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Abstract We consider a model initial- and Dirichlet boundary- value problem for a linearized
Cahn–Hilliard–Cook equation, in one space dimension, forced by the space derivative of a
space–time white noise. First, we introduce a canvas problem, the solution to which is a
regular approximation of the mild solution to the problem and depends on a finite number of
random variables. Then, fully discrete approximations of the solution to the canvas problem
are constructed using, for discretization in space, a Galerkin finite element method based on
H2 piecewise polynomials, and, for time-stepping, an implicit/explicit method. Finally, we
derive a strong a priori estimate of the error approximating the mild solution to the problem
by the canvas problem solution, and of the numerical approximation error of the solution to
the canvas problem.

Keywords Finite element method · Space derivative of a space–time white noise · Spectral
representation of the noise · Implicit/explicit time-stepping · Fully discrete approximations ·
A priori error estimates

Mathematics Subject Classification Primary 65M60 · 65M15 · 65C20

1 Introduction

Let T > 0, D := (0, 1), and (�,F, P) be a complete probability space. Then, we consider
the model initial- and Dirichlet boundary- value problem for a linearized Cahn–Hilliard–Cook
equation formulated in Kossioris and Zouraris (2013), which is as follows: find a stochastic
function u : [0, T ] × D → R, such that
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ut + uxxxx + μ uxx = ∂x Ẇ (t, x) ∀ (t, x) ∈ (0, T ] × D,

u(t, ·)∣∣
∂D

= uxx (t, ·)
∣
∣
∂D

= 0 ∀ t ∈ (0, T ],
u(0, x) = 0 ∀ x ∈ D,

(1.1)

a.s. in �, where Ẇ denotes a space-time white noise on [0, T ] × D (see, e.g., Walsh 1986;
Kallianpur and Xiong 1995) and μ is a real constant. We recall that the mild solution to the
problem above (cf. Debussche and Zambotti 2007) is given by

u(t, x) =
∫ t

0

∫

D

Ψt−s(x, y) dW (s, y), (1.2)

where

Ψt (x, y) := −
∞
∑

k=1

λk e
−λ2

k (λ2
k−μ)t εk(x) ϕk(y)

= −∂yGt (x, y) ∀ (t, x, y) ∈ (0, T ] × D × D, (1.3)

λk := k π for k ∈ N, εk(z) := √
2 sin(λk z) and ϕk(z) := √

2 cos(λk z) for z ∈ D and
k ∈ N, and Gt (x, y) is the space-time Green kernel of the solution to the deterministic
parabolic problem: find w : [0, T ] × D → R, such that

wt + wxxxx + μwxx = 0 ∀ (t, x) ∈ (0, T ] × D,

w(t, ·)∣∣
∂D

= wxx (t, ·)
∣
∣
∂D

= 0 ∀ t ∈ (0, T ],
w(0, x) = w0(x) ∀ x ∈ D.

(1.4)

In the paper at hand, our goal is to propose and analyze a numerical method for the
approximation of u that has less stability requirements and lower complexity than the method
proposed in Kossioris and Zouraris (2013).

1.1 A canvas problem

A canvas problem is an initial- and boundary- value problem the solution to which: i) depends
on a finite number of random variables and ii) is a regular approximation of the mild solution
u to (1.1). Then, we can derive computable approximations of u by constructing numer-
ical approximations of the canvas problem solution via the application of a discretization
technique for stochastic partial differential equations with random coefficients. The formu-
lation of the canvas problem depends on the way which we replace the infinite stochastic
dimensionality of the problem (1.1) by a finite one.

In our case, the canvas problem is formulated as follows (cf. Allen et al. 1998; Kossioris
and Zouraris 2010, 2013): Let M,N ∈ N, �t := T

N , and tn := n �t for n = 0, . . . ,N,
Tn := (tn−1, tn) for n = 1, . . . ,N, and u : [0, T ] × D → R, such that

ut + uxxxx + μuxx = ∂xW in (0, T ] × D,

u(t, ·)∣∣
∂D

= uxx (t, ·)
∣
∣
∂D

= 0 ∀ t ∈ (0, T ],
u(0, x) = 0 ∀ x ∈ D,

(1.5)
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where

W(·, x)|Tn := 1
�t

M
∑

i=1

Rn
i ϕi (x) ∀ x ∈ D, n = 1, . . . ,N, (1.6)

Rn
i :=

∫

Tn

∫

D

ϕi (x) dW (t, x) = Bi (tn+1) − Bi (tn), i = 1, . . . ,M, n = 1, . . . ,N,

(1.7)

and Bi (t) := ∫ t
0

∫

D
ϕi (x) dW (s, x) for t ≥ 0 and i ∈ N. According to Walsh (1986), (Bi )∞i=1

is a family of independent Brownian motions, and thus, the random variables
((

Rn
i

)N

n=1

)M

i=1
are independent and satisfy

Rn
i ∼ N (0,�t), i = 1, . . . ,M, n = 1, . . . ,N. (1.8)

Thus, the solution u to (1.5) depends on NM random variables and the well-known theory
for parabolic problems (see, e.g, Lions and Magenes 1972) yields its regularity along with
the following representation formula:

u(t, x) =
∫ t

0

∫

D

Gt−s(x, y) ∂yW(s, y) dsdy

=
∫ t

0

∫

D

Ψt−s(x, y)W(s, y) dsdy ∀ (t, x) ∈ [0, T ] × D. (1.9)

Remark 1.1 In Kossioris and Zouraris (2013), the definition of W is based on a uniform
partition of [0, T ] in N subintervals and on a uniform partition of D in J subintervals. At
every time-slab, W has a constant value with respect to the time variable, but, with respect
to the space variable, is defined as the L2(D)-projection of a random, piecewise constant
function onto the space of linear splines, the computation of which leads to the numerical
solution of a (J + 1) × (J + 1) tridiagonal linear system of algebraic equations. Finally, W
depends on N (J + 1) random variables and its construction has O(N (J + 1)) complexity,
which must to be added to the complexity of the numerical method used for the approximation
of u. On the contrary, the stochastic load W of the canvas problem (1.5) which we propose
here is given explicitly by the formula (1.6), and thus, no extra computational cost is required
for its formation.

1.2 An IMEX finite element method

Let M ∈ N, �τ := T
M , and τm := m �τ for m = 0, . . . , M , and �m := (τm−1, τm) for

m = 1, . . . , M . In addition, for r = 2 or 3, let Mr
h ⊂ H2(D) ∩ H1

0 (D) be a finite element
space consisting of functions which are piecewise polynomials of degree at most r over a
partition of D in intervals with maximum mesh length h.

The fully discrete method which we propose for the numerical approximation of u uses
an implicit/explicit (IMEX) time-discretization treatment of the space differential operator
along with a finite element variational formulation for space discretization. Its algorithm is
as follows: first, sets

U0
h := 0, (1.10)
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and then, for m = 1, . . . , M , finds Um
h ∈ Mr

h , such that

(

Um
h − Um−1

h , χ
)

0,D
+�τ

[

(∂2
xU

m
h , ∂2

xχ )0,D+μ(∂2
xU

m−1
h , χ )0,D

]

=
∫

�m

(∂xW, χ)0,D dτ,

(1.11)
for all χ ∈ Mr

h , where (·, ·)0,D is the usual L2(D)-inner product.

Remark 1.2 It is easily seen that the numerical method above is unconditionally stable, while
the Backward Euler finite element method is stable under the time-step restriction: �τ μ2 ≤ 4
(see Kossioris and Zouraris 2013).

1.3 An overview of the paper

In Sect. 2, we introduce notation and we recall several results that are often used in the rest of
the paper. In Sect. 3, we focus on the estimation of the error which we made by approximating
the solution u to (1.1) by the solution u to (1.5), arriving at the bound

max
[0,T ]

(

E

[

‖u − u‖2
L2(D)

] ) 1
2 ≤ C

(

M− 1
2 + �t

1
8

)

(see Theorem 3.1). Section 4 is dedicated to the definition and the convergence analysis
of modified IMEX time-discrete and fully discrete approximations of the solution w to the
deterministic problem (1.4). The results obtained are used later in Sect. 5, where we analyze
the numerical method for the approximation of u, given in Sect. 1.2. Its convergence is
established by proving the following strong error estimate:

max
0≤m≤M

(

E
[ ‖Um

h − u(τm, ·)‖2
0,D

]) 1
2 ≤ C

(

ε
− 1

2
1 �τ

1
8 −ε1 + ε

− 1
2

2 h
r
6 −ε2

)

for all ε1 ∈ (

0, 1
8

]

and ε2 ∈ (

0, r
6

]

(see Theorem 5.3). We obtain the latter error bound, by
applying a discrete Duhamel principle technique to estimate separately the time-discretization
error and the space-discretization error, which are defined using as an intermediate the
corresponding IMEX time-discrete approximations of u, specified by (5.1) and (5.2) (cf.,
e.g., Kossioris and Zouraris 2010, 2013; Yan 2005).

Since we have no assumptions on the sign, or, the size of μ, the elliptic operator in (1.5) is,
in general, not invertible. This is the reason that the Backward Euler/finite element method
is stable and convergent after adopting a restriction on the time-step size (see Kossioris
and Zouraris 2013, Remark 1.2). On the contrary, the IMEX/finite element method which
we propose here is unconditionally stable and convergent, because the principal part of the
elliptic operator is treated implicitly and its lower order part explicitly. Another characteristic
in our method is the choice to build up the canvas problem using spectral functions, which
allow us to avoid the numerical solution of an extra linear system of algebraic equation
at every time-step that is required in the approach of Kossioris and Zouraris (2013) (see
Remark 1.1).

The error analysis of the IMEX finite element method is more technical than that in
Kossioris and Zouraris (2013) for the Backward Euler finite element method. The main
difference is due to the fact that the representation of the time-discrete and fully discrete
approximations of u is related to a modified version of the IMEX time-stepping method for
the approximation of the solution to the deterministic problem (1.4), the error analysis of
which is necessary in obtaining the desired error estimate and is of independent interest (see
Sect. 4).
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2 Preliminaries

We denote by L2(D) the space of the Lebesgue measurable functions which are square
integrable on D with respect to the Lebesgue measure dx . The space L2(D) is provided with

the standard norm ‖g‖0,D := (∫

D
|g(x)|2 dx

) 1
2 for g ∈ L2(D), which is derived by the usual

inner product (g1, g2)0,D := ∫

D
g1(x) g2(x) dx for g1, g2 ∈ L2(D). In addition, we employ

the symbol N0 for the set of all nonnegative integers.
For s ∈ N0, we denote by Hs(D) the Sobolev space of functions having generalized deriva-

tives up to order s in L2(D), and by ‖·‖s,D its usual norm, i.e., ‖g‖s,D := (∑s
�=0 ‖∂�

x g‖2
0,D

)1/2

for g ∈ Hs(D). In addition, by H1
0 (D), we denote the subspace of H1(D) consisting of func-

tions which vanish at the endpoints of D in the sense of trace.
The sequence of pairs

{(

λ2
i , εi

)}∞
i=1 is a solution to the eigenvalue/eigenfunction problem:

find nonzero ϕ ∈ H2(D) ∩ H1
0 (D) and λ ∈ R, such that −ϕ′′ = λϕ in D. Since (εi )

∞
i=1 is a

complete (·, ·)0,D-orthonormal system in L2(D), for s ∈ R, we define by

Vs(D) :=
{

v ∈ L2(D) :
∞
∑

i=1

λ2s
i (v, εi )

2
0,D < ∞

}

a subspace of L2(D) provided with the natural norm ‖v‖Vs := ( ∑∞
i=1 λ2s

i (v, εi )
2
0,D

)1/2 for
v ∈ Vs(D). For s ≥ 0, the space (Vs(D), ‖ · ‖Vs ) is a complete subspace of L2(D) and we
define (Ḣs(D), ‖ · ‖Ḣs ) := (Vs(D), ‖ · ‖Vs ). For s < 0, the space (Ḣs(D), ‖ · ‖Ḣs ) is defined
as the completion of (Vs(D), ‖ · ‖Vs ), or, equivalently, as the dual of (Ḣ−s(D), ‖ · ‖Ḣ−s ).

Let m ∈ N0. It is well known (see Thomée 1997) that

Ḣm(D) =
{

v ∈ Hm(D) : ∂2�v |∂D = 0 if 0 ≤ 2� < m
}

and that there exist constants Cm,A and Cm,B , such that

Cm,A ‖v‖m,D ≤ ‖v‖Ḣm ≤ Cm,B ‖v‖m,D ∀ v ∈ Ḣm(D). (2.1)

In addition, we define on L2(D) the negative norm ‖ · ‖−m,D by

‖v‖−m,D := sup
{

(v,ϕ)0,D
‖ϕ‖m,D

: ϕ ∈ Ḣm(D) and ϕ �= 0
}

∀ v ∈ L2(D),

for which, using (2.1), follows that there exists a constant C−m > 0, such that:

‖v‖−m,D ≤ C−m ‖v‖Ḣ−m ∀ v ∈ L2(D). (2.2)

LetL2 = (L2(D), (·, ·)0,D) andL(L2) be the space of linear, bounded operators fromL2 to

L2. An operator  ∈ L(L2) is Hilbert–Schmidt, when ‖‖HS := (∑∞
i=1 ‖εi‖2

0,D

) 1
2 < +∞,

where ‖‖HS is the so-called Hilbert–Schmidt norm of . We note that the quantity ‖‖HS

does not change when we replace (εi )
∞
i=1 by another complete orthonormal system of L2.

It is well known (see, e.g., Dunford and Schwartz 1988; Lord et al. 2014) that an operator
 ∈ L(L2) is Hilbert–Schmidt iff there exists a measurable function γ : D × D → R, such
that [v](·) = ∫

D
γ (·, y) v(y) dy for v ∈ L2(D), and then, it holds that

‖‖HS =
(∫∫

D×D

γ 2(x, y) dxdy

) 1
2

. (2.3)

Let LHS(L2) be the set of Hilbert–Schmidt operators of L(L2) and � : [0, T ] → LHS(L2).
In addition, for a random variable X , let E[X ] be its expected value, i.e., E[X ] := ∫

�
X dP .
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Then, the Itô isometry property for stochastic integrals reads

E

[∥
∥
∥

∫ T

0
� dW

∥
∥
∥

2

0,D

]

=
∫ T

0
‖�(t)‖2

HS dt. (2.4)

For later use, we recall that if (H, (·, ·)H) is a real inner product space with induced norm
| · |H, then

2 (g − v, g)H = |g|2H − |v|2H + |g − v|2H ∀ g, v ∈ H. (2.5)

Finally, for any nonempty set A, we denote by XA the indicator function of A.

2.1 A projection operator

LetO := (0, T )×D,SM := span(ϕi )
M
i=1,SN := span(XTn )

N
n=1 and � : L2(O) → SN⊗SM,

the usual L2(O)-projection operator which is given by the formula:

�g := 1
�t

M
∑

i=1

(
N
∑

n=1

XTn

∫

Tn

(g, ϕi )0,D dt

)

ϕi ∀ g ∈ L2(O). (2.6)

Then, the following representation of the stochastic integral of � holds [cf. Lemma 2.1 in
Kossioris and Zouraris (2010)].

Lemma 2.1 For g ∈ L2(O), it holds that
∫ T

0

∫

D

�g(t, x) dW (t, x) =
∫∫

O
W(s, y) g(s, y) dsdy. (2.7)

Proof Using (2.6) and (1.7), we have
∫ T

0

∫

D

�g(t, x) dW (t, x) = 1
�t

N
∑

n=1

M
∑

i=1

(∫

Tn

∫

D

g(s, y) ϕi (y) dsdy

)

Rn
i

= 1
�t

N
∑

n=1

M
∑

i=1

(∫∫

O
XTn (s) R

n
i g(s, y) ϕi (y) dsdy

)

=
∫∫

O
g(s, y)

(

1
�t

N
∑

n=1

M
∑

i=1

XTn (s) R
n
i ϕi (y)

)

dsdy

which along (1.6) yields (2.7). ��
2.2 Linear elliptic and parabolic operators

Let TE : L2(D) → Ḣ2(D) be the solution operator of the Dirichlet two-point boundary-value
problem: for given f ∈ L2(D) find vE ∈ Ḣ2(D), such that v′′

E = f in D, i.e., TE f := vE . It
is well known that

(TE f, g)0,D = ( f, TEg)0,D ∀ f, g ∈ L2(D), (2.8)

and, for m ∈ N0, there exists a constant Cm
E > 0, such that

‖TE f ‖m,D ≤ Cm
E ‖ f ‖m−2,D ∀ f ∈ Hmax{0,m−2}(D). (2.9)

Let, also, TB : L2(D) → Ḣ4(D) be the solution operator of the following Dirichlet
biharmonic two-point boundary-value problem: for given f ∈ L2(D) find vB ∈ Ḣ4(D),
such that

v′′′′
B = f in D, (2.10)
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i.e., TB f := vB . It is well known that, for m ∈ N0, there exists a constant Cm
B > 0, such that

‖TB f ‖m,D ≤ Cm
B ‖ f ‖m−4,D ∀ f ∈ Hmax{0,m−4}(D). (2.11)

Due to the type of boundary conditions of (2.10), we have

TB f = T 2
E f ∀ f ∈ L2(D), (2.12)

which, after using (2.8), yields

(TBv1, v2)0,D = (TEv1, TEv2)0,D = (v1, TBv2)0,D ∀ v1, v2 ∈ L2(D). (2.13)

Let (S(t)w0)t∈[0,T ] be the standard semigroup notation for the solution w to (1.4). Then
[see Appendix A in Kossioris and Zouraris (2013)], for � ∈ N0, β ≥ 0 and p ≥ 0, there
exists a constant Cβ,�,μ,μ2T > 0, such that

∫ tb

ta
(τ − ta)

β
∥
∥∂�

t S(τ )w0
∥
∥

2
Ḣp dτ ≤ Cβ,�,μ,μ2T ‖w0‖2

Ḣp+4�−2β−2 (2.14)

for all w0 ∈ Ḣp+4�−2β−2(D) and ta , tb ∈ [0, T ] with tb > ta .

2.3 Discrete operators

Let r = 2 or 3, and Mr
h ⊂ H1

0 (D) ∩ H2(D) be a finite element space consisting of functions
which are piecewise polynomials of degree at most r over a partition of D in intervals with
maximum length h. It is well known (cf., e.g., Bramble and Hilbert 1970) that

inf
χ∈Mr

h

‖v − χ‖2,D ≤ Cr h
s−2 ‖v‖s,D ∀ v ∈ Hs(D) ∩ H1

0 (D), s = 3, . . . , r + 1, (2.15)

where Cr is a positive constant that depends on r and D, and is independent of h and v. Then,
we define the discrete biharmonic operator Bh : Mr

h → Mr
h by (Bhϕ, χ)0,D = (∂2

xϕ, ∂2
xχ)0,D

for ϕ, χ ∈ Mr
h , the L2(D)-projection operator Ph : L2(D) → Mr

h by (Ph f, χ)0,D = ( f, χ)0,D

for χ ∈ Mr
h and f ∈ L2(D), and the standard Galerkin finite element approximation vB,h ∈

Mr
h of the solution vB to (2.10) by requiring

Bh(vB,h) = Ph f. (2.16)

Let TB,h : L2(D) → Mr
h be the solution operator of the finite element method (2.16), i.e.,

TB,h f := vB,h = B−1
h Ph f for all f ∈ L2(D). Then, we can easily conclude that

(

TB,h f, g
)

0,D
= (

∂2
x

(

TB,h f
)

, ∂2
x

(

TB,hg
))

0,D
= (

f, TB,hg
)

0,D
∀ f, g ∈ L2(D) (2.17)

and
‖∂2

x (TB,h f )‖0,D ≤ C ‖ f ‖−2,D ∀ f ∈ L2(D). (2.18)

Finally, the approximation property (2.15) of the finite element space Mr
h yields (see, e.g.,

Proposition 2.2 in Kossioris and Zouraris 2010) the following error estimate:

‖TB f − TB,h f ‖0,D ≤ C hr ‖ f ‖−1,D ∀ f ∈ L2(D), r = 2, 3. (2.19)

3 An approximation estimate for the canvas problem solution

Here, we establish the convergence of u towards u with respect to the L∞
t (L2

P(L
2
x )) norm,

when �t → 0 and M → ∞ (cf. Kossioris and Zouraris 2010, 2013).
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Theorem 3.1 Let u be the solution to (1.1), u be the solution to (1.5), and κ ∈ N, such that
κ2 π2 > μ. Then, there exists a constant ĉCER > 0, independent of �t andM, such that

max
[0,T ]

Θ ≤ ĉCER

(

�t
1
8 + M− 1

2

)

∀M ≥ κ, (3.1)

where Θ(t) := (

E
[‖u(t, ·) − u(t, ·)‖2

0,D

]) 1
2 for t ∈ [0, T ].

Proof In the sequel, we will use the symbolC to denote a generic constant that is independent
of �t and M and may change value from one line to the other.

Using (1.2), (1.9), and Lemma 2.1, we conclude that

u(t, x) − u(t, x) =
∫ T

0

∫

D

[X(0,t)(s)Ψt−s(x, y) − Ψ̃(t, x; s, y)] dW (s, y), (3.2)

for (t, x) ∈ [0, T ] × D, where Ψ̃ : (0, T ) × D → L2(D) is given by

Ψ̃(t, x; s, y) := 1
�t

M
∑

i=1

[ ∫

Tn

X(0,t)(s
′)
(∫

D

Ψt−s′(x, y
′) ϕi (y

′) dy′
)

ds′
]

ϕi (y)

for (s, y) ∈ Tn × D, n = 1, . . . ,N, and for (t, x) ∈ (0, T ] × D. Now, we use (1.3) and the
L2(D)-orthogonality of (ϕk)

∞
k=1 to obtain

Ψ̃(t, x; s, y) = 1
�t

∫

Tn

X(0,t)(s
′)
(

M
∑

i=1

λi e
−λ2

i (λ
2
i −μ)(t−s′)εi (x) ϕi (y)

)

ds′ (3.3)

for (s, y) ∈ Tn × D, n = 1, . . . ,N, and for (t, x) ∈ (0, T ] × D. In addition, we use (3.2),
(2.4), and (2.3), to get

Θ(t) =
(∫ T

0

∫

D

∫

D

[X(0,t)(s)Ψt−s(x, y) − Ψ̃(t, x; s, y)]2 dxdyds

) 1
2

≤ √

ΘA(t) +√

ΘB(t) ∀ t ∈ (0, T ], (3.4)

where

ΘA(t) :=
N
∑

n=1

∫

D

∫

D

∫

Tn

[

X(0,t)(s)Ψt−s(x, y) − 1
�t

∫

Tn

X(0,t)(s
′)Ψt−s′(x, y) ds′

]2

dxdyds

and

ΘB(t) :=
N
∑

n=1

∫

D

∫

D

∫

Tn

[

1
�t

∫

Tn

X(0,t)(s
′)Ψt−s′(x, y) ds′ − Ψ̃(t, x; s, y)

]2

dxdyds.

Proceeding as in the proof of Theorem 3.1 in Kossioris and Zouraris (2013), we arrive at

√

ΘA(t) ≤ C �t
1
8 ∀ t ∈ (0, T ]. (3.5)
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Combining (3) and (3.3) and using the L2(D)-orthogonality of (εk)
∞
k=1 and (ϕk)

∞
k=1, we have

ΘB(t) = 1
�t

N
∑

n=1

∫

D

∫

D

[
∫

Tn

X(0,t)(s
′)
(

Ψt−s′ (x, y) −
M
∑

i=1

λi e
−λ2

i (λ
2
i −μ)(t−s′)εi (x) ϕi (y)

)

ds′
]2

dxdy

= 1
�t

N
∑

n=1

∫

D

∫

D

[
∫

Tn

X(0,t)(s
′)
( ∞

∑

i=M+1

λi e
−λ2

i (λ
2
i −μ)(t−s′)εi (x) ϕi (y)

)

ds′
]2

dxdy

= 1
�t

N
∑

n=1

∫

D

∫

D

[ ∞
∑

i=M+1

(∫

Tn

X(0,t)(s
′) λi e

−λ2
i (λ

2
i −μ)(t−s′) ds′

)

εi (x) ϕi (y)

]2

dxdy

= 1
�t

N
∑

n=1

∞
∑

i=M+1

(∫

Tn

X(0,t)(s
′) λi e

−λ2
i (λ

2
i −μ)(t−s′) ds′

)2

∀ t ∈ (0, T ].

For M ≥ κ , using the Cauchy–Schwarz inequality, we obtain

√

ΘB(t) ≤
[ ∞

∑

i=M+1

λ2
i

(∫ t

0
e−2 λ2

i (λ
2
i −μ)(t−s′) ds′

)]
1
2

≤ 1√
2

( ∞
∑

i=M+1

1
λ2
i −μ

) 1
2

≤ κ+1√
2+4κ

( ∞
∑

i=M+1

1
λ2
i

) 1
2

≤ κ+1
π

√
2+4κ

(∫ ∞

M

1
x2 dx

) 1
2

≤ κ+1
π

√
2+4κ

M− 1
2 ∀ t ∈ (0, T ]. (3.6)

The error bound (3.1) follows by observing that �(0) = 0 and by combining the bounds
(3.4), (3.5) and (3.6). ��

4 Deterministic time-discrete and fully discrete approximations

In this section, we define and analyze auxiliary time-discrete and fully discrete approxi-
mations of the solution to the deterministic problem (1.4). The results of the convergence
analysis will be used in Sect. 5 for the derivation of an error estimate for the numerical
approximations of u introduced in Sect. 1.2.

4.1 Time-discrete approximations

We define an auxiliary modified-IMEX time-discrete method to approximate the solution w

to (1.4), which has the following structure: First, sets

W 0 := w0 (4.1)

and determines W 1 ∈ Ḣ4(D) by

W 1 − W 0 + �τ ∂4
x W

1 = 0. (4.2)
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Then, for m = 2, . . . , M , finds Wm ∈ Ḣ4(D), such that

Wm − Wm−1 + �τ
(

∂4
x W

m + μ∂2
x W

m−1 ) = 0. (4.3)

In the proposition below, we derive a low regularity priori error estimate in a discrete in
time L2

t (L
2
x )-norm.

Proposition 4.1 Let (Wm)Mm=0 be the time-discrete approximations defined in (4.1)–(4.3),
and w be the solution to the problem (1.4). Then, there exists a constant C > 0, independent
of �τ , such that

(

�τ

M
∑

m=1

‖Wm − wm‖2
0,D

) 1
2

≤ C �τθ ‖w0‖Ḣ4θ−2 ∀ θ ∈ [0, 1], ∀ w0 ∈ Ḣ2(D), (4.4)

where w�(·) := w(τ�, ·) for � = 0, . . . , M.

Proof In the sequel, we will use the symbolC to denote a generic constant that is independent
of �τ and may changes value from one line to the other.

Let Em := wm − Wm for m = 0, . . . , M , and

σm(·) :=
∫

�m

(w(τm, ·) − w(τ, ·) ) dτ + μ

∫

�m

TE (w(τm−1, ·) − w(τ, ·) ) dτ,

for m = 1, . . . , M . Thus, combining (1.4), (4.2) and (4.3), we conclude that

TB(E1 − E0) + �τ E1 = σ1 − �τ μ TEw0, (4.5)

TB(Em − Em−1) + �τ
(

Em + μ TEEm−1 ) = σm, m = 2, . . . , M. (4.6)

First, take the L2(D)-inner product of both sides of (4.5) with E1 and of (4.6) with Em ,
and then use (2.13) to obtain

(TEE1 − TEE0, TEE1)0,D + �τ ‖E1‖2
0,D = (σ1,E1)0,D − �τ μ (TEw0,E1)0,D,

(TEEm − TEEm−1, TEEm)0,D + �τ ‖Em‖2
0,D = −μ�τ (TEEm−1,Em)0,D + (σm,Em)0,D

for m = 2, . . . , M . Then, using that E0 = 0 and applying (2.5) along with the arithmetic
mean inequality, we get

‖TEE1‖2
0,D + �τ ‖E1‖2

0,D ≤ �τ−1 ‖σ1‖2
0,D − 2 �τ μ (TEw0,E1)0,D, (4.7)

‖TEEm‖2
0,D + 1

2 �τ ‖Em‖2
0,D ≤ (1 + 2 μ2 �τ) ‖TEEm−1‖2

0,D

+�τ−1 ‖σm‖2
0,D, m = 2, . . . , M. (4.8)

Observing that (4.8) yields

‖TEEm‖2
0,D ≤ (1 + 2 μ2 �τ) ‖TEEm−1‖2

0,D + �τ−1 ‖σm‖2
0,D, m = 2, . . . , M,

we use a standard discrete Gronwall argument to arrive at

max
1≤m≤M

‖TEEm‖2
0,D ≤ C

(

‖TEE1‖2
0,D + �τ−1

M
∑

m=2

‖σm‖2
0,D

)

. (4.9)

Summing both sides of (4.8) with respect to m, from 2 up to M , we obtain

‖TEEM‖2
0,D+�τ

2

M
∑

m=2

‖Em‖2
0,D ≤ ‖TEE1‖2

0,D+2 μ2 �τ

M−1
∑

m=1

‖TEEm‖2
0,D+�τ−1

M
∑

m=2

‖σm‖2
0,D,
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which, along with (4.9), yields

�τ

M
∑

m=1

‖Em‖2
0,D ≤ C

(

‖TEE1‖2
0,D + �τ ‖E1‖2

0,D + �τ−1
M
∑

m=2

‖σm‖2
0,D

)

. (4.10)

Using (4.7), (2.8), the Cauchy–Schwarz inequality and the arithmetic mean inequality, we
have

‖TEE1‖2
0,D + �τ ‖E1‖2

0,D ≤�τ−1 ‖σ1‖2
0,D − 2 �τ μ (w0, TEE1)0,D

≤�τ−1 ‖σ1‖2
0,D + 2 �τ |μ| ‖w0‖0,D ‖TEE1‖0,D

≤�τ−1 ‖σ1‖2
0,D + 1

2 ‖TEE1‖2
0,D + 2 �τ 2 μ2 ‖w0‖2

0,D

which, finally, yields

‖TEE1‖2
0,D + �τ ‖E1‖2

0,D ≤ C
(

�τ 2 ‖w0‖2
0,D + �τ−1 ‖σ1‖2

0,D

)

. (4.11)

Next, we use the Cauchy–Schwarz inequality and (2.9) to get

‖σm‖2
0,D ≤ 2 �τ 3

∫

�m

‖∂τw(s, ·)‖2
0,D ds + 2 μ2 �τ 3

∫

�m

‖TE(∂τw(s, ·))‖2
0,D ds

≤ C (�τ)3
∫

�m

‖∂τw(s, ·)‖2
0,D ds, m = 1, . . . , M. (4.12)

Finally, we use (4.10), (4.11), (4.12), and (2.14) (with β = 0, � = 1, and p = 0) to obtain

�τ

M
∑

m=1

‖Em‖2
0,D ≤ C

(

�τ 2 ‖w0‖2
0,D + �τ−1

M
∑

m=1

‖σm‖2
0,D

)

≤ C

(

�τ 2 ‖w0‖2
0,D + �τ 2

∫ T

0
‖∂τw(s, ·)‖2

0,D ds

)

≤ C �τ 2 ‖w0‖2
Ḣ2 ,

which establishes (4.4) for θ = 1.
From (4.2), (4.3), and (2.12), it follows that:

TB(W
1 − W 0) + �τ W 1 = 0,

TB(W
m − Wm−1) + �τ

(

Wm + μ TEW
m−1 ) = 0, m = 2, . . . , M.

Taking the L2(D)-inner product of both sides of the first equation above with W 1 and of the
second one with Wm , and then applying (2.13), (2.5) and the arithmetic mean inequality, we
obtain

‖TEW
1‖2

0,D − ‖TEW
0‖2

0,D + 2 �τ ‖W 1‖2
0,D ≤ 0, (4.13)

‖TEW
m‖2

0,D − ‖TEW
m−1‖2

0,D + �τ ‖Wm‖2
0,D ≤ μ2 �τ ‖TEW

m−1‖2
0,D, m = 2, . . . , M.

(4.14)

The inequalities (4.13) and (4.14), easily, yield that

‖TEW
m‖2

0,D ≤ (1 + μ2 �τ) ‖TEW
m−1‖2

0,D, m = 1, . . . , M,

from which, after the use of a standard discrete Gronwall argument, we arrive at

max
0≤m≤M

‖TEW
m‖2

0,D ≤ C ‖TEW
0‖2

0,D. (4.15)
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We sum both sides of (4.14) with respect to m, from 2 up to M , and then use (4.15), to have

�τ

M
∑

m=2

‖Wm‖2
0,D ≤ ‖TEW

1‖2
0,D + μ2 �τ

M−1
∑

m=1

‖TEW
m‖2

0,D

≤ C
( ‖TEW

1‖2
0,D + ‖TEW

0‖2
0,D

)

. (4.16)

Thus, using (4.16), (4.13), (4.1), (2.9), and (2.2), we obtain

�τ

M
∑

m=1

‖Wm‖2
0,D ≤ C

( ‖TEW
1‖2

0,D + �τ ‖W 1‖2
0,D + ‖TEw0‖2

0,D

)

≤ C ‖TEw0‖2
0,D

≤ C ‖w0‖2
−2,D

≤ C ‖w0‖2
Ḣ−2 . (4.17)

In addition, we have

�τ

M
∑

m=1

‖wm‖2
0,D =

M
∑

m=1

∫

D

(∫

�m

∂τ

[

(τ − τm−1)w2(τ, x)
]

dτ

)

dx

=
M
∑

m=1

∫

D

(∫

�m

[

w2(τ, x) + 2 (τ − τm−1)wτ (τ, x)w(τ, x)
]

dτ

)

dx

≤
M
∑

m=1

∫

�m

(

2 ‖w(τ, ·)‖2
0,D + (τ − τm−1)

2 ‖wτ (τ, ·)‖2
0,D

)

dτ

≤ 2
∫ T

0
‖w(τ, ·)‖2

0,D dτ +
∫ T

0
τ 2 ‖wτ (τ, ·)‖2

0,D dτ,

which, along with (2.14) (with (β, �, p) = (0, 0, 0) and (β, �, p) = (2, 1, 0)), yields

�τ

M
∑

m=1

‖wm‖2
0,D ≤ C ‖w0‖2

Ḣ−2 . (4.18)

Thus, (4.17) and (4.18) establish (4.4) for θ = 0.
Finally, the estimate (4.4) follows by interpolation, since it is valid for θ = 1 and θ = 0.

��

We close this section by deriving, for later use, the following a priori bound.

Lemma 4.1 Let (Wm)Mm=0 be the time-discrete approximations defined by (4.1)–(4.3). Then,
there exist a constant C > 0, independent of �τ , such that

(

�τ

M
∑

m=1

‖∂3
x W

m‖2
0,D

) 1
2

≤ C ‖w0‖Ḣ1 ∀ w0 ∈ Ḣ1(D). (4.19)

Proof In the sequel, we will use the symbolC to denote a generic constant that is independent
of �τ and may changes value from one line to the other.
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Taking the (·, ·)0,D-inner product of (4.3) with ∂2
x W

m and of (4.2) with ∂2
x W

1, and then
integrating by parts, we obtain

(

∂xW
1 − ∂xW

0, ∂xW
1)

0,D
+ �τ ‖∂3

x W
1‖2

0,D = 0, (4.20)
(

∂xW
m − ∂xW

m−1, ∂xW
m)

0,D
+ �τ

[ ‖∂3
x W

m‖2
0,D + μ (∂3

x W
m, ∂xW

m−1)0,D

] = 0

(4.21)

for m = 2, . . . , M . Using (2.5) and the arithmetic mean inequality, from (4.20) and (4.21),
it follows that:

‖∂xW 1‖2
0,D − ‖∂xW 0‖2

0,D + 2 �τ ‖∂3
x W

1‖2
0,D ≤ 0, (4.22)

‖∂xWm‖2
0,D − ‖∂xWm−1‖2

0,D + �τ ‖∂3
x W

m‖2
0,D ≤ �τ μ2 ‖∂xWm−1‖2

0,D, m = 2, . . . , M.

(4.23)

Now, (4.23) and (4.22), easily, yield that

‖∂xWm‖2
0,D ≤ (1 + μ2 �τ) ‖∂xWm−1‖2

0,D, m = 2, . . . , M,

which, after a standard induction argument, leads to

max
1≤m≤M

‖∂xWm‖2
0,D ≤ C ‖∂xW 1‖2

1,D. (4.24)

After summing both sides of (4.23) with respect to m, from 2 up to M , we obtain

�τ

M
∑

m=2

‖∂3
x W

m‖2
0,D ≤ ‖∂xW 1‖2

0,D + μ2 �τ

M−1
∑

m=1

‖∂xWm‖2
0,D

which, after using (4.24), yields

�τ

M
∑

m=1

‖∂3
x W

m‖2
0,D ≤ C

( ‖∂xW 1‖2
0,D + �τ ‖∂3

x W
1‖2

0,D

)

. (4.25)

Finally, we combine (4.25), (4.22), and (2.1) to get

�τ

M
∑

m=1

‖∂3
x W

m‖2
0,D ≤C ‖∂xW 0‖2

0,D

≤C ‖w0‖2
1,D

≤C ‖w0‖2
Ḣ1 ,

which, easily, yields (4.19). ��
4.2 Fully discrete approximations

The modified-IMEX time-stepping method along with a finite element space discretization
yields a fully discrete method for the approximation of the solution to the deterministic
problem (1.4). The method begins by setting

W 0
h := Phw0 (4.26)

and specifying W 1
h ∈ Mr

h , such that

W 1
h − W 0

h + �τ BhW
1
h = 0. (4.27)
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Then, for m = 2, . . . , M , it finds Wm
h ∈ Mr

h , such that

Wm
h − Wm−1

h + �τ
[

BhW
m
h + μ Ph

(

∂2
x W

m−1
h

) ]

= 0. (4.28)

Adopting the viewpoint that the fully discrete approximations defined above are approx-
imations of the time-discrete ones defined in the previous section, we estimate below the
corresponding approximation error in a discrete in time L2

t (L
2
x )-norm.

Proposition 4.2 Let r = 2 or 3, (Wm)Mm=0 be the time-discrete approximations defined by
(4.1)–(4.3), and (Wm

h )Mm=0 ⊂ Mr
h be the fully discrete approximations specified in (4.26)–

(4.28). Then, there exists a constant C > 0, independent of �τ and h, such that

(

�τ

M
∑

m=1

‖Wm − Wm
h ‖2

0,D

) 1
2

≤ C hrθ ‖w0‖Ḣ3θ−2 ∀ w0 ∈ Ḣ1(D), ∀ θ ∈ [0, 1].
(4.29)

Proof In the sequel, we will use the symbol C to denote a generic constant which is inde-
pendent of �τ and h, and may changes value from one line to the other.

Let Zm := Wm − Wm
h for m = 0, . . . , M . Then, from (4.2), (4.3), (4.27), and (4.28), we

obtain the following error equations:

TB,h(Z1 − Z0) + �τ Z1 = �τ ξ1, (4.30)

TB,h(Zm − Zm−1) + �τ
[

Zm + μ TB,h(∂
2
xZ

m−1)
] = �τ ξm, m = 2, . . . , M, (4.31)

where
ξm := (TB − TB,h)∂

4
x W

m, m = 1, . . . , M. (4.32)

Taking the L2(D)-inner product of both sides of (4.31) with Zm , we obtain

(TB,h(Zm − Zm−1),Zm)0,D + �τ ‖Zm‖2
0,D = − μ�τ

(

TB,h(∂
2
xZ

m−1),Zm)

0,D

+ �τ (ξm,Zm)0,D, m = 2, . . . , M,

which, along with (2.17) and (2.5), yields

‖∂2
x (TB,hZm)‖2

0,D − ‖∂2
x (TB,hZm−1)‖2

0,D + ‖∂2
x

(

TB,h

(

Zm − Zm−1)) ‖2
0,D

+ 2 �τ ‖Zm‖2
0,D = Am

1 + Am
2 , (4.33)

for m = 2, . . . , M , where

Am
1 := 2 �τ (ξm,Zm)0,D,

Am
2 := − 2 μ�τ

(

TB,h

(

∂2
xZ

m−1) ,Zm)

0,D
.

Using (2.17), integration by parts, the Cauchy–Schwarz inequality, the arithmetic mean
inequality, we have

Am
1 ≤ �τ

( ‖Zm‖2
0,D + ‖ξm‖2

0,D

)

(4.34)
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and

Am
2 = −2 μ�τ (∂2

xZ
m−1, TB,hZm)0,D

= −2 μ�τ (Zm−1, ∂2
x (TB,hZm))0,D

= −2 μ�τ
(

Zm−1, ∂2
x

(

TB,h

(

Zm − Zm−1)))

0,D

− 2 μ�τ (Zm−1, ∂2
x (TB,hZm−1))0,D

≤ 2 |μ| �τ ‖Zm−1‖0,D

∥
∥∂2

x

(

TB,h

(

Zm − Zm−1))
∥
∥

0,D

+ 2 |μ| �τ ‖Zm−1‖0,D

∥
∥∂2

x

(

TB,hZm−1)
∥
∥

0,D

≤ �τ 2 μ2 ‖Zm−1‖2
0,D + ‖∂2

x

(

TB,h

(

Zm − Zm−1)) ‖2
0,D

+ �τ
2 ‖Zm−1‖2

0,D + 2 �τ μ2 ‖∂2
x (TB,hZm−1)‖2

0,D, m = 2, . . . , M. (4.35)

Now, we combine (4.33), (4.34) and (4.35) to get

‖∂2
x (TB,hZm)‖2

0,D + �τ ‖Zm‖2
0,D ≤ ‖∂2

x (TB,hZm−1)‖2
0,D + �τ

2 ‖Zm−1‖2
0,D + �τ ‖ξm‖2

0,D

+ 2 �τ μ2 ( ‖∂2
x (TB,hZm−1)‖2

0,D + �τ ‖Zm−1‖2
0,D

)

(4.36)

for m = 2, . . . , M . Let ϒ� := ‖∂2
x (TB,hZ�)‖2

0,D +�τ ‖Z�‖2
0,D for � = 1, . . . , M . Then, (4.36)

yields
ϒm ≤ (1 + 2 μ2 �τ)ϒm−1 + �τ ‖ξm‖2

0,D, m = 2, . . . , M,

from which, after applying a standard discrete Gronwall argument, we conclude that

max
1≤m≤M

ϒm ≤ C

(

ϒ1 + �τ

M
∑

m=2

‖ξm‖2
0,D

)

. (4.37)

Since TB,hZ0 = 0, after taking the L2(D)-inner product of both sides of (4.30) with Z1, and
then, using (2.17) and the arithmetic mean inequality, we obtain

‖∂2
x (TB,hZ1)‖2

0,D + �τ
2 ‖Z1‖2

0,D ≤ �τ
2 ‖ξ1‖2

0,D, (4.38)

which, along with (4.37), yields

max
1≤m≤M

ϒm ≤ C �τ

M
∑

m=1

‖ξm‖2
0,D. (4.39)

Now, summing both sides of (4.36) with respect to m, from 2 up to M , we obtain

�τ

M
∑

m=2

‖Zm‖2
0,D ≤‖∂2

x (TB,hZ1)‖2
0,D + �τ

2

M−1
∑

m=1

‖Zm‖2
0,D

+ �τ

M
∑

m=2

‖ξm‖2
0,D + 2 μ2 �τ

M−1
∑

m=1

ϒm,
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which, along with (4.39), yields

�τ
2

M
∑

m=1

‖Zm‖2
0,D ≤ ‖∂2

x (TB,hZ1)‖2
0,D + �τ ‖Z1‖2

0,D

+ �τ

M
∑

m=2

‖ξm‖2
0,D + 2 μ2 �τ

M−1
∑

m=1

ϒm

≤ C

(

max
1≤m≤M−1

ϒm + �τ

M
∑

m=2

‖ξm‖2
0,D

)

≤ C �τ

M
∑

m=1

‖ξm‖2
0,D. (4.40)

Combining (4.40), (4.32), (2.19), and (4.19), we obtain

�τ

M
∑

m=1

‖Zm‖2
0,D ≤ C h2r �τ

M
∑

m=1

‖∂3
x W

m‖2
0,D

≤ C h2r ‖w0‖2
Ḣ1 . (4.41)

Thus, (4.41) yields (4.29) for θ = 1.
From (4.27) and (4.28), we conclude that

TB,h(W
1
h − W 0

h ) + �τ W 1
h = 0,

TB,h(W
m
h − Wm−1

h ) + �τ Wm
h = −μ�τ TB,h(∂

2
x W

m−1
h ), m = 2, . . . , M.

Taking the L2(D)-inner product of both sides of the first equation above with W 1
h and of the

second one with Wm
h , and then, applying (2.17) and (2.5), we obtain

‖∂2
x (TB,hW

1
h )‖2

0,D − ‖∂2
x (TB,hW

0
h )‖2

0,D + 2 �τ ‖W 1
h ‖2

0,D ≤ 0, (4.42)

‖∂2
x (TB,hW

m
h )‖2

0,D + ‖∂2
x (TB,h(W

m
h − Wm−1

h ))‖2
0,D

+2�τ ‖Wm
h ‖2

0,D = ‖∂2
x (TB,hW

m−1
h )‖2

0,D + Am
3 , m = 2, . . . , M, (4.43)

where
Am

3 := −2 μ�τ
(

TB,h

(

∂2
x W

m−1
h

)

,Wm
h

)

0,D
.

Using (2.17), integration by parts, the Cauchy–Schwarz inequality, and the arithmetic mean
inequality, we have

Am
3 = −2 μ�τ

(

Wm−1
h , ∂2

x

(

TB,hW
m
h

))

0,D

= −2 μ�τ
(

Wm−1
h , ∂2

x

(

TB,h

(

Wm
h − Wm−1

h

)))

0,D

− 2 μ�τ (Wm−1
h , ∂2

x (TB,hW
m−1
h ))0,D

≤ �τ 2 μ2 ‖Wm−1
h ‖2

0,D + ‖∂2
x

(

TB,h

(

Wm
h − Wm−1

h

))

‖2
0,D

+ �τ
2 ‖Wm−1

h ‖2
0,D + 2 �τ μ2 ‖∂2

x (TB,hW
m−1
h )‖2

0,D, m = 2, . . . , M. (4.44)
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Combining (4.43) and (4.44), we arrive at

‖∂2
x (TB,hW

m
h )‖2

0,D + 2 �τ ‖Wm
h ‖2

0,D ≤ ‖∂2
x (TB,hW

m−1
h )‖2

0,D + �τ
2 ‖Wm−1

h ‖2
0,D

+ 2 �τ μ2
(

‖∂2
x (TB,hW

m−1
h )‖2

0,D + �τ ‖Wm−1
h ‖2

0,D

)

, m = 2, . . . , M. (4.45)

Letϒ�
h := ‖∂2

x (TB,hW �
h )‖2

0,D + �τ ‖W �
h ‖2

0,D for � = 1, . . . , M . Then, we use (4.42), (4.26),
(2.18), (2.2), and (4.45) to obtain

ϒ1
h ≤ ‖∂2

x (TB,h Phw0)‖2
0,D

≤ ‖∂2
x (TB,hw0)‖2

0,D

≤ ‖w0‖2
−2,D

≤ ‖w0‖2
Ḣ−2 (4.46)

and
ϒm
h ≤ (1 + 2 μ2�τ)ϒm−1

h , m = 2, . . . , M. (4.47)

From (4.47), after the application of a standard discrete Gronwall argument and the use of
(4.46), we conclude that

max
1≤m≤M

ϒm
h ≤ C ϒ1

h

≤ C ‖w0‖2
Ḣ−2 . (4.48)

Summing both sides of (4.45) with respect to m, from 2 up to M , we have

�τ

M
∑

m=2

‖Wm
h ‖2

0,D ≤‖∂2
x (TB,hW

1
h )‖2

0,D + �τ
2

M−1
∑

m=1

‖Wm
h ‖2

0,D + 2 μ2 �τ

M−1
∑

m=1

ϒm
h ,

which, along with (4.48), yields

�τ
2

M
∑

m=1

‖Wm
h ‖2

0,D ≤ ϒ1
h + 2 μ2 �τ

M−1
∑

m=1

ϒm
h

≤ C ‖w0‖2
Ḣ−2 . (4.49)

Thus, (4.49) and (4.17) yield (4.29) for θ = 0.
Thus, the error estimate (4.29) follows by interpolation, since it holds for θ = 1 and

θ = 0. ��

5 Convergence analysis of the IMEX finite element method

To estimate the approximation error of the IMEX finite element method given in Sect. 1.2,
we use, as a tool, the corresponding IMEX time-discrete approximations of u, which are
defined first by setting

U0 := 0 (5.1)

and then, for m = 1, . . . , M , by seeking Um ∈ Ḣ4(D), such that

Um − Um−1 + �τ
(

∂4
xU

m + μ∂2
xU

m−1) =
∫

�m

∂xW dτ a.s.. (5.2)
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Thus, we split the total error of the IMEX finite element method as follows:

max
0≤m≤M

(

E
[ ‖um − Um

h ‖2
0,D

]) 1
2 ≤ max

0≤m≤M
Em

TDR + max
0≤m≤M

Em
SDR, (5.3)

where um := u(τm, ·), Em
TDR := (

E
[‖um − Um‖2

0,D

])1/2
is the time-discretization error at τm ,

and Em
SDR := (

E
[‖Um − Um

h ‖2
0,D

])1/2
is the space-discretization error at τm .

5.1 Estimating the time-discretization error

The convergence estimate of Proposition 4.1 is the main tool in providing a discrete in time
L∞
t (L2

P(L
2
x )) error estimate of the time-discretization error (cf. Yan 2005; Kossioris and

Zouraris 2010, 2013).

Proposition 5.1 Let u be the solution to (1.5) and (Um)Mm=0 be the time-discrete approxi-
mations of u defined by (5.1)–(5.2). Then, there exists a constant ĉTDR, independent of �t ,M
and �τ , such that

max
0≤m≤M

Em
TDR ≤ ĉTDR ε− 1

2 �τ
1
8 −ε ∀ ε ∈ (

0, 1
8

]

. (5.4)

Proof In the sequel, we will use the symbolC to denote a generic constant that is independent
of �t , M, and �τ , and may change value from one line to the other.

First, we introduce some notation by letting I : L2(D) → L2(D) be the identity operator,
Y : H2(D) → L2(D) be the differential operator Y := I − �τ μ∂2

x , and � : L2(D) →
Ḣ4(D) be the inverse elliptic operator � := (I + �τ ∂4

x )
−1. Then, for m = 1, . . . , M , we

define the operator Qm : L2(D) → Ḣ4(D) by Qm := (� ◦ Y)m−1 ◦ �. In addition, for
given w0 ∈ Ḣ2(D), let (Sm

�τ
(w0))

M
m=0 be time-discrete approximations of the solution to the

deterministic problem (1.4), defined by (4.1)–(4.3). Then, using a simple induction argument,
we conclude that

Sm
�τ

(w0) = Qm(w0), m = 1, . . . , M. (5.5)

Let m ∈ {1, . . . , M}. Applying a simple induction argument on (5.2), we conclude that

Um =
m
∑

�=1

∫

��

Qm−�+1 (∂xW(τ, ·)) dτ,

which, along with (1.6) and (5.5), yields

Um = − 1
�t

M
∑

i=1

N
∑

n=1

Rn
i λi

(
m
∑

�=1

∫

��

XTn (τ )Sm−�+1
�τ

(εi ) dτ

)

= − 1
�t

M
∑

i=1

N
∑

n=1

Rn
i λi

[
∫ T

0
XTn (τ )

(
m
∑

�=1

X��
(τ )Sm−�+1

�τ
(εi )

)

dτ

]

= − 1
�t

M
∑

i=1

N
∑

n=1

Rn
i λi

[
∫

Tn

(
m
∑

�=1

X��
(τ )Sm−�+1

�τ
(εi )

)

dτ

]

. (5.6)

In addition, using (1.9) and (1.6), and proceeding in similar manner, we arrive at

um =
∫ τm

0
S(τm − τ) (∂xW(τ, ·)) dτ

= − 1
�t

M
∑

i=1

N
∑

n=1

Rn
i λi

[
∫

Tn

(
m
∑

�=1

X��
(τ )S(τm − τ) (εi )

)

dτ

]

. (5.7)

123



An IMEX finite element method for a linearized. . . 5573

Thus, using (5.6) and (5.7) along with Remark 1.8, we obtain

( Em
TDR

)2 = 1
�t

M
∑

i=1

N
∑

n=1

λ2
i

∫

D

(
∫

Tn

(
m
∑

�=1

X��
(τ )

[

Sm−�+1
�τ

(εi ) − S(τm − τ)(εi )
]
)

dτ

)2

dx

≤
M
∑

i=1

N
∑

n=1

λ2
i

∫

D

∫

Tn

(
m
∑

�=1

X��
(τ )

[

Sm−�+1
�τ

(εi ) − S(τm − τ)(εi )
]
)2

dτ dx

≤
M
∑

i=1

λ2
i

∫ T

0

∫

D

(
m
∑

�=1

X��
(τ )

[

Sm−�+1
�τ

(εi ) − S(τm − τ)(εi )
]
)2

dx dτ

≤
M
∑

i=1

λ2
i

(
m
∑

�=1

∫

��

‖Sm−�+1
�τ

(εi ) − S(τm − τ)(εi )‖2
0,D dτ

)

,

which, easily, yields

Em
TDR ≤

√

Bm
1 +

√

Bm
2 , (5.8)

with

Bm
1 :=

M
∑

i=1

λ2
i

(
m
∑

�=1

�τ

∥
∥
∥Sm−�+1

�τ
(εi ) − S(τm−�+1)(εi )

∥
∥
∥

2

0,D

)

,

Bm
2 :=

M
∑

i=1

λ2
i

(
m
∑

�=1

∫

��

‖S(τm−�+1)(εi ) − S(τm − τ)(εi )‖2
0,D dτ

)

.

Proceeding as in the proof of Theorem 4.1 in Kossioris and Zouraris (2013), we get
√

Bm
2 ≤ C �τ

1
8 . (5.9)

In addition, using the error estimate (4.4), it follows that:

√

Bm
1 ≤C �τθ

(
M
∑

i=1

λ2
i ‖εi‖2

Ḣ4θ−2

) 1
2

≤C �τθ

(
M
∑

i=1

1
λ2−8θ
i

) 1
2

∀ θ ∈ [0, 1].

Setting θ = 1
8 − ε with ε ∈ (

0, 1
8

]

, we have

√

Bm
1 ≤ C �τ

1
8 −ε

(
M
∑

i=1

1
i1+8ε

) 1
2

≤ C �τ
1
8 −ε

(

1 +
∫ M

1
x−1−8ε dx

) 1
2

≤ C �τ
1
8 −ε ε− 1

2

(

1 − 1
M8ε

) 1
2
. (5.10)
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Thus, the estimate (5.4) follows, easily, as a simple consequence of (5.8), (5.9), and (5.10).
��

5.2 Estimating the space-discretization error

The outcome of Proposition 4.2 will be used below in the derivation of a discrete in time
L∞
t (L2

P(L
2
x )) error estimate of the space-discretization error (cf. Yan 2005; Kossioris and

Zouraris 2010, 2013).

Proposition 5.2 Let r = 2 or 3, (Um
h )Mm=0 be the fully discrete approximations defined by

(1.10)–(1.11) and (Um)Mm=0 be the time-discrete approximations defined by (5.1)–(5.2). Then,
there exists a constant ĉSDR > 0, independent ofM, �t , �τ and h, such that

max
0≤m≤M

Em
SDR ≤ ĉSDR ε− 1

2 h
r
6 −ε ∀ ε ∈ (

0, r
6

]

. (5.11)

Proof In the sequel, we will use the symbolC to denote a generic constant that is independent
of �t , M, �τ , and h, and may change value from one line to the other.

Let us denote by I : L2(D) → L2(D) the identity operator, by Yh : Mr
h → Mr

h the
discrete differential operator Yh := I − μ�τ (Ph ◦ ∂2

x ), �h : L2(D) → Mr
h be the inverse

discrete elliptic operator �h := (I + �τ Bh)
−1 ◦ Ph . Then, for m = 1, . . . , M , we define

the auxiliary operator Qm
h : L2(D) → Mr

h by Qm
h := (�h ◦ Yh)

m−1 ◦ �h . In addition, for
given w0 ∈ Ḣ2(D), let (Sm

h (w0))
M
m=0 be fully discrete approximations of the solution to

the deterministic problem (1.4), defined by (4.26)–(4.28). Then, using a simple induction
argument, we conclude that

Sm
h (w0) = Qm

h (w0), m = 1, . . . , M. (5.12)

Let m ∈ {1, . . . , M}. Using a simple induction argument on (1.11), (1.6) and (5.12), we
conclude that

Um
h =

m
∑

�=1

∫

��

Qm−�+1
h (∂xW(τ, ·)) dτ

= − 1
�t

M
∑

i=1

N
∑

n=1

Rn
i λi

[
∫

Tn

(
m
∑

�=1

X��
(τ )Sm−�+1

h (εi )

)

dτ

]

. (5.13)

After, using (5.13), (5.6), and Remark 1.8, and proceeding as in the proof of Proposition 5.1,
we arrive at

Em
SDR ≤

[
M
∑

i=1

λ2
i

(
m
∑

�=1

�τ ‖Sm−�+1
�τ

(εi ) − Sm−�+1
h (εi )‖2

0,D dτ

)] 1
2

,

which, along (4.29), yields

Em
SDR ≤ C hrθ

(
M
∑

i=1

λ2
i ‖εi‖2

Ḣ3θ−2

) 1
2

≤ C hrθ
(

M
∑

i=1

1
λ2−6θ
i

) 1
2

∀ θ ∈ [0, 1]. (5.14)
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Setting θ = 1
6 − δ with δ ∈ (

0, 1
6

]

, we have

Em
SDR ≤C h

r
6 −rδ

(
M
∑

i=1

1
i1+6δ

) 1
2

≤C h
r
6 −rδ

(

1 +
∫ M

1
x−1−6δ dx

) 1
2

≤C h
r
6 −rδ δ− 1

2
(

1 − M−6δ
) 1

2 ,

which obviously yields (5.11) with ε = rδ. ��
5.3 Estimating the total error

Theorem 5.3 Let r = 2 or 3, u be the solution to the problem (1.5), and (Um
h )Mm=0 be the

finite element approximations of u constructed by (1.10)–(1.11). Then, there exists a constant
ĉTTL > 0, independent of h, �τ , �t andM, such that

max
0≤m≤M

(

E
[ ‖Um

h − um‖2
0,D

] ) 1
2 ≤ ĉTTL

(

ε
− 1

2
1 �τ

1
8 −ε1 + ε

− 1
2

2 h
r
6 −ε2

)

(5.15)

for all ε1 ∈ (

0, 1
8

]

and ε2 ∈ (

0, r
6

]

.

Proof The error bound (5.15) follows easily from (5.4), (5.11), and (5.3). ��
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