n ≥ 1,

∑∞
n=1 δn < +∞

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ≥ 1. Then, the followings
hold:

(i) �n≥1[ψn − ψn−1]+ < +∞, where [t]+ = max{t, 0};
(ii) there exists ψ∗ ∈ [0,+∞), such that limn→+∞ ψn = ψ∗.

Lemma 2.6 (Browder 1965)LetC be a nonempty closed convex subset of a uniformly convex
space X and T a nonexpansive mapping with F(T ) �= ∅. If {xn} is a sequence in C, such
that xn ⇀ x and (I −T )xn → y, then (I −T )x = y. In particular, if y = 0, then x ∈ F(T ).
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Lemma 2.7 (Suantai 2005) Let X be a Banach space satisfying Opial’s condition and let
{xn} be a sequence in X. Let u, v ∈ X be such that

limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist.

If {xnk } and {xmk } are subsequences of {xn} which converge weakly to u and v, respectively,
then u = v.

Proposition 2.8 (Cholamjiak 1994) Let q > 1 and let X be a real smooth Banach space
with the generalized duality mapping jq . Let m ∈ N be fixed. Let {xi }mi=1 ⊂ X and ti ≥ 0 for
all i = 1, 2, . . . ,m with

∑m
i=1 ti ≤ 1. Then, we have∥∥∥∥∥
m∑
i=1

ti xi

∥∥∥∥∥
q

≤
∑m

i=1 ti‖xi‖q
q − (q − 1)

(∑m
i=1 ti

) .

Condition (A) Let H be a Hilbert space. A multivalued mapping T : H → CB(H) is said
to satisfy Condition (A) if ‖x − p‖ = d(x, T p) for all x ∈ H and p ∈ F(T ).

Lemma 2.9 (Cholamjiak and Cholamjiak 2016) Let H be a real Hilbert space. Let T :
H → K (H) be a hybrid multivalued mapping. If F(T ) �= ∅, then T is quasi-nonexpansive
multivalued mapping.

Lemma 2.10 (Cholamjiak and Cholamjiak 2016) Let H be a real Hilbert space. Let T :
H → K (H) be a hybrid multivalued mapping with F(T ) �= ∅. Then, F(T ) is closed.

Lemma 2.11 Cholamjiak and Cholamjiak (2016) Let H be a real Hilbert space. Let T :
H → K (H) be a hybrid multivalued mapping with F(T ) �= ∅. If T satisfies Condition (A),
then F(T ) is convex.

Lemma 2.12 Cholamjiak and Cholamjiak (2016) Let H be a real Hilbert space. Let T :
H → K (H) be a hybrid multivalued mapping. Let {xn} be a sequence in H, such that
xn ⇀ p and limn→∞ ‖xn − yn‖ = 0 for some yn ∈ T xn. Then, p ∈ T p.

3 Main results

In this section, we aim to introduce and prove the strong convergence of an inertial method
with a forward–backward method for solving inclusion problems and fixed point problems
of quasi-nonexpansive mapping in Hilbert spaces. To this end, we need the following crucial
results.

Lemma 3.1 Let H be a real Hilbert space. Let T : H → CB(H) be a quasi-nonexpansive
mapping with F(T ) �= ∅. Then, F(T ) is closed.

Proof If F(T ) = ∅, then it is closed. Assume that F(T ) �= ∅. Let {xn} be a sequence in
F(T ), such that xn → x as n → ∞. We have

d(x, T x) ≤ ‖x − xn‖ + d(xn, T x)

≤ ‖x − xn‖ + H(T xn, T x)

≤ 2‖x − xn‖.
It follows that d(x, T x) = 0. Hence, x ∈ F(T ). We conclude that F(T ) is closed. ��
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Lemma 3.2 Let C be a closed convex subset of a realHilbert space H. Let T : H → CB(H)

be a quasi-nonexpansive mapping with F(T ) �= ∅. If T satisfies Condition (A), then F(T )

is convex.

Proof Let p = tp1 + (1− t)p2, where p1, p2 ∈ F(T ) and t ∈ (0, 1). Let z ∈ T p. It follows
from Lemma 2.1 that

‖p − z‖2 = ‖t (z − p1) + (1 − t)(z − p2)‖2
= t‖z − p1‖2 + (1 − t)‖z − p2‖2 − t (1 − t)‖p1 − p2‖2
= td(z, T p1)

2 + (1 − t)d(z, T p2)
2 − t (1 − t)‖p1 − p2‖2

≤ t H(T p, T p1)
2 + (1 − t)H(T p, T p2)

2 − t (1 − t)‖p1 − p2‖2
≤ t‖p − p1‖2 + (1 − t)‖p − p2‖2 − t (1 − t)‖p1 − p2‖2
= t (1 − t)2‖p1 − p2‖2 + (1 − t)t2‖p1 − p2‖2 − t (1 − t)‖p1 − p2‖2
= 0,

and hence, p = z. Therefore, p ∈ F(T ). This completes the proof.

Theorem 3.3 Let H be a real Hilbert space and T : H → CB(H) be a quasi-nonexpansive
mapping satisfying Condition (A). Let A : H → H be an α-inverse strongly monotone
operator and B : H → 2H a maximal monotone operator. Assume that S = (A+ B)−1(0)∩
F(T ) �= ∅ and I − T is demiclosed at 0 . Let {xn}, {yn} and {zn} be sequences generated by
x0, x1 ∈ H and ⎧⎨

⎩
yn = xn + θn(xn − xn−1)

zn ∈ αn yn + (1 − αn)T yn,
xn+1 = βnzn + (1 − βn)J B

rn (I − rn A)zn, n ≥ 1,
(3.1)

where J B
rn = (I + rn B)−1, {rn} ⊂ (0, 2α), {θn} ⊂ [0, θ ] for some θ ∈ [0, 1) and {αn} and

{βn} are sequences in [0, 1]. Assume that the following conditions hold:

(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞.
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(iii) lim supn→∞ βn < 1;
(iv) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α.

Then, the sequence {xn} converges weakly to q ∈ S.

Proof Write Jn = (I + rn B)−1(I − rn A). Notice that we can write

xn+1 = βnzn + (1 − βn)Jnzn . (3.2)

Let p ∈ S and T satisfies Condition (A). For wn ∈ T yn , such that

zn = αn yn + (1 − αn)wn, (3.3)

we have

‖zn − p‖ ≤ αn‖yn − p‖ + (1 − αn)‖wn − p‖
= αn‖yn − p‖ + (1 − αn)d(wn, T p)

≤ αn‖yn − p‖ + (1 − αn)H(T yn, T p)

≤ ‖yn − p‖
≤ ‖xn − p‖ + θn‖xn − xn−1‖. (3.4)
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By Lemma 2.4 and Eq. (3.4), we have

‖xn+1 − p‖ ≤ βn‖zn − p‖ + (1 − βn)‖Jnzn − p‖
≤ ‖zn − p‖
≤ ‖xn − p‖ + θn‖xn − xn−1‖. (3.5)

From Lemma 2.5 and the assumption (i), we obtain limn→∞ ‖xn − p‖ exists, in particular,
{xn} is bounded and also are {yn} and {zn}. We next show that xn ⇀ q ∈ (A + B)−1(0). By
Lemmas 2.1, 2.4, and T which satisfies Condition (A), we have

‖xn+1 − p‖2 = ‖βn(zn − p) + (1 − βn)(Jnzn − p)‖2
≤ βn‖zn − p‖2 + (1 − βn)‖Jnzn − p‖2
≤ ‖zn − p‖2 − (1 − βn)

(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ αn‖yn − p‖2 + (1 − αn)‖wn − p‖2
−(1 − βn)

(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

= αn‖yn − p‖2 + (1 − αn)d(wn, T p)
2

−(1 − βn)
(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ αn‖yn − p‖2 + (1 − αn)H(T yn, T p)
2

−(1 − βn)
(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ ‖yn − p‖2 − (1 − βn)
(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ ‖xn − p‖2 + 2θn〈xn − xn−1, yn − p〉
−(1 − βn)

(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)
. (3.6)

Since limn→∞ ‖xn − p‖ exists, it follows, from Eq. (3.6), the assumptions (i), (iii), and (iv)
that:

lim
n→∞ ‖Azn − Ap‖ = lim

n→∞ ‖zn − rn Azn − Jnzn + rn Ap‖ = 0. (3.7)

This give, by the triangle inequality, that

lim
n→∞ ‖Jnzn − zn‖ = 0. (3.8)

Since lim infn→∞ rn > 0, there is r > 0, such that rn ≥ r for all n ≥ 1. Lemma 2.3 (ii)
yields that

‖T A,B
r zn − zn‖ ≤ 2‖Jnzn − zn‖. (3.9)

Then, by Eqs. (3.8) and (3.9), we obtain

lim
n→∞ ‖T A,B

r zn − zn‖ = 0. (3.10)

From Eq. (3.8), we have

lim
n→∞ ‖xn+1 − zn‖ = lim

n→∞(1 − βn)‖Jnzn − zn‖ = 0. (3.11)
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Again by Lemmas 2.1, 2.4, and T satisfies Condition (A), we have

‖xn+1 − p‖2 ≤ βn‖zn − p‖2 + (1 − βn)‖Jnzn − p‖2
≤ ‖zn − p‖2
≤ αn‖yn − p‖2 + (1 − αn)‖wn − p‖2 − αn(1 − αn)‖wn − yn‖2
= αn‖yn − p‖2 + (1 − αn)d(wn, T p)

2 − αn(1 − αn)‖wn − yn‖2
≤ αn‖yn − p‖2 + (1 − αn)H(T yn, T p)

2 − αn(1 − αn)‖wn − yn‖2
≤ ‖yn − p‖2 − αn(1 − αn)‖wn − yn‖2
≤ ‖xn − p‖2 + 2θn〈xn − xn−1, yn − p〉 − αn(1 − αn)‖wn − yn‖2. (3.12)

Since limn→∞ ‖xn − p‖ exists and the Assumption (i) and (ii), it follows from Eq. (3.12)
that

lim
n→∞ ‖wn − yn‖ = 0. (3.13)

This implies that
lim
n→∞ ‖zn − yn‖ = lim

n→∞(1 − αn)‖wn − yn‖ = 0. (3.14)

From the definition of {yn} and the Assumption (i), we have

lim
n→∞ ‖yn − xn‖ = lim

n→∞ θn‖xn − xn−1‖ = 0. (3.15)

It follows from Eqs. (3.11), (3.14), and (3.15) that

‖xn+1 − xn‖ ≤ ‖xn+1 − zn‖ + ‖zn − yn‖ + ‖yn − xn‖ → 0 (3.16)

as n → ∞. From Eqs. (3.11) and (3.16), we obtain

‖zn − xn‖ ≤ ‖zn − xn+1‖ + ‖xn+1 − xn‖ → 0 (3.17)

as n → ∞. Since {xn} is bounded and H is reflexive, ωw(xn) = {x ∈ H : xni ⇀ x, {xni } ⊂
{xn}} is nonempty. Let q ∈ ωw(xn) be an arbitrary element. Then, there exists a subsequence
{xni } ⊂ {xn} converging weakly to q . Let p ∈ ωw(xn) and {xnm } ⊂ {xn} be such that
xnm ⇀ p. FromEq. (3.17), we also have zni ⇀ q and znm ⇀ p. Since T A,B

r is nonexpansive,
by Lemma 2.6 and Eq. (3.9), we have p, q ∈ (A + B)−1(0). From Eq. (3.15), we obtain
yni ⇀ q and ynm ⇀ p. Since I −T is demiclosed at 0 and Eq. (3.13), we have p, q ∈ F(T ).
Applying Lemma 2.7, we obtain p = q . ��
Theorem 3.4 Let H be a real Hilbert space and T : H → CB(H) be a quasi-nonexpansive
mapping satisfying Condition (A). Let A : H → H be an α-inverse strongly monotone
operator and B : H → 2H a maximal monotone operator. Assume that S = (A+ B)−1(0)∩
F(T ) �= ∅ and I −T is demiclosed at 0 . Let {xn}, {yn}, {zn} and {vn} be sequences generated
by x0, x1 ∈ H and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1)

zn ∈ αn yn + (1 − αn)T yn,
vn = βnzn + (1 − βn)J B

rn (I − rn A)zn,
Cn+1 = {z ∈ Cn : ‖vn − z‖2≤‖xn − z‖2+2θ2n ‖xn−xn−1‖2−2θn〈xn − z, xn−1−xn〉},
xn+1 = PCn+1x1, n ≥ 1,

(3.18)
where J B

rn = (I + rn B)−1, {rn} ⊂ (0, 2α), {θn} ⊂ [0, θ ] for some θ ∈ [0, 1), and {αn} and
{βn} are sequences in [0, 1]. Assume that the following conditions hold:
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(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞.

(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.

(iii) lim supn→∞ βn < 1.

(iv) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α.

Then, the sequence {xn} converges strongly to q = PSx1.

Proof We split the proof into five steps.

Step 1 Show that PCn+1x1 is well defined for every x ∈ H . We know that (A + B)−1(0)
is closed and convex by Lemma 2.3. Since T satisfies Condition (A), F(T ) is closed and
convex by Lemmas 3.1 and 3.2. From the definition of Cn+1 and Lemma 2.9, Cn+1 is closed
and convex for each n ≥ 1. For each n ∈ N, we put Jn = (I + rn B)−1(I − rn A) and let
p ∈ S. Since Jn is nonexpansive, we have

‖vn − p‖2 ≤ βn‖zn − p‖2 + (1 − βn)‖Jnzn − p‖2
≤ ‖zn − p‖2
≤ αn‖yn − p‖2 + (1 − αn)‖wn − p‖2
= αn‖yn − p‖2 + (1 − αn)d(wn, T p)

2

≤ αn‖yn − p‖2 + (1 − αn)H(T yn, T p)
2

≤ ‖yn − p‖2
≤ ‖xn − p‖2 + 2θn〈xn − xn−1, yn − p〉
≤ ‖xn − p‖2 + 2θ2n ‖xn − xn−1‖2 − 2θn〈xn − p, xn−1 − xn〉. (3.19)

Therefore, we have p ∈ Cn+1, and thus, S ⊂ Cn+1. Therefore, PCn+1x1 is well defined.

Step 2 Show that limn→∞ ‖xn − x1‖ exists. Since S is nonempty, closed, and convex subset
of H , there exists a unique v ∈ S, such that

v = PSx1. (3.20)

From xn = PCn x1, Cn+1 ⊂ Cn , and xn+1 ∈ Cn+1, ∀n ≥ 1, we get

‖xn − x1‖ ≤ ‖xn+1 − x1‖, ∀n ≥ 1. (3.21)

On the other hand, as S ⊂ Cn , we obtain

‖xn − x1‖ ≤ ‖v − x1‖, ∀n ≥ 1. (3.22)

It follows that the sequence {xn} is bounded and nondecreasing. Therefore, limn→∞ ‖xn−x1‖
exists.

Step 3 Show that xn → q ∈ C as n → ∞. For m > n, by the definition of Cn , we have
xm = PCm x1 ∈ Cm ⊆ Cn . By Lemma 2.9, we obtain that

‖xm − xn‖2 ≤ ‖xm − x1‖2 − ‖xn − x1‖2. (3.23)

Since limn→∞ ‖xn − x1‖ exists, it follows from Eq. (3.23) that limn→∞ ‖xm − xn‖ = 0.
Hence, {xn} is Cauchy sequence in C and so xn → q ∈ C as n → ∞.
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Step 4 Show that q ∈ S. From Step 3, we have that limn→∞ ‖xn+1 − xn‖ = 0. Since
xn+1 ∈ Cn , we have

‖vn − xn‖ ≤ ‖vn − xn+1‖ + ‖xn+1 − xn‖
≤

√
‖xn − xn+1‖2 + 2θ2n ‖xn − xn−1‖2 − 2θn〈xn − xn+1, xn−1 − xn〉

+‖xn+1 − xn‖. (3.24)

By the Assumption (i) and Eq. (3.24), we obtain

lim
n→∞ ‖vn − xn‖ = 0. (3.25)

Since Jn is nonexpansive and T satisfies Condition (A), by Lemma 2.1, we have

‖vn − p‖2 = ‖βn(zn − p) + (1 − βn)(Jnzn − p)‖2
≤ βn‖zn − p‖2 + (1 − βn)‖Jnzn − p‖2
≤ ‖zn − p‖2 − (1 − βn)

(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ αn‖yn − p‖2 + (1 − αn)‖wn − p‖2 − (1 − βn)
(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

= αn‖yn − p‖2 + (1 − αn)d(wn, T p)
2 − (1 − βn)

(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ αn‖yn − p‖2 + (1 − αn)H(T yn, T p)
2 − (1 − βn)

(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ ‖yn − p‖2 − (1 − βn)
(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)

≤ ‖xn − p‖2 + 2θn〈xn − xn−1, yn − p〉 − (1 − βn)
(
rn(2α − rn)‖Azn − Ap‖2

−‖zn − rn Azn − Jnzn + rn Ap‖
)
. (3.26)

It follows from Eq. (3.26), the Assumptions (i), (iii), and (iv) that

lim
n→∞ ‖Azn − Ap‖ = lim

n→∞ ‖zn − rn Azn − Jnzn + rn Ap‖ = 0. (3.27)

This give, by the triangle inequality, that

lim
n→∞ ‖Jnzn − zn‖ = 0. (3.28)

Since lim infn→∞ rn > 0, there is r > 0, such that rn ≥ r for all n ≥ 1. Lemma 2.3 (ii)
yields that

‖T A,B
r zn − zn‖ ≤ 2‖Jnzn − zn‖. (3.29)

Then, by Eqs. (3.28) and (3.29), we obtain

lim
n→∞ ‖T A,B

r zn − zn‖ = 0. (3.30)

From Eq. (3.29), we have

lim
n→∞ ‖vn − zn‖ = lim

n→∞(1 − βn)‖Jnzn − zn‖ = 0. (3.31)
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It follows from Eqs. (3.25) and (3.31) that

lim
n→∞ ‖zn − xn‖ = 0. (3.32)

By the definition of {yn} and the Assumption (i), we obtain

lim
n→∞ ‖yn − xn‖ = 0. (3.33)

It follows from Eqs. (3.25) and (3.33) that

‖vn − yn‖ ≤ ‖vn − xn‖ + ‖xn − yn‖ → 0 (3.34)

as n → ∞. Since {xn} is bounded and H is reflexive, ωw(xn) = {x ∈ H : xni ⇀ x, {xni } ⊂
{xn}} is nonempty. Let q ∈ ωw(xn) be an arbitrary element. Then, there exists a subsequence
{xni } ⊂ {xn} converging weakly to q . Let p ∈ ωw(xn) and {xnm } ⊂ {xn} be such that
xnm ⇀ p. FromEq. (3.32), we also have zni ⇀ q and znm ⇀ p. Since T A,B

r is nonexpansive,
by Lemma 2.6 and Eq. (3.30), we have p, q ∈ (A + B)−1(0). From Eq. (3.33), we obtain
yni ⇀ q and ynm ⇀ p. Since I −T is demiclosed at 0 and Eq. (3.34), we have p, q ∈ F(T ).
Applying Lemma 2.7, we obtain p = q .

Step 5 Show that q = PSx1. Since xn = PCn x1 and S ⊂ Cn , we obtain

〈x1 − xn, xn − z〉 ≥ 0, ∀z ∈ S. (3.35)

By taking the limit in Eq. (3.35), we obtain

〈x1 − q, q − z〉 ≥ 0, ∀z ∈ S. (3.36)

This shows that q = PSx1.

By Lemmas 2.9–2.11, we know that if F(T ) �= ∅, then a hybrid multivalued mapping
T : H → K (H) is quasi-nonexpansive and F(T ) is closed and convex. We also know that
I − T is demiclosed at 0 by Lemma 2.12. We then obtain the following results.

Theorem 3.5 Let H be a real Hilbert space and T : H → K (H) be a hybrid multivalued
mapping satisfying Condition (A). Let A : H → H be an α-inverse strongly monotone
operator and B : H → 2H a maximal monotone operator. Assume that S = (A+ B)−1(0)∩
F(T ) �= ∅. Let {xn}, {yn} and {zn} be sequences generated by x0, x1 ∈ H and⎧⎨

⎩
yn = xn + θn(xn − xn−1)

zn ∈ αn yn + (1 − αn)T yn,
xn+1 = βnzn + (1 − βn)J B

rn (I − rn A)zn, n ≥ 1,
(3.37)

where J B
rn = (I + rn B)−1, {rn} ⊂ (0, 2α), {θn} ⊂ [0, θ ] for some θ ∈ [0, 1) and {αn} and

{βn} are sequences in [0, 1]. Assume that the following conditions hold:

(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞.
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(iii) lim supn→∞ βn < 1.
(iv) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α.

Then, the sequence {xn} converges weakly to q ∈ S.

Theorem 3.6 Let H be a real Hilbert space and T : H → CB(H) be a hybrid multivalued
mapping satisfying Condition (A). Let A : H → H be an α-inverse strongly monotone
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operator and B : H → 2H a maximal monotone operator. Assume that S = (A+ B)−1(0)∩
F(T ) �= ∅. Let {xn}, {yn}, {zn}, and {vn} be sequences generated by x0, x1 ∈ H and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1)

zn ∈ αn yn + (1 − αn)T yn,
vn = βnzn + (1 − βn)J B

rn (I − rn A)zn,
Cn+1 = {z ∈ Cn : ‖vn − z‖2≤‖xn − z‖2+2θ2n ‖xn−xn−1‖2 − 2θn〈xn − z, xn−1 − xn〉},
xn+1 = PCn+1x1, n ≥ 1,

(3.38)
where J B

rn = (I + rn B)−1, {rn} ⊂ (0, 2α), and {θn} ⊂ [0, θ ] for some θ ∈ [0, 1), and {αn}
and {βn} are sequences in [0, 1]. Assume that the following conditions hold:

(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞.
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(iii) lim supn→∞ βn < 1.
(iv) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α.

Then, the sequence {xn} converges strongly to q = PSx1.

Remark 3.7 We remark here that the condition (i) is easily implemented in numerical com-
putation, since the value of ‖xn − xn−1‖ is known before choosing θn . Indeed, the parameter
θn can be chosen, such that 0 ≤ θn ≤ θ̄n , where

θ̄n =
{
min

{
ωn‖xn−xn−1‖ , θ

}
if xn �= xn−1,

θ otherwise,

where {ωn} is a positive sequence, such that
∑∞

n=1 ωn < ∞.

We now give an example in Euclidean space R3 to support the main theorem.

Example 3.8 Let H = R
3 and C = {x ∈ R

3 : ‖x‖ ≤ 2}, and let T : R3 → CB(R3) be
defined by

T x =
{ {(0, 0, 0)} if x ∈ C;

{y ∈ R
3 : ‖y‖ ≤ 1

‖x‖ } otherwise,

where x = (x1, x2, x3) ∈ R
3. We see that T is a quasi-nonexpansive multivalued mapping.

Let A : R3 → R
3 be defined by Ax = 3x + (1, 2, 1) and let B : R3 → R

3 be defined by
Bx = 4x , where x = (x1, x2, x3) ∈ R

3. We see that A is 1/3-inverse strongly monotone and
B is maximal monotone. Moreover, by a direct calculation, we have for rn > 0

J B
rn (x − rn Ax) = (I + rn B)−1(x − rn Ax)

= 1 − 3rn
1 + 4rn

x − rn
1 + 4rn

(1, 2, 1), (3.39)

where x = (x1, x2, x3) ∈ R
3. Since α = 1/3, we can choose rn = 0.1 for all n ∈ N. Let

αn = βn = n
100n+1 and

θn =
{
min

{
1

n2‖xn−xn−1‖ , 0.5
}

if xn �= xn−1,

0.5 otherwise.

We provide a numerical test of a comparison between our inertial forward–backward
method defined in Theorem 3.4 and a standard forward–backward method (i.e., θn = 0). The
stoping criterion is defined by En = ‖xn+1 − xn‖ < 10−9.

The different choices of x0 and x1 are given as follows:
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Choice 1: x0 = (−2, 8,−5) and x1 = (−3,−5, 8).
Choice 2: x0 = (−1, 7, 6) and x1 = (−3, 1,−1).
Choice 3: x0 = (−2.34, 3.29,−4.56) and x1 = (6.13,−5.24,−1.19).

Remark 3.9 From Figs. 1, 2, and 3, it is shown that our forward–backward method with the
inertial technical term has a good convergence speed and requires small number of iterations
than the standard forward–backward method for each of the randoms.

4 Applications and numerical experiments

In this section, we discuss various applications in the variational inequality problem and the
convex minimization problem.

4.1 Variational inequality problem

The variational inequality problem (VIP) is to find a point x̂ ∈ C , such that

〈Ax̂, x − x̂〉 ≥ 0, ∀x ∈ C, (4.1)

where A : C → H is a nonlinear monotone operator. The solution set of Eq. (4.1) will
be denoted by S. The extragradient method is used to solve the VIP (4.1). It is also known
that the VIP is a special case of the problem of finding zeros of the sum of two monotone
operators. Indeed, the resolvent of the normal cone is nothing but the projection operator.
Therefore, we obtain immediately the following results.

Theorem 4.1 Let H be a real Hilbert space and T : H → CB(H) be a quasi-nonexpansive
mapping satisfying Condition (A). Let A : H → H be an α-inverse strongly monotone
operator and C be a nonempty closed convex subset of H. Assume that S ∩ F(T ) �= ∅ and
I −T is demiclosed at 0. Let {xn}, {yn}, {zn}, and {vn} be sequences generated by x0, x1 ∈ H
and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1)

zn ∈ αn yn + (1 − αn)T yn,
vn = βnzn + (1 − βn)PC (zn − rn Azn),
Cn+1 = {z ∈ Cn : ‖vn − z‖2≤‖xn−z‖2+2θ2n ‖xn−xn−1‖2−2θn〈xn − z, xn−1−xn〉},
xn+1 = PCn+1x1, n ≥ 1,

(4.2)
where {rn} ⊂ (0, 2α), {θn} ⊂ [0, θ ] for some θ ∈ [0, 1), and {αn} and {βn} are sequences in
[0, 1]. Assume that the following conditions hold:

(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞.
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(iii) lim supn→∞ βn < 1.
(iv) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2α.

Then, the sequence {xn} converges strongly to q = PS∩F(T )x1.

Example 4.2 Let H = R
3 and C = {(x1, x2, x3) ∈ R

3|〈a, x〉 ≥ b}, where a = (2, 1,−3)

and b = 2, and let A =
(

1 −1 5
0 1 3
0 0 2

)
.
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Fig. 1 Error plotting En of θn �= 0 and θn = 0 for each of the randoms of choice 1 in Table 1 is shown in the
following figures, respectively
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Fig. 2 Error plotting of En of θn �= 0 and θn = 0 for each of the randoms of choice 2 in Table 1 is shown in
the following figures, respectively
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Fig. 3 Error plotting of En of θn �= 0 and θn = 0 for each of the randoms of choice 3 in Table 1 is shown in
the following figures, respectively
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Table 1 Comparison of θn �= 0 and θn = 0 in Example 3.8

Random zn No. of Iter. cpu (Time).

θn �= 0 θn = 0 θn �= 0 θn = 0

Choice 1 1 57 71 0.009800 0.015481

x0 = (−2, 8, −5) 2 54 79 0.009998 0.011871

x1 = (−3,−5, 8) 3 58 73 0.008887 0.011601

Choice 2 1 57 66 0.006907 0.010894

x0 = (−1, 7, 6) 2 53 70 0.006727 0.011262

x1 = (−3, 1, −1) 3 54 68 0.006582 0.010447

Choice 3 1 57 76 0.00802 0.017346

x0 = (−2.34, 3.29,−4.56) 2 58 78 0.008965 0.011355

x1 = (6.13,−5.24,−1.19) 3 56 71 0.007612 0.012542

Table 2 Comparison of θn �= 0 and θn = 0 in Example 4.2

Random zn No. of Iter. cpu (Time).

θn �= 0 θn = 0 θn �= 0 θn = 0

Choice 1

x0 = (1, −3, 7)T 1 75 99 0.008715 0.018550

x1 = (9, 2,−1)T 2 71 95 0.009317 0.018867

Choice 2

x0 = (−3, 1, 4)T 1 78 101 0.010831 0.015437

x1 = (2, −8, 1)T 2 83 101 0.011599 0.017576

Table 3 Comparison of θn �= 0 and θn = 0 in Example 4.4

Random zn No. of iter. Cpu (time)

θn �= 0 θn = 0 θn �= 0 θn = 0

Choice 1

x0 = (−2, −1,−1)T 1 32 64 0.008693 0.028725

x1 = (3, 6, 7)T 2 32 41 0.006720 0.030521

Choice 2

x0 = (−5, −6,−3)T 1 38 51 0.008297 0.019182

x1 = (−3, 4, −5)T 2 43 51 0.008896 0.016248

We see that A is 1/2-inverse strongly monotone. Therefore, we can choose rn = 0.1
for all n ∈ N. Let αn , βn , and θn be as in Example 3.8. The stoping criterion is defined
by En = ‖xn+1 − xn‖ < 10−9. Starting x0 = (0, 2, 1), x1 = (1,−2, 1) and computing
iteratively algorithm in Theorem 3.4. The different choices of x0 and x1 are given as follows:

Choice 1: x0 = (1,−3, 7)T and x1 = (9, 2,−1)T .
Choice 2: x0 = (−3, 1, 4)T and x1 = (2,−8, 1)T .
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Fig. 4 Error plotting En of θn �= 0 and θn = 0 for each of the randoms of choice 1 in Table 2 is shown in the
following figures, respectively

4.2 Convex minimization problem

Let F : H → R be a convex smooth function and G : H → R be a convex, lower
semicontinuous, and nonsmooth function. We consider the problem of finding x̂ ∈ H , such
that

F(x̂) + G(x̂) ≤ F(x) + G(x) (4.3)

for all x ∈ H . This problem (4.3) is equivalent, by Fermat’s rule, to the problem of finding
x̂ ∈ H , such that

0 ∈ ∇F(x̂) + ∂G(x̂), (4.4)

where ∇F is a gradient of F and ∂G is a subdifferential of G. The minimizer of F +G will
be denoted by S. We know that if∇F is 1

L -Lipschitz continuous, then it is L-inverse strongly
monotone (Baillon and Haddad 1977, Corollary 10). Moreover, ∂G is maximal monotone
(Rockafellar 1970, Theorem A). If we set A = ∇F and B = ∂G in Theorem 3.3, then we
obtain the following result.
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Fig. 5 Error plotting En of θn �= 0 and θn = 0 for each of the randoms of choice 2 in Table 2 is shown in the
following figures, respectively

Theorem 4.3 Let H be a real Hilbert space and T : H → CB(H) be a quasi-nonexpansive
mapping satisfying Condition (A). Let F : H → R be a convex and differentiable function
with 1

L -Lipschitz continuous gradient ∇F and G : H → R be a convex and lower semicon-
tinuous function which F + G attains a minimizer. Assume that S ∩ F(T ) �= ∅ and I − T is
demiclosed at 0 . Let {xn}, {yn}, {zn}, and {vn} be sequences generated by x0, x1 ∈ H and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = xn + θn(xn − xn−1)

zn ∈ αn yn + (1 − αn)T yn,
vn = βnzn + (1 − βn)J ∂G

rn (zn − rn∇F(zn)),
Cn+1 = {z ∈ Cn : ‖vn − z‖2≤‖xn−z‖2+2θ2n ‖xn−xn−1‖2−2θn〈xn − z, xn−1 − xn〉},
xn+1 = PCn+1x1, n ≥ 1,

(4.5)
where J ∂G

rn = (I + rn∂G)−1, {rn} ⊂ (0, 2/L), and {θn} ⊂ [0, θ ] for some θ ∈ [0, 1), and
{αn} and {βn} are sequences in [0, 1]. Assume that the following conditions hold:

(i)
∑∞

n=1 θn‖xn − xn−1‖ < ∞.
(ii) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
(iii) lim supn→∞ βn < 1.

123



A modified inertial shrinking projection method for… 5771

Fig. 6 Error plotting En of θn �= 0 and θn = 0 for each of the randoms of choice 1 in Table 3 is shown in the
following figures, respectively

(iv) 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 2/L.
Then, the sequence {xn} converges strongly to q = PS∩F(T )x1.

Example 4.4 Solve the following minimization problem:

min
x∈R3

‖x‖22 + (3, 5,−1)x + ‖x‖1, (4.6)

where x = (x1, x2, x3) ∈ R
3.

Set F(x) = ‖x‖22 + (3, 5,−1)x and G(x) = ‖x‖1 for all x ∈ R
3. We have for x ∈ R

3 and
r > 0, ∇F = 2x + (3, 5,−1) and

J ∂G
r (x) = (max{|x1| − r, 0}sign(x1),max{|x2| − r, 0}sign(x2),max{|x3| − r, 0}sign(x3)).

We see that∇F is 2-Lipschitz continuous; consequently, it is 1/2-inverse stronglymonotone.
Choose rn = 0.1 for all n ∈ N. Let αn , βn , γn , and θn be as in Example 3.8. The stoping
criterion is defined by ‖xn+1 − xn‖ < 10−9. The different choices of x0 and x1 are given as
follows:
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Fig. 7 Error plotting En of θn �= 0 and θn = 0 for each of the randoms of choice 2 in Table 3 is shown in the
following figures, respectively

Choice 1: x0 = (−2,−1,−1)T and x1 = (3, 6, 7)T .
Choice 2: x0 = (−5,−6,−3)T and x1 = (−3, 4,−5)T .

From above preliminary numerical results, we see that the inertial forward–backward
method with the inertial technical term has a good convergence speed than the standard
forward–backward method for each of the randoms.

5 Conclusion

In this paper, we present a newmodified inertial forward–backward splittingmethod combin-
ing the SP iteration for solving the fixed point problem of a quasi-nonexpansive multivalued
mapping and the inclusion problem. The weak convergence theorem is established under
some suitable conditions in Hilbert space. we then use the shrinking projection method
for obtaining the strong convergence theorem and apply our result to solve the variational
inequality problem and the convexminimization problem. Some numerical experiments show
that our inertial forward–backward method have a competitive advantage over the standard
forward–backward method (see in Tables 1, 2, 3, and Figs. 1, 2, 3, 4, 5, 6, and 7).
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