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Abstract In this paper, a mathematical model consisting of three populations with discrete
time delays is considered. By analyzing the corresponding characteristic equations, the local
stability of each of the feasible equilibria of the system is addressed and the existence of
Hopf bifurcations at the coexistence equilibrium is established. The direction of the Hopf
bifurcations and the stability of the bifurcating periodic solutions are analyzed using the
theory of normal form and center manifold. Discussion with some numerical simulation
examples is given to support the theoretical results.

Keywords Predator–prey · Stability analysis · Hopf bifurcation · Discrete delay

Mathematics Subject Classification 91B05 · 91A06 · 91B02 · 91B50

1 Introduction

Over the last decade, the dynamic behavior of predator–prey systems has received much
attention from many applied mathematicians and ecologists. Many theoreticians and experi-
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mentalists have investigated the stability of such systems when time delays are incorporated
into the models. Time delay may have very complicated impact on the dynamic behavior of
the system such as the periodic structure, and bifurcation. For references, see El Foutayeni
andKhaladi (2016), Akkocaoglu et al. (2013), Çelik (2008, 2009, 2011), Chen (2007), Xuedi
et al. (2015), Fowler and Ruxton (2002), Gause (1934), Gopalsamy (1980) andHadjiavgousti
and Ichtiaroglou (2008).

In El Foutayeni and Khaladi (2016), authors have considered a delayed ratio-dependent
predator–prey system with stage structure for the predator,

⎧
⎨

⎩

ẋ1 (t) = r1x1 (1 − x1/K ) − c12x1x2 − a13x1y,
ẋ2 (t) = r2x2 (1 − x2/K ) − c21x1x2 − a23x2y,
ẏ = −dy + δ1x1y + δ2x2y − α1x1(t − τ1)y − α2x2(t − τ2)y,

(1)

where x1(t), x2(t) and y(t) be the density of fish populations at time t. Let r1 and r2 be the
growth coefficients of the first and second populations, respectively, and K be the environ-
mental carrying capacity, which is common for both the preys. Let ci j be the coefficient of
competition between the population i and population j . Let ai j be the predation rate coef-
ficient. Let d be the natural death rate of the third population, δ1 and δ2 be the maximum
predator conversion rates. Let τ1, τ2 be the discrete time lags in the mortality of predator by
two preys x1(t), x2(t), respectively.

In Sarkar et al. (2006), the authors have studied the equilibrium points and their stabil-
ity properties: they have obtained conditions for the existence of different equilibria and
discussed their stabilities in the cases: non-delay model, single delay model, and multiple
delays model.

The purpose of the present paper is to study system (1) in view of bifurcation. The study
of the stability of the system (1) is based on the detailed analysis of the distribution of the
characteristic equation associated to this system. First, we investigate the stability of the fixed
point and the existence of the Hopf bifurcations, and then wemove to determine the direction
of the Hopf bifurcation and the stability of the bifurcating periodic solutions.

This paper is organized as following. In Sect. 2, we analyze the distribution of the char-
acteristic equation associated with the system (1) using the method of Ruan and Wei (2001,
2003), and then we get the existence of the local Hopf bifurcation. We note that the phe-
nomenon of stability switch exist when the time delay varies. In Sect. 3, based on the normal
form theory and center manifold argument presented in Hassard et al. (1981), we determine
the direction and stability of periodic solutions bifurcating from theHopf bifurcation. Finally,
we discuss and illustrate the results found based on some numerical simulation examples.

2 Local stability of the interior equilibrium point and Hopf bifurcation

Following El Foutayeni and Khaladi (2016), we confirm that the system (1) has seven equi-
librium points. But this system has a unique positive equilibrium point P∗(x∗

1 , x
∗
2 , y

∗),where

x∗
1 = K (a23r1−a13r2)(δ2−α2)+d(a13r2−c12a23K )

(a13r2−c12a23K )(δ1−α1)+(a23r1−a13r2)(δ2−α2)
,

x∗
2 = K (a13r2−a23r1)(δ1−α1)+d(a23r1−c21a13K )

(a13r2−c12a23K )(δ1−α1)+(a23r1−a13r2)(δ2−α2)
,

y∗ = r1(K−x∗
1)−c21x∗

2
a13K

.

We analyze the local stability of the positive interior equilibrium P∗(x∗
1 , x

∗
2 , y

∗) using the
linear transformation z1 (t) = x1 (t)− x∗

1 , z2 (t) = x2 (t)− x∗
2 and z3 (t) = y (t)− y∗ where
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z1 � 1, z2 � 1 and z3 � 1 for which the system (1) can be written as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż1 (t) = − r1
K x∗

1 z1 − c12x∗
1 z2 − a13x∗

1 z3 − r1
K z21 − c12z1z2 − a13z1z3,

ż2 (t) = − r2
K x∗

2 z2 − c21x∗
2 z1 − a23x∗

2 z3 − r2
K z22 − c21z1z2 − a23z2z3,

ż3 (t) = (δ1z1 + δ2z2) y∗ − [α1z1(t − τ1) + α2z2(t − τ2)] y∗

+(δ1z1 + δ2z2)z3 − [α1z1(t − τ1) + α2z2(t − τ2)] z3.

(2)

Therefore, the corresponding characteristic equation of system (2) is given by

λ3 + m2λ
2 + m1λ + m0 + (n1λ + n0) e

−λτ1 + (p1λ + p0) e
−λτ2 = 0, (3)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m2 = (r1x∗
1 + r2x∗

2

)
/K ,

m1 = x∗
1 x

∗
2

(
r1r2/K 2 − c12c21

)+ (a13δ1x∗
1 + a23δ2x∗

2

)
,

m0 = x∗
1 x

∗
2 y

∗ [(a13r2/K − c12a23) δ1 + (a23r1/K − c21a13) δ2] ,
n1 = −a13α1x∗

1 y
∗,

n0 = −α1x∗
1 x

∗
2 y

∗ (a13r2/K − c12a23) ,

p1 = −a23α2x∗
2 y

∗,
p0 = −α2x∗

1 x
∗
2 y

∗ (a23r1/K − c21a13) .

Now we study the distribution of roots of the transcendental Eq. (3) using the Corollary 2.4
of Ruan and Wei (2003). The system (1) has two time delays (τ1 and τ2), then we have the
following cases.

Case 1:τ1 = 0 and τ2 = 0
The characteristic Eq. (3) becomes

λ3 + m2λ
2 + (m1 + n1 + p1)λ + m0 + n0 + p0 = 0. (4)

It is clear that m2 > 0, (m1 + n1 + p1) > 0 and (m0 + n0 + p0) > 0. Therefore, by
Routh–Hurwitz criterion, we can confirm that all roots of (4) have negative real parts under
the following condition:

(H1) m2(m1 + n1 + p1) > m0 + n0 + p0.

To be specific, the equilibrium interior point P∗(x∗
1 , x

∗
2 , y

∗) is locally asymptotically stable
when the condition (H1) satisfies.

Case 2: τ1 > 0 and τ2 = 0
The Eq. (3) becomes

λ3 + m2λ
2 + (m1 + p1) λ + m0 + p0 + (n1λ + n0) e

−λτ1 = 0. (5)

Suppose iw (w > 0) being a root of Eq. (5). Separating the real and imaginary parts gives
{
n0 sinwτ1 − n1w coswτ1 = −w3 + (m1 + p1)w,

n0 coswτ1 + n1w sinwτ1 = m2w + (m0 + p0)
(6)

which leads to
w6 + b22w

4 + b21w
2 + b20 = 0, (7)

where b22 = m2
2 − 2(m1 + p1), b21 = (m1 + p1)2 − 2m2(m0 + p0) − n21 and b20 =

(m0 + p0)2 − n20.
On substituting v = w2, then Eq. (7) becomes

v3 + b22v
2 + b21v + b20 = 0. (8)
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Let
g(v) = v3 + b22v

2 + b21v + b20 (9)

We have g(0) = b20, limv→∞ g(v) = +∞, and

g
′
(v) = 3v2 + 2b22v + b21. (10)

The discussion about the roots of Eq. (10) [is similar to that in Song and Wei (2004)] leads
to the following lemma.

Lemma 1 For the polynomial Eq. (8), we have the following results:

(i) Eq. (8) has at least one positive root if (H21) b20 < 0.
(ii) Eq. (8) has no positive roots if (H22) b20 ≥ 0, and � = b222 − 3b21 ≤ 0.
(iii) Eq. (8) has positive roots if (H23) b20 ≥ 0, and � = b222 − 3b21 > 0, v∗

1 =
(
−b22 + √

�
)

/3 > 0, g(v∗
1) ≤ 0.

Without loss of generality, we suppose that Eq. (8) has tree positive roots, denoted as v1,
v2 and v3, respectively. Therefore, Eq. (7) has three positive roots wk = √

vk , k = 1, 2, 3.

The corresponding critical value of time delay τ
( j)
1k is

τ
( j)
1k = 1

wk
arccos

(
A24w

4
k + A22w

2
k + A20

B22w
2
k + B20

)

+ 2 jπ

wk
, k = 1, 2, 3; j = 0, 1, 2, . . . ,

where

A20 = − (m0 + p0) n0, A22 = m2n0 − (m1 + p1) n1, A24 = n1,

B20 = n20, B22 = n21.

Then ± iwk is a pair of purely imaginary roots of Eq. (3) with τ1 = τ
( j)
1k , τ2 = 0.

Following the Hopf bifurcation theorem (Hassard et al. 1981), wemust verify the transver-
sality condition. Differentiating Eq. (5) with respect to τ1, and noticing that λ is a function
of τ1, it follows that

(
dλ

dτ1

)−1

= (3λ2 + m2λ + m1 + p1)eλτ1

λ(n1λ + n0)
+ n1

λ(n1λ + n0)
− τ1

λ
. (11)

Thus,

α
′ (

τ
( j)
k

)−1 = Re

(
dλ

dτ1

)−1

= Re

[
(3λ2 + m2λ + m1 + p1)eλτ1

λ(n1λ + n0)

]

+ Re

[
n1

λ(n1λ + n0)

]

.

Notice that sign
{
d Re λ
dτ1

}

λ=iwk
= sign

{

Re
(

dλ
dτ1

)−1
}

λ=iwk

.

Then sign
{
d Re λ
dτ1

}

λ=iwk
= (3w6

k + 2b22w4
k + b21w2

k

)
/� = g

′ (
v2k

)
/�.

Therefore,
{
d Re λ
dτ1

}

= 0 if (H24) g

′ (
v2k

) 
= 0.

Summarizing the above analysis, we can assure existence of the stability interval. Let I
be the stability interval. Then, we have the following results.

Theorem 1 (i) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all τ1 ≥
0, if (H22) holds.
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(ii) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all τ1 ∈ I , if (H23)
or (H21) and (H24) holds.

(iii) The system (2) undergoes a Hopf bifurcation at the equilibrium P∗(x∗
1 , x

∗
2 , y

∗) when
τ1 = τ

( j)
1k ( j = 0, 1, 2, ...), if all conditions as stated in (ii) hold.

Case 3: τ1 = 0, τ2 > 0
The analysis is the same as case 2, we have the following results.

Theorem 2 (i) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all
τ2 ≥ 0.

(ii) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all τ2 ∈ I.
(iii) The system (2) undergoes a Hopf bifurcation at the equilibrium P∗(x∗

1 , x
∗
2 , y

∗) when
τ2 = τ

( j)
2k ( j = 0, 1, 2, ...), where τ

( j)
2k represents the minimum critical value of time

delay τ2 for the occurrence of Hopf bifurcation when τ1 = 0.

Case 4: τ1 = τ2 = τ 
= 0
The calculation is very similar to case 2, we have the following results.

Theorem 3 (i) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all
τ ∈ I.

(ii) The system (2) undergoes a Hopf bifurcation at the equilibrium P∗(x∗
1 , x

∗
2 , y

∗) when
τ = τk,where τk represents theminimumcritical value of time delay τ for the occurrence
of Hopf bifurcation.

Case 5:τ2 > 0, τ1 ∈ I and τ1 
= τ2
We suppose that iω(ω > 0) is the root of Eq. (3), then we get

{−ω3 + m1ω + n1ω cosωτ1 − n0 sinωτ1 = p0 sinωτ1 − p1ω cosωτ2,

m2ω
2 − m0 − n0 cosωτ1 − n1 sinωτ1 = p1ω sinωτ2 + p0 cosωτ1,

(12)

From Eq. (12), we can obtain

[ω4+E1ω
2+E2]ω2+E3+[F1ω2+F2]ω sinωτ1+[G1ω

4+G2ω
2+G3] cosωτ1 = 0, (13)

where

E1 = m2
2 − 2m1, E2 = m2

1 − 2m0m2 + n21 − p21, E3 = m2
1 − 2m0m2 + n21 − p21,

F1 = 2n0 − 2n1m2, F2 = 2n1m0 − 2n0m1,

G1 = −2n1, G2 = 2n1m1 − 2n0m2, G3 = m0n0.

We assume that: (H51) Eq. (13) has at least finite positive root. Without loss of generality,
we suppose that Eq. (13) has N positive roots, denoted by ωi , (i = 1, 2, ...., N ). Notice Eq.
(12), we get τ ( j)

2i , i = 1, 2, ..., N ; j = 0, 1, 2, ...

Let τ 02 = τ
(0)
2i0

= min{τ (0)
2i }, ω0 = ωi0, and λ(τ2) = α(τ2) + iω(τ2) be the root of Eq.

(3) satisfying α(τ
( j)
2i ) = 0 , ω(τ

( j)
2i ) = ωi . By computation, we obtain

{

Re

(
dλ

dτ1

)−1
}

λ=iωi

= p21ω
4
0 + p20ω

2
0

�
,

where � = L1 sinω0(τ
∗
1 + τ 02 )+ L2 cosω0(τ

∗
1 + τ 02 )+ L3 sinω0τ

0
2 + L4 cosω0τ

0
2 − p1ω2

0,

L1 = n1 p1τ ∗
1 ω3

0 − n0 p0τ ∗
1 ω0 + n1 p0ω0, L2 = (n0 p1τ ∗

1 + n1 p0τ ∗
1 − n1 p1)ω2

0,
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L3 = p0(n1ω0 + 3ω3
0) + 2m2n1ω3

0, L4 = 2m2 p0ω2
0 − n1ω0(m1ω0 + 3ω3

0).

According to the analysis above, if
{
Re
(

dλ
dτ1

)−1 }

λ=iωi

= 0, then we have the following

results.

Theorem 4 (i) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all
τ1 ∈ I.

(ii) If the condition (H51) is hold and
{
Re
(

dλ
dτ1

)−1 }

λ=iωi

= 0, then system (2) undergoes

a Hopf bifurcation at the equilibrium P∗(x∗
1 , x

∗
2 , y

∗), when τ2 = τ 02 .

Case 6: τ1 > 0, τ2 ∈ I and τ1 
= τ2
We consider (3) with τ2 in its stable interval, and τ1 is regarded as a parameter. The

analysis is very similar to case 5, we can obtain the following theorem.

Theorem 5 (i) The positive equilibrium P∗(x∗
1 , x

∗
2 , y

∗) is asymptotically stable for all
τ2 ∈ I.

(ii) The system (2) undergoes a Hopf bifurcation at the equilibrium P∗(x∗
1 , x

∗
2 , y

∗), when
τ1 = τ 01 , where τ 01 represents the minimum critical value of time delay τ1 for the
occurrence of Hopf bifurcation when τ2 ∈ I .

3 Stability and direction of the Hopf bifurcation

In Sect. 2, we have shown that the system (2) undergoes Hopf bifurcation when τ2 = τ 02 . In
this section, we shall study the direction of Hopf bifurcation and the stability of bifurcating
periodic solutions of system (2) when τ2 = τ 02 , based on the normal form theory and center
manifold theorem (Hassard et al. 1981).

Without loss of generality, we assume that τ 02 > τ ∗
1 .

Letting τ2 = τ 02 + η, ϕt (θ) = ϕ(t + θ) ∈ C and Lη : C → R
3, denote F : R×C → R

3.
Therefore, the system (2) can be written as a functional differential equation (FDE) in C =
C([−τ ∗

1 , 0],R3)

ϕ̇(t) = Lη(ϕt ) + f (η, ϕt ), (14)

where
Lμχ = M1χ(0) + M2χ(−τ ∗

1 ) + M3χ(−τ 02 ),

and

M1 =
⎛

⎝
− r1

K x∗
1 −c12x∗

1 −a13x∗
1−c21x∗

2 − r2
K x∗

2 −a23x∗
2

δ1y∗ δ1y∗ 0

⎞

⎠ , M2 =
⎛

⎝
0 0 0
0 0 0

−α1y∗ 0 0

⎞

⎠ ,

M3 =
⎛

⎝
0 0 0
0 0 0
0 −α2y∗ 0

⎞

⎠ , χ(t) = (χ1(t), χ2(t), χ3(t))
T

and

f (η, χ) =
⎛

⎝
− r1

K χ2
1 (0) − c12χ1(0)χ2(0) − a13χ1(0)χ3(0)

− r2
K χ2

2 (0) − c21χ1(0)χ2(0) − a23χ2(0)χ3(0)
[δ1χ1(0) + δ2χ2(0) − α1χ1(−τ ∗

1 ) − α2χ2(−τ 02 )]χ3(0)

⎞

⎠

Then, by the Riesz representation theorem, there exists a 3 × 3 matrix function g(θ, η) of
bounded variation for θ ∈ [−τ ∗

1 , 0], such that
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Lηχ =
0∫

−τ∗
1

dg(θ, η)χ(θ), ∀χ ∈ C.

In fact, one can choose

g(θ, η) =
⎧
⎨

⎩

M1 + M2, θ = 0,
M3, θ ∈ [−τ 02 , 0),
−M2δ(θ + τ ∗

1 ), θ ∈ [−τ ∗
1 ,−τ 02 ),

where δ(θ) =
{
0, θ 
= 0

1, θ = 0
.

For χ ∈ C1([−τ ∗
1 , 0],R3), we define M(η)χ and R(η)χ as

M(η)χ =
{

dχ(θ)
dθ

, θ ∈ [−τ ∗
1 , 0)

∫ 0
−τ∗

1
dg(ξ, η)χ(ξ), θ = 0

, and R(η)χ =
{
0, θ ∈ [−τ ∗

1 , 0),
f (η, χ), θ = 0.

Hence, the system (14) can be written as the following operator equation:

ϕ̇t = M(η)ϕt + R(η)ϕt .

For ψ ∈ C1([0, 1], (R3)∗), where (R3)∗ is the three-dimensional space of row vectors. We define the
adjoint operator M∗of M(0) as

M∗χ =
{

− dχ(s)
ds , s ∈ (0, τ ∗

1 ],
∫ 0
−τ∗

1
dgT (t, θ)χ(−t), s = 0,

For χ ∈ C1([−τ ∗
1 , 0],R3) and ψ ∈ C1([0, 1], (R3)∗), using the bilinear form

〈ψ, χ〉 = ψ̄T (0)χ(0) −
∫ 0

−τ∗
1

∫ 0

ξ=0
ψ̄T (ξ − θ)dg(θ)χ(ξ)dξ. (15)

In Sect. 2, we have shown that ±iω0 are eigenvalues of M(0). Hence, they are eigenvalues of M∗.
Suppose that ρ(θ) = ρ(0)eiω0θ is an eigenvector of M(0) corresponding to the eigenvalue iω0.

Therefore, M(0) = iω0ρ(θ). When θ = 0, we can get
[

iω0 I −
∫ 0

−τ∗
1

dg(θ)eiω0

]

ρ(0) = 0,

which yields ρ(0) = (1, e1, e2)T , where

e1 = (iω0K + r1x∗
1 )a23x∗

2 − c21a13Kx∗
1 x

∗
2

(iω0K + r2x∗
2 )a13x∗

1 − c12a23Kx∗
1 x

∗
2
,

e2 = c12c21K 2x∗
1 x

∗
2 − (iω0K + r1x∗

1 )(r2x∗
2 + iω0K )

(iω0K + r2x∗
2 )a13Kx∗

1 − c12a23K 2x∗
1 x

∗
2

.

Similarly, it can be verified that ρ∗(s) = D(1, e∗
1, e

∗
2)e

iω0s is the eigenvector of M∗ corresponding to
−iω0, with

e∗
1 = (r1x∗

1 − iω0K )a23x∗
2 − c21a13Kx∗

1 x
∗
2

(r2x∗
2 − iω0K )a13x∗

1 − c12a23Kx∗
1 x

∗
2
,

e∗
2 = c12c21K 2x∗

1 x
∗
2 − (r1x∗

1 − iω0K )(r2x∗
2 − iω0K )

(iω0K + r2x∗
2 )a13kx∗

1 − c12a23K 2x∗
1 x

∗
2

.
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Then, from (15), we obtain

〈ρ∗(s), ρ(0)〉 = D̄(1, ē∗
1, ē

∗
2)(1, e1, e2)

T

−
∫ 0

−τ∗
1

∫ θ

ξ=0
(1, ē∗

1, ē
∗
2)e

−iω0(ξ−θ)dg(θ)(1, e1, e2)
T eiω0ξdξ

= 1 + e1ē
∗
1 + e2ē

∗
2 −

∫ 0

−τ∗
1

(1, ē∗
1, ē

∗
2)θe

iω0θdg(θ)(1, e1, e2)
T

= 1 + e1ē
∗
1 + e2ē

∗
2 −

∫ 0

−τ∗
1

(1, ē∗
1, ē

∗
2)θe

iω0θdg(θ)(1, e1, e2)
T

= 1 + e1ē
∗
1 + e2ē

∗
2 + τ ∗

1 α1ē
∗
2 y

∗e−iω0τ
∗
1 + τ 02 α1e1ē

∗
2 y

∗e−iω0τ
0
2 .

Then, we can choose D as

D = 1

1 + e1ē∗
1 + e2ē∗

2 + τ ∗
1 α1ē∗

2 y
∗e−iω0τ

∗
1 + τ 02 α1e1ē∗

2 y
∗e−iω0τ

0
2

,

such that 〈ρ∗, ρ〉 = 1.
We can obtain the coefficients used in determining the direction of Hopf bifurcation and the stability

of the bifurcation periodic solutions using the algorithms in Hassard et al. (1981) and using a similar
calculation process in Song and Wei (2004)

g20 = 2D
[
− r1
K

− c12e1 − a13e2 − ē∗
1(c21e1 + r2

K
e21 + a23e1e2)

]

+2D
[
ē∗
2(δ1e2 + δ2e1e2 − α1e2e

−iω0τ
∗
1 − α2e1e2e

−iω0τ
0
2 )
]

g11 = D{−2r1
K

− c12(e1 + ē∗
1) − a13(e2 + ē∗

2)

− ē∗
1[a23(e1 + ē∗

1) + 2
r2
K
e1ē

∗
1 + a23(e1ē

∗
2 + ē∗

1e2)]
+ ē∗

2[δ1(e2 + ē∗
2)δ2(e1ē

∗
2 + ē∗

1e2) − α1(e2e
iω0τ

∗
1 + ē∗

2e
−iω0τ

∗
1 )

− α2(ē
∗
1e2e

iω0τ
0
2 + e1ē

∗
2e

−iω0τ
0
2 )]}

g02 = 2D
[
− r1
K

− c12ē
∗
1 − a13ē

∗
2 − ē∗

1(c21ē
∗
1 + r2

k
ē∗2
1 + a23ē

∗
1 ē

∗
2)
]

+ 2Dē∗
2(δ1ē

∗
2 + δ2ē

∗
1 ē

∗
2 − α1ē

∗
2e

−iω0τ
∗
1 − α2ē

∗
1 ē

∗
2e

−iω0τ
0
2 )

and

g21 = D

{

− r1
K

[
4W (1)

11 (0) + 2W (1)
20 (0)

]
− ē∗

1
r2
K

[
4W (2)

11 (0) + 2W (2)
20 (0)

]

− c12
[
2W (2)

11 (0) + W (2)
20 (0) + 2e1W

(1)
11 (0) + ē1W

(1)
20 (0)

]

− a13
[
2W (3)

11 (0) + W (3)
20 (0) + 2e2W

(1)
11 (0) + ē2W

(1)
20 (0)

]

+ ē∗
1c21

[
2W (2)

11 (0) + W (2)
20 (0) + 2e1W

(1)
11 (0) + ē1W

(1)
20 (0)

]

+ ē∗
1c21

[
2e1W

(3)
11 (0) + ē1W

(3)
20 (0) + 2e2W

(2)
11 (0) + ē2W

(2)
20 (0)

]

+ ē∗
2δ1

[
2W (3)

11 (0) + W (3)
20 (0) + 2e2W

(1)
11 (0) + ē2W

(1)
20 (0)

]

+ ē∗
2δ2

[
2e1W

(3)
11 (0) + ē1W

(3)
20 (0) + 2e2W

(2)
11 (0) + ē2W

(2)
20 (0)

]

123



5710 M. Bentounsi et al.

Fig. 1 The interior equilibrium point is stable when τ1 = 7 and τ2 = 0,with the initial condition (0.1, 0.1, 4)

− ē∗
2α1

[

2e−iω0τ
∗
1 W (3)

11 (0) + eiω0τ
∗
1 W (3)

20 (0) + 2e2W
(1)
11

(

− τ ∗
1

τ 02

)]

− ē∗
2α1 ē2W

(1)
20

(

− τ ∗
1

τ 02

)

− ē∗
2α2 ē2W

(2)
20 (−1)

− ē∗
2α2

[
2ae−iω0τ

∗
1 W (3)

11 (0) + aeiω0τ
∗
1 W (3)

20 (0) + 2e2W
(2)
11 (−1)

] }

.

However,

W20(θ) = ig20
ω0

ρ(θ)eiω0θ + i g20
3ω0

ρ̄(θ)e−iω0θ + V1e
2iω0θ ,

W11(θ) = − ig11
ω0

ρ̄(θ)eiω0θ + i g11
ω0

ρ̄(θ)e−iω0θ + V2,

where V1 = (V (1)
1 , V (2)

1 , V (3)
1 ) ∈ R

3 and V2 = (V (1)
2 , V (2)

2 , V (3)
2 ) ∈ R

3 are the constant vectors and
they are determined by the following equations, respectively,

⎛

⎜
⎝

2iω0 + r1x∗
1

K c12x∗
1 a13x∗

1

c21x∗
2 2iω0+ r2x∗

2
K a23x∗

2

−δ1y∗+α1y∗e−2iω0τ
∗
1 −δ2y∗+α2y∗e−2iω0τ

0
2 2iω0

⎞

⎟
⎠ V1= 2

⎛

⎝
N1

N2

N3

⎞

⎠
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Fig. 2 The interior equilibrium point is stable whenτ1 = 13 and τ2 = 0,with the initial condition (0.1, 0.1, 4)

⎛

⎜
⎝

r1x∗
1

k c12x∗
1 a13x∗

1

c21x∗
2

r2x∗
2

k a23x∗
2

(α1−δ1)y∗ (α2−δ2)y∗ 0

⎞

⎟
⎠ V2=

⎛

⎝
P1
P2
P3

⎞

⎠

with

N1 = − r1
K

−c12e1 − a13e2

N2 = − r2
K
e21 − c21e1 − a23e1e2

N3 = δ1e2+δ2e1e2−α1e2e
−iω0τ

∗
1 −α2e1e2e

−iω0τ
0
2

P1 = −2r1
K

−c12(e1 + ē1) − a13(e2 + ē2)

P2 = −2r2
K

e1ē1 − c21(e1 + ē1) − a23(e1ē2 + e2ē1)

P3 = δ1(e2 + ē2) + δ2(e1ē2 + e2ē1) − α1(e2e
−iω0τ

∗
1 +ē2e

−iω0τ
∗
1 )

−α2(e2ē1e
iω0τ

0
2 +α2e1ē2e

−iω0τ
0
2 ).

Then, we can express g21 by the parameters.
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Fig. 3 The interior equilibrium point is stable when τ1 = 6 and τ2 = 5,with the initial condition (0.1, 0.1, 4)

One can see that each gi j can be expressed by the parameters. Thus, we can compute the following
results:

C1(0) = i
2ω0

(g11g20 − 2|g11|2 − |g02|2
3 ) + g21

2 ,

η2 = − Re(C1(0))
Re(λ′(τ 0

2
))

, β2 = 2Re(C1(0)),

T2 = − Im(C1(0))+μ2 Im(λ′(τ 02 ))

ω0
.

(16)

Based on the discussions above, we have the following result.

Theorem 6 For system (2),

(i) the direction of Hopf bifurcation is determined by the sign of η2 : if η2 > 0 (η2 < 0), then the Hopf
bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for τ2 > τ 02
(τ2 < τ 02 ).

(ii) The stability of the bifurcating periodic solution is determined by the sign of β2: the bifurcations
periodic solutions are orbitally asymptotically stable (unstable) if τ2 > τ 02 (τ2 < τ 02 ). The period
of the bifurcation periodic solutions is determined by the sign of T2 : if T2 > 0 (T2 < 0), the
bifurcating periodic solutions increase (decrease).
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Fig. 4 The interior equilibriumpoint is stablewhen τ1 = 15 and τ2 = 8,with the initial condition (0.1, 0.1, 4)

4 Numerical simulations and discussion

In this section, we will discuss the effect of single and multiple delays on the dynamics of the sys-
tem (1). To achieve this goal, we take the parameter values as r1 = 2.5, r2 = 2.3, c12 = 0.01,
c21 = 0.03, a13 = 0.6, a23 = 0.55, K = 30, d = 0.1, δ1 = 0.4, δ2 = 0.3, α1 = 0.05,
α2 = 0.06 (as the literature Sarkar et al. 2006). In this case, the positive interior equilibrium is
P∗(x∗

1 , x∗
2 , y∗) = (0.15231, 0.21301, 4.1345). Using the parameter values above, we can confirm

that the first condition (H1) is hold. When τ2 = 0, we find that Eq. (7) has two positive roots
w1 = 0.5278, w2 = 0.4190. Using these parameters in Eq. (6) we get τ ( j)

11 = 7.0371 + 11.9045 j > 0

and τ
( j)
12 = 11.6274 + 12.7969 j > 0 ( j = 0, 1, ...). When τ1 = τ

( j)
11 or τ1 = τ

( j)
12 ; then Eq. (4)

has pure imaginary roots. Furthermore, we can note that α
′ (

τ
( j)
11

)
> 0 and α

′ (
τ

( j)
12

)
< 0. When

τ1 ∈ [0, 7.0371)∪(11.6247, 18.9416)∪. . .∪(114.0010, 114.1776), by theorem1, the stability switches
exist and the equilibrium P∗ is asymptotically stable. See Figs. 1 and 2.

When τ1 = 6.02 ∈ [0, 7.0371),we get τ 02 = 5.5695.For τ2 ∈ [0, 5.5695), by theorem 4, the interior
equilibrium P∗ is asymptotically stable.Moreover, using (16),wegetC1(0) = −0.9734−1.0325i, β2 =
−1.9468 < 0, η2 = 13.5851 > 0. When τ2 > τ 02 = 5.5695, by theorem 6, the bifurcating periodic
solution is orbitally asymptotically stable, and the direction of the Hopf bifurcation is supercritical.

When τ1 = 15.02 ∈ (11.6274, 18.9416), we get τ 02 = 8.8025. For τ2 ∈ [0, 8.8025), by theo-
rem 4, the interior equilibrium P∗ is asymptotically stable. Furthermore, we get C1(0) = −1.4622
− 0.0365i, β2 = −2.9244 < 0, η2 = 22.9389 > 0. When τ2 > τ 02 = 8.8025, by theorem 6, the
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bifurcating periodic solution is orbitally asymptotically stable, and the direction of the hopf bifurcation
is supercritical. See Figs. 3 and 4.

Conclusion

In this paper, we have analyzed a mathematical model consisting of three populations with discrete time
delays. We have studied the stability behavior of the system around the interior equilibrium point for
six cases. In the case of τ1 = τ2 = 0 (system without delays), we find out that the interior equilibrium
is asymptotically stable. In the case of τ2 = 0 (τ1 = 0), we observe that the interior equilibrium is
asymptotically stable when τ1 (τ2) varies. In the case of τ1 (τ2) in a stability interval I and τ2 > 0
(τ1 > 0), we find that the system undergoes a Hopf bifurcation at the interior equilibrium. In this case,
we have investigated the direction of the Hopf bifurcation and the stability of the bifurcating periodic
solutions.
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