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Abstract In this paper, we provide an approximate approach based on the Galerkin method to
solve a class of nonlinear fractional differential algebraic equations. The fractional derivative
operator in the Caputo sense is utilized and the generalized Jacobi functions are employed
as trial functions. The existence and uniqueness theorem as well as the asymptotic behavior
of the exact solution are provided. It is shown that some derivatives of the solutions typically
have singularity at origin dependence on the order of the fractional derivative. The influence
of the perturbed data on the exact solutions along with the convergence analysis of the
proposed scheme is also established. Some illustrative examples provided to demonstrate
that this novel scheme is computationally efficient and accurate.
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1 Introduction

Fractional differential algebraic equations have recently verified to be a useful devise in the
modeling of the various physical problems such as electrochemical processes, non-integer
order optimal controller design, complex biochemical (Damarla and Kundu 2015) and etc.
Recently, providing the various numerical methods for solving the functional differential
equations with fractional order have been receiving more attentions by many authors (Babaei
and Banihashemi 2017; Bhrawy and Zaky 2016a,b; Dabiri and Butcher 2016, 2017a,b;
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Dabiri et al. 2016, 2018; Ghoreishi and Mokhtary 2014; Keshi 2018; Mokhtary 2016a;
Mokhtary and Ghoreishi 2014a; Mokhtary 2015, 2016b, 2017; Mokhtary and Ghoreishi
2011, 2014b; Mokhtary et al. 2016; Moghaddam and Aghili 2012; Moghaddam and Machado
2017a,b; Moghaddam et al. 2017a,b; Pedas et al. 2016; Taghavi et al. 2017; Zaky 2017).
Significantly less attention has been paid for the fractional differential algebraic equations
(Damarla and Kundu 2015; Ding and Jiang 2014; ibis et al. 2011; ibis and Bayram 2011;
Jaradat et al. 2014; Zurigat et al. 2010). In particular, very little has been focused on some cru-
cial items such as the analysis of the asymptotic behavior and smoothness degree of the exact
solutions, introducing an easy way to implement numerical technique with powerful conver-
gence properties. These failures motivate us in the presented paper to develop and analyze
an effective numerical method for solving the fractional differential algebraic equations

SDex(t) = f(t,x(t), (1)),
0= g(t,x(1), y(1)), (1
x(0)=y0)=0, € (,1], r el =][0,1],

where f, g : I x R x R — R are given continuous functions and x(#), y(¢) are the exact
solutions of the problem. The fractional derivative operator g D¢ is used in the left Caputo
sense and defined by Diethelm (2010), and Podlubny (1999)

6 Dfx() = ol (),

where
1 t
1—a _ o
ol, “x() = 71“(1—05)/0 s) “x(s)ds,
0

is the left fractional integral operator of order 1 — «. Here, R and I'(.) are the set of all real
numbers and the Gamma function respectively. Properties of the operators g Df¥ and oI/ can
be found in Diethelm (2010), and Podlubny (1999). Also we recall the following relations

ol (§ D) = x(1) = x(0), @)
k! k—
cowr | T k21
oDt = 3)
0, k=0.

In this paper, we design our methodology based on the Galerkin method which represents
the approximate solutions of (1) by means of a truncated series expansion such that the resid-
ual function minimized in a certain way (Canuto et al. 2006; Hesthaven et al. 2007; Shen
et al. 2006). Moreover, we discuss about existence, uniqueness, smoothness and wellposed-
ness properties of the solutions of (1). We prove that some derivatives of the exact solutions
typically suffer from discontinuity at origin and thereby representation of the Galerkin solu-
tion of (1) as a linear combination of the smooth basis functions leads to a numerical method
with poor convergence results. To avoid this drawback, we employ generalized Jacobi func-
tions which were introduced by Chen et al. (2016) as trial functions. These functions are
orthogonal with respect to a suitable weight function and enable us to produce a Galerkin
approximation with the same asymptotic performance with the exact solution which is a
essential item in providing a high accuracy.

The organization of the article is as follows: The next section is devoted to some prelim-
inaries and definitions that are used in the sequel. In Sect. 3, the existence and uniqueness
theorem for (1) as well as its regularity and well-posedness properties are discussed. In
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Sect. 4, we explain the numerical treatment of the problem. Convergence analysis of the
proposed scheme is established in Sect. 5. In Sect. 6, we illustrate the obtained numerical
results to confirm the effectiveness of the proposed scheme and finally in Sect. 7 we give our
concluded remarks.

2 Preliminaries

In this section, we review the basic definitions and properties that are required in the rest of
the paper. Throughout the paper C and C; are generic positive constants independent of the
approximation degree N. First we define the shifted generalized Jacobi functions on / that
will be used as the basis functions in the Galerkin solution of (1). To this end, we denote the
shifted generalized Jacobi functions on / by P,‘E =k (), n > 0 and define

PPy =P utP @), forseR, B> —1, )

where J,‘E # (1) is the shifted Jacobi polynomials on / with real parameters (Chen et al. 2016).
It can be verified that {P,‘,S =k (t)}n>0 are orthogonal for §, B > —1 in the following sense

(PP ) o= / PE Py PE P (yw® P (t)dr =0, n #m,
1

where w®~8(r) = 25-F(1 — )%+ ~# is the shifted weight function on / (Chen et al. 2016).
Now, let fﬁ,‘_ﬂ (1) be the finite-dimensional space

Fu Py =Span (P2 P): 0<n <N},
o 5B, b _
and define the orthogonal projection ITy, "u € Fy "(I) for > 0, § > —1 as

(M u—u, vN>8 =0, Yoye 2P,

which can be represented by

al (u, Pfﬁﬁ)a
§,— _ _ _ —
Ty ﬂu:Zqu’ ’SP,‘E’ B, uﬁ I A I

= )
5,—
Pt ey P13

. 8,— 8,— 8,—

with [Py P13 = (PP R
simplicity we use the symbol (L2(1), ||.||) when § = B = 0. To characterize the truncation
error bound of Hf\’,fﬂ u we introduce the weighted space (Chen et al. 2016)

as the weighted Lg,_ﬂ—norm of P,f‘_ﬂ (t)onl.To

BY'y(D) i={u e L} _g(I); §D{Mue Ll 4 (D), for 0<i<m), meNo:=NU{0},
and give the following lemma.

Lemma 2.1 (Chen et al. 2016) Assume that for § > —1, f > 0 and a fixed number m € Ny
we have u € Bg’fﬂ(l). Then

§,— _
TP u — ulls—p < CN=EH 1S DE™ w5 g m.
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Note that in view of P,f’f’g ) =0fors > —1, B > 0, the functions {P,(,S’f’g (t); n>0}
are suitable basis functions for the Galerkin solution of functional equations with homoge-
neous initial conditions.

We also recall the Legendre Gauss interpolation operator / 1’\, for any function u(¢), defined
on [ as

N
Iu@) =" ety o,

2
o IILaligo
where {L,(#)},>0 are the shifted Legendre polynomials on / and (u L,,)  is the discrete
Legendre Gauss inner product defines by

N

, LN = Y u(t) Ly (t)w, (6)

i=0

where {#;, wi}fv: o are the shifted Legendre Gauss nodal points and corresponding weights
over I, respectively (Canuto et al. 2006; Hesthaven et al. 2007; Shen et al. 2006). To provide
an error estimation of the interpolation approximation of the function u(t), we define the
non-uniformly sobolev space W™ (I) by Mokhtary (2015) and Shen et al. (2006)

W) == {u e L*(I); u” e L}, (I), for 0 <1 <N},
and give the following lemma.

Lemma 2.2 (Mokhtary 2015; Shen et al. 2006) Assume that 1 f\, (u) is the Legendre Gauss
interpolation approximation of the function u(t). Then for any u(t) € W"(I) withm > 1
we have

lu — I8l < CN™ ™ |l

3 Existence and uniqueness theorem and influence of perturbed data

In this section, we provide an existence and uniqueness theorem for the exact solution of (1)
and give its regularity properties. We also discuss about the behavior of the solution under
perturbations in the given data. First we give two theorems which will be used in our analysis.

Theorem 3.1 (Zhang and Ge 2011) Assume that H : I x R x R — R is continuously
differentiable and there exists a positive constant d such that |3%H(t, X, y)| > d > 0 for
all (t,x,y) € I x R x R. Then there exists a unique continuously differentiable function
h:1 xR — Rsuchthat H(t,x, h(t,x)) = 0.

Theorem 3.2 (Diethelm 2010) Let the function F : I x R — R be continuous and satisfies
in a Lipschitz condition with respect to its second variable, i.e., we have

[F(t,u(t)) — F(t,v(@))] < Clu(t) — v()],
Sfor all real value functions u(t) and v(t) on I. Then, the fractional differential equation
§Deu(t) = F(t, u(t),
u) =dy, tel, a€(0,1), dyeR,
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has a unique continuous solution. Moreover, if F € C'(I x R) for v > 0, we have u(t) €
CY(0, 11N C ) withu'(t) = 0@* VY ast — 0F. Here, C(I) is the space of all continuous
functions on I and CV(I) = {u(®)| u® € C(I), v = 0}.

Now, we are ready to prove the existence and uniqueness theorem of the solution of (1).

Theorem 3.3 Assume that the functions f,g : I x R x R — R are given such that the
function f is continuous and satisfies in a Lipschitz condition with respect to its second and
third variables, i.e., we have

|f (. x,y) = ft, 2, u)| < Cilx — z| + Caly —ul,

and g is a continuously differentiable function and there exists a positive constant d such
that ’;}—Vg(t, X, y)| >d > 0forall (t,x,y) € I x R x R. Then the fractional differential
algebraic equation (1) has a unique continuous solution. In addition, if f, g € C'(I x R xR)
forv > 0, we have

x(1) € CY(0, 11N C(I), with |x' ()] < Cot*,

y(t) € CY(0, 11N C(I), with |yPTD ()] < Cut*™!, >0,

where the value of U depends on the smoothness of the function g and Cy is a generic positive
constant dependent on .

Proof Theorem 3.1, concludes that there exists a smooth function G : I x R — R such that
y(t) = G(t, x(t)) and thereby its substituting in (1) yields

6 DY x (1) = £, x(1), G(t, x(1)) := F(1, x(1)), @)

with x(0) = 0 as the initial condition. Now we show that the function F (¢, x(¢)) defined in
(7) has a Lipschitz property with respect to its second variable. To this end, we can write

[F (2, x(1)) = F(t, 2(0)| = | f(t, x(1), G(1, x(1)) — f(t,2(2), G(z, 2(1))]
= Cilx() =z + C2|G (1, x(1)) — G (1, z(1))], ®

in view of the Lipschitz assumption on f (¢, x(¢), y(¢)). Moreover, since G (¢, x(¢)) is contin-
uously differentiable then it also satisfies in a Lipschitz condition with respect to its second
variable and this indicates that F (¢, x(¢)) satisfies in a Lipschitz condition with respect to its
second component. Consequently the desired result can be obtained by applying Theorem
3.2 on (7). ]

After providing principles for the existence and uniqueness of solutions of (1) as well as its
regularity properties, we now investigate the dependence of the exact solution to some small
perturbations in the given data. This is clearly an important factor in the numerical solution
of (1) because the influence of perturbations in the discretized equation is of fundamental
importance in the analysis of convergence and determining the roundoff errors.

Theorem 3.4 Consider the Eq. (1) and suppose all conditions of Theorem 3.3 are satisfied.
Let us now consider the perturbed equation

SDYE(1) = f(1,5(0), 5(1) + 81(0),
0= g(t, £(1), 5(1)) + 62(0), )
x(0)=¢€9,y0)=¢1, € (0,1], t €1,

with small perturbations 81, 83, €0, €1 and the perturbed solutions X, y. Then we have
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lx —XII < Ci (leol + 11811 + 118211) » (10)
Iy =yl = C2(llx = X[l + [1821) 1

Proof Using Theorem 3.1, y and y can be extracted from the algebraic constraints of (1) and
(9) respectively as y = G(t, x) and y = G(¢, X) + 82(t). Then we can write

() —y@) =G, %) = G, x) + 82(0).

Since G is a continuously differentiable function then it satisfies in a Lipschitz condition
with respect to its second variable and this implies the following inequality

Iy =y = Callx — Xl + 11821 (12)

which implies (11). Now, we subtract the first equations of (9) and (1) each other and obtain
§DY(E —x) = f(t.%,5) — f(t,x, ) +81(1). (13)

Applying the fractional integral operator ¢/ on both sides of (13) and using Lipschitz
assumption for f yield

¥ — x| < X(0) = x(O)| + off (C11X —x[+ G315 — yD + oI (161])
< leol + off (C4(I¥ — x|+ 182D)) + oL/ (I81]) (14)

in view of (2) and (12). Gronwall’s inequality (Mokhtary and Ghoreishi 2014a; Mokhtary
2016b) concludes

¥ — x|l = Cs (leol + 18211 + [1811D) .

due to boundedness of operator o/ (Mokhtary 2016a) which is the desired result (10). O

Theorem 3.4, indicates that the Eq. (1) has perturbation index one along the solutions x (¢)
and y(¢) which studied the effect of small perturbations and classified the complexities in the
numerical solution of (1) (Gear 1990; Hairer et al. 1989). Moreover, Theorem 3.4 indicates
the well-posedness of the considered problem (1) in the sense that small perturbations in
the input data leads to a small changes in the exact solution. More precisely, the occurrence
of small perturbations in the right hand sides of the inequalities (10) and (11) will translate
in the numerical solution into a small discrete perturbations due to roundoff errors and
wellposedness property does not allow a meaningful effect on the accuracy of the approximate
solution.

4 Numerical approach

In this section, we introduce the generalized Jacobi Galerkin method for the numerical solu-
tion of (1). As we can see from Theorem 3.3, some derivatives of the exact solution of (1)
have singularity at = 0. Then, representation of the Galerkin solution of (1) by a linear
combination of classical orthogonal polynomials leads to a loss in the global convergence
order. To solve this difficulty, we should employ suitable basis functions which produce an
approximate solution with the same asymptotic performance of the exact solution. From
the definition of the shifted generalized Jacobi functions on [ it can be easily seen that by
representing the Galerkin solution of (1) as
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N
xn(t) =Y aiPP"%(t) = aP =aPT,
i=0

N
() =Y biP" () = bP = bPT, (15)

i=0
we can produce a numerical solution for (1) that is matched with the singularity of the
exact solution. Here a = [ag, a1, ...,an], b = [bo, b1, ..., by] are the unknown vectors
and P = [Py (1), P)"%(1), ..., Py “(0)]" is the shifted generalized Jacobi function

basis in /. P is a non-singular lower triangular coefficient matrix of order N + 1 and T =
[ o+l pat2 toH—N]T.

Inserting (15) into (1) we obtain

aP DT = f(t,aP,bP) (16)
0=g(t,aP,bP).
Applying (3) we can write
T
Cpor = [ng‘(t“), Epoeth, ..., ng(t‘”N)]
! 1! M N1
:[“—t”,(a+ ) z,...,mﬂv] =T 17)
0! 1! N!
Substituting (17) into (16) we have
aPT* = f(t,aP,bP)
_ (18)
0=g(t,aP,bP)

In the Galerkin method, the unknown vectors a, b are computed in such a way that (18)
is orthogonal to the finite dimensional space ]:2;_“ (I). Thus the unknown vectors a, b must
satisfy in the following algebraic system

aP (19 P} W) = (f@.aP.bP), P} ™0)

0,—«o 0,—«
(19)
_ D 1D 0,—a
0=(s.aP.6P). P} 0) .
for 0 < j < N. Using the relations (4), (6) and (17), we have
(7. P)™0), = / TP (1) 21) " dr = / 779 (0di
0,—a J J
I I
N
'
_ (a +5)! /;SJ(.)'“(t)dt
s! 7
1 s=0
! N o
_ [ letot (. 79) =T, 20)
s! 7N {0

in view of the exactness of Legendre Gauss quadrature for all polynomials with degree at
most 2N + 1 (Canuto et al. 2006; Hesthaven et al. 2007; Shen et al. 2006).
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In the implementation process, we approximate the integrals of the right hand side of (19)
using the shifted Legendre Gauss quadrature formula over I as follows

(f(t aP.bP), P} "(t) /f(t aP,bP)P) " (1)(2)~*dt

- f f(t.aP.bP)I)* 0t = (f(t.aP.bP). 1)) .
1

e
(st.aP.oP). PP ) = [ s.aPbPIP 0@
, 1
= [ s0.aP 6P = (00,0707 1)
1
@)

Substituting (20), (21) and (22) into (19), we have the following 2 N 4-2 nonlinear algebraic
system of equations

(23)

which when solved gives us the unknown vectors a and b.

S Convergence analysis

In this section, we provide an error analysis to justify the convergence of the generalized
Jacobi Galerkin approximation of (1).

Theorem 5.1 Assume that the conditions of Theorem 3.3 are satisfied and xy (t), yn (t) are
the generalized Jacobi Galerkin approximations of (1) with the exact solutions x(t), y(t). If
the following conditions are satisfied

o feWM(DNBLE (1), my =1, m3>0,
° geW’”Z(I)ﬂB oD, ma2>1, my >0,
OD?XGBO,—a(I)’ ms > 0,

then for sufficiently large N we have
lewll = €[N 1F O linymy + N 718" g mg + N D™ £ sy
N DIy + NS DI DI akms.ms | (24)
lenll < € [NT218% gy + N~ 16 DI ™ gllg myms + llewl ] (25)

where en(t) = x(t) — xn(t) and en(t) = y(t) — yn(t) are the error functions.
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Proof According to the proposed numerical scheme in the previous section, we have

(§Deaw. P) = (Feav@.w ). 5%)

(26)
0= (8t xn @) v (), 1)) .
for 0 < j < N. Furthermore, we can write
N
(fxw@on @), 97) = D7 Fltxw @), yw @) ww,
i=0
N
= Y SO, n )| _ TP G
i=0 -
= /Iﬁvf(t,xzv(t),yN(Z))J})’“(t)dt
1
= (IS xw@ow@). PP @D
and similarly we have
(gtxv@.ow@). 77%) = (Thexn@.on@). PP7) . @8)

in view of the exactness of the Legendre Gauss quadrature for all polynomials with degree
at most 2N + 1. Inserting (27) and (28) into (26) we conclude

(§peaw. pP), = (B Faan@ow ). PP7) -
0= (Iet, xw®), yw @), PP )

PiO,—oz )
0,—
1P ~1I3 _q

Considering (5), multiplying both sides of (29) by and summing up from O to

N we obtain

{ n% = pexy) = 0% (1L, ), 0

0=y U4,

where f = f(t,xy (@), yn()) and g = g(t, xn (1), yn(2)). Now, we subtract (1) from (30)
and achieve

6 Dix(r) — (G Do) = £ (1. x(0). y(0) = ™ U ), 1)
0=g(t,x(), y(1)) =y “(U}2),
which can be rewritten as
ng‘eN + €l_[(l:}—a ((():D;"x;v) =f- ]7+ €l-[(l:}—a (f) + H?\}_a(elfv f), @)
0=g—F+emo-«@ +Ty (e ).

with

oo () = u =TI~ (). e () = u — Iy ).
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Applying Taylor expansion formula for g(¢, x, y) in some open neighborhood around
(xn, YN), We can write

g(é) en(r) 3g($)7 (33)

g—8=g@t x(),y®) —glt,xn(), yn(®) = en(t)

where & = (¢, &1, &) which &; lies between x(¢) and xy(¢) and &; lies between y(¢) and

N ().
Thus using (33) and the second relation of (32) we obtain

0g(®) ) ’ (34)

1 ~ —a
en(t) =~ )g(g) < 0, a(g)—i-l_l(])\} (egt (g))_T N

in view of & £ (0. Now, applying the left fractional Riemann—Liouville integral operator
ol on the both sides of the first equation (32) and using (2) concludes

lewl = of(1f = 71 + | off e —«(§ Dfxw) + e (P + T (e, ]|

which can be rewritten as

lewl = o (Cilen] + Calen]) + | o [« (§ Difxn) + o (F) + Ty ey ]|

in view of the Lipschitz assumption on f. Inserting (34) into the above inequality we obtain
to the following inequality

08(8)
len| < oIZ || C1 —C len|
NI = oy 1 2ag(g) N
dy

olf |:€H(})\}—a (nglxN) + en(}}—a (]7) + 1—[(1)\}705 (ellrv f)

+

+® (en‘,lf‘* @ +ny (el}v @))} ’ . (35)
ay

Applying the Gronwall’s inequality (Mokhtary and Ghoreishi 2014a; Mokhtary 2016b),
in (35) we get

lenll <

~ 0.— o
olf |:en(1)v.a (OCD,“xN) + epQ-« (H+0y“ (e,}zvf)

+@ (eng)v._a @ + 0%~ (e,}:v @))} H .
ay

Due to boundedness of the operator ¢/ (Mokhtary 2016a), and the orthogonal projection

operator norm ||l'[(1)\}7a||07_a = 1 (Atkinson and Han 2009), the inequality above can be
written as follows

lewll = €3 (llego -« (§ DExmll + e« (Dl + lleg, Fll + ey« @1 + lley, @1)
= Cy (llego—«(§ D)o, + llepyo—« (Fllo.—a

+ller, 7l + llegg« @ lo—a + lleg, @11 (36)
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From Lemma 2.2, we have
lerg, 71 < CSN T IS gy = CoN T (15 sy + e g + w oy )

ez Bl < CIN 18l my = CoN ™" (I8 Nins,ma +llew .+ e s )

37
and from Lemma 2.1, the following inequalities hold
lero—e(Pllo—a < CoN~HIEDI Fllans ms
_ of of
~ CoN~ @t EDI T (f + ey —— + en T latmyms.  (38)
ax dy
e« @ llo.—a < CroN ™I § D" Zllatmy.my
_ d 0
~ CloN = €D (g 4oy =S 4oy B i, (39)

ax dy

C — C +a, C
leo,-« (§ Dfxw)llo. o < CN=H GO (DI xN) latms.ms

~ CuN=E D EDI (D + §Dfen ) lackmsns-
(40)

Substituting the relations (37)—(40) into (36) the desired error estimation (24) can be
obtained by ignoring some unnecessary terms for sufficiently large values of N. In addition,
from (34) we can write

lewll < Ciz (llepg -« @1 + Ty~ (e, @) + llew )
= €13 (lleg, -« @llo.—a + Iy (e, @llo.—a + llew )
= Cua (lle—« @ llo.—a + lleg, @1 + llew]l)

Trivially, the second desired estimation (25) can be concluded by applying the relations
(37) and (39) into the equation above and ignoring some unnecessary terms for sufficiently
large values of N. O

6 Numerical results

In this section, we illustrate the generalized Jacobi Galerkin method for the Eq. (1) in the
context of some test problems in order to confirm the computational efficiency of the scheme.
All the calculations were supported by the Mathematica® software and all obtained nonlinear
algebraic systems were solved by employing the well known iterative quasi Newton method
(Fletcher 1987). The numerical errors reported in tables are calculated by L?-norm of the
error function.
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Example 6.1 Consider the fractional differential algebraic equation

1
EDZx(t) = (1— ) x(t) + 4 — Ji(l — Vi),
0= y(1) — sin(x(1)) — t/7 +sin /1,

with the initial conditions x (0) = y(0) = 0. The exact solution is

x(t) =1, y) =1t

(41)

To show the efficiency of the proposed scheme in approximating (1), we implement the
generalized Jacobi Galerkin method for the numerical solution of (6.1) with approximation
degree N = 1 and consider

x1(t) = aPT = [ag, a1l [{23 0 } [‘/; } =@(ao+ %‘(5;—3)),

Ao livi
V20 1t by

w6 =bPT =[ho.b11| V5 s =«/2t(bo+—(5r—3)>, 42)
5 s L 2

as approximate solutions of (41). Substituting (42) into (41) and using the described technique
in the Sect. 4, we obtain the following nonlinear algebraic system

0 = 0.30x0 4 0.49x] + (0.33x0 — 0.32x7)e%6320~063x
+ (0.63x0 — 0.30x7)e! 2020051 _ 1 36,
0 = —0.29x0 + 0.42x] + (—0.32x0 + 0.31x)e?6370—0631
+ (0.30x0 + 0.14x7)e2030=0%1 4 0,03,
0 = —0.55sin (0.65x9 — 0.63x1) — 0.5sin (1.26x0 + 0.59x1) + 0.95y9 — 0.02y; + 0.21,
0 = 0.49 sin (0.65xy — 0.63x1) — 0.24 sin (1.26x0 + 0.59x1) — 0.20y + 0.45y; — 0.15,

with the following solution

ap = 0.7071, a; = 1.2505¢ — 16,
by = 0.4243, b; = 0.2828. (43)

Replacing (43) into (42) we obtain
x1(t) = V1 + (4.4210e — 16)t/1, y1(t) = (—4.4409¢ — 16)/1 + t+/1,

with the errors

1 1
letll = (1) — x1 () = ( / (x (1) —x1<z))2dr)2 - ( f ((4.4210¢ — 16)m)2dr>2
I I

= 2.1395¢ — 16,

1
letll = @) — y1 (]| = ( /1 () — 1 (z))zdr)2

= < / ((4.4409¢ — 16)«5)2dt>j = 1.4987¢ — 16,
1

which proves the high accuracy of the approximate solutions (42).
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Table 1 Comparison of the numerical errors of our method and VIM with different values of N for Example
6.2

N o x—apll lx —xnll Iy —ywl ly = ywll lz—znll llz—znl

4 3.65 x 1079 129x 1072 187 x107%  492x1072  1.02x107* 4.64 x 1072

8.87 x 1078 336x 1074 931x 1077 149x1073  1.13x 1077 1.35 x 1073
12 584x107° 501 x 107  834x107%  143x107°  7.63x107° 5.97 x 1077
16 837x10710  373x1077  146x107%  1.11x 1075 1.14x 10710 834 x 1073
20 1.84x10710  391x1077 3.72x107° 1.16x1075 257x 10710  837x107°
24 612x1071 391x1077  146x107° 116 x 1072  7.74x 10711 837 x 107

Example 6.2 Consider the following fractional differential algebraic equation
1
§ D7 x() = x(0) = x(Oy®) + 1 (1),
6 D7 y(0) = y(0) = x*(1) + 2(0) + g2,
0 =z(t) = x*(1) + g3(1),
with the initial conditions x(0) = y(0) = z(0) = 0. The functions ¢(¢), g2(t), g3(t) are

chosen such that the exact solution of the problem is x (t) = sin (v/7), y(t) = eV 1,z(t) =
t tan(+/7).

In this example, we make a comparison between our scheme and the variational iteration
method (VIM) proposed in Ibis and Bayram (2011) to show the efficiency of our described
approach. To this end, we first implement the proposed method and the following VIM’s
convergent iterations

Xo(1) = yo(1) = z0(1) =0,
Zr1 (1) = (B (1)* — g3(0),
i1 (6) = F(0) = 1 (§ DY (G (1)) = Fie () + @ (0)* = 21 (1) — q2(0))
K1 (8) = X (1) = 1% ((§ DY (R (1) = %k () + X (D Fer1 (1) — q1(1)) 5
and give the obtained results in Table 1 and Fig.1. The reported L>-norm errors show a

significant superiority of our scheme over VIM such that it produces a lower errors with less
values of N in compared with the VIM.

(44)

Example 6.3 (Ding and Jiang 2014) Consider the following fractional differential algebraic
equation

SD?x(r) =z2(1) — x()y (1) + q1 (1),
§ D7 y(1) = 5 Vix(®) = 2y(0) = x(02(0) + q2(0),
0=12y(t) —x*(t) — 2(t) + q3(1),
with the initial conditions x(0) = y(0) = 0, z(0) = 1. The functions q;(¢), g2(¢), g3(¢) are

chosen such that the exact solution of the problem is x () = 3, y(t) =2t + *, z(t) =
e’ +tsin (¢).

In order to obtain the homogeneous initial conditions, we apply the transformation w(z) =
z(t) — 1 and solve the new equation using the proposed approach. The obtained numerical
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[x—xnll, [IX—=Xnll

ly=ywll, lly=Yull

Log,,( Error)

BB

Log,,( Error)

Log,,( Error)

20

20

Fig. 1 Comparison of the obtained errors between our method (solid lines) and VIM (dashed lines) with
different values of N for Example 6.2

Table 2 The numerical errors

with different values of N for N e —xwl Iy —owl Iz — 2w

Example 6.3 2 4.4694 x 1073 2.7528 x 102 6.8866 x 1073
4 5.8138 x 107 27352 x 1073 1.3328 x 1073
6 8.1495 x 107¢ 1.0956 x 1073 5.5763 x 1074
8 2.6044 x 107° 5.4488 x 10~4 2.8169 x 10~4
10 1.1586 x 107° 3.1065 x 1074 1.6086 x 10~4
12 6.1513 x 1077 1.9411 x 10~4 1.0017 x 10~4
14 3.6646 x 1077 1.2953 x 10~* 6.6448 x 107
16 23691 x 1077 9.0817 x 1073 4.6333 x 1077

results are listed in Table 2 and Fig. 2. This example was also solved in Ding and Jiang (2014)
by employing the waveform relaxation method and reported the following numerical errors
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Fig. 2 The numerical errors with i i
different values of N for Example -1 © errorof X(t)

6.3 W crrorof Y(t)
2t e error of Z(t)

Log,,( Error)

Ix(@) = xn @Il @) —yn @l =107, and [z() —en @) = 1074, (45)

with 16 iterations. Comparing our reported results with those obtained in (45) approves the
superiority and reliability of the proposed scheme over the method presented in Ding and
Jiang (2014).

In the next example, we illustrate a problem when we do not have access to exact solution.

Example 6.4 (Ibis and Bayram 2011) Consider the following fractional differential algebraic
equation

§D¥x(t) = y(t) — x(t) — sint,
x(t) + y(t) = e +sint,

with the initial conditions x(0) = 1, y(0) = 0.

(46)

Since a generally applicable method to determine the analytical solutions of (46) is not
readily available, we have to return to some convergent numerically computed solutions. To
this end, we can use the Adomian decomposition method (Ibis and Bayram 2011) which
represents the exact solutions x () and y(¢) by the following convergent infinite series

x(t) =Y "%, yO) =) F@, (47)

k=0 k=0

where the iterates xi () and yi (¢) are determined in the following recursive way

Xo(t) =1, yo(t) =0,
Vi) = —=xo(t) + g1(t), X1(t) = ol (=Xo(?) + Yo(t) — &2),

k1) = =Xk (1), Fpp1 (1) = ol (—=Xk () + 3 (1)),

such that g1 (), g2(¢) are Taylor series of e’ + sin ¢ and sin ¢, respectively. In view of (47),
we may be assured that the following source solutions

L L
) =Y &), FO =) ), (48)
k=0 k=0
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Table 3 The values of the - -
approximate solutions at some *15(0) 0 Yis® Yo
selected grid points with 0.1 0.760828 0.760891 0.243843 0.243779
N=15L=100anda =0.5
for Example 6.4 0.2 0.690957 0.690926 0.326443 0.326474
0.3 0.639677 0.639650 0.396661 0.396688
0.4 0.597074 0.597088 0.462665 0.462651
0.5 0.560020 0.559993 0.525936 0.525964
0.6 0.526874 0.526889 0.586580 0.586565
0.7 0.496988 0.496964 0.643815 0.643839
0.8 0.469691 0.469702 0.696994 0.696982
0.9 0.444739 0.444744 0.745158 0.745152
1 0.421842 0.421821 0.787508 0.787529
T T T T 0.8 T T T T -
1.0J h g
\‘ z'-
\\ /"
091" 9 06 F .,’ 4
\“‘ "///
08F 4 -
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> - € 04 .
% 40 AN 1 = 04r L ]
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N N /
-4 k
04 . . . . 0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3 Plots of the generalized Jacobi Galerkin approximations (dashed lines) and the reference solutions
(rectangle markers) of x(¢) (left hand side) and y(¢) (right hand side) for Example 6.4

for sufficiently large values of L, shows a qualitatively correct picture of the exact solutions
x(t) and y(¢) in evaluating the precision of the proposed generalized Jacobi Galerkin method.
Here we have chosen L = 100.

We solve (46) using the method described in Sect. 4 with N = 15, @ = 0.5 and compare
the obtained results with those obtained by reference solutions (48) in Table 3 and Fig. 3.
The reported results approve that our approach produces the approximate solutions which
are in a good agreement with source ones.

Example 6.5 In this example, we consider a practical application of differential algebraic
equations in modeling of the following simple RLC circuit with a voltage source V (),
inductance L, a resistor with conductance R and a capacitor with capacitance C > 0 (Fig.
4):

To this end, applying Kirchhoff’s voltage and current laws yield

e Conservation of current: igp = ig, ir = ic, ic =i,

e Conservation of energy: Vg + V. 4+ Ve + Vg =0,
e Ohm’s Laws: CV(/ =ic; LV] =ir; Vg = Rig.
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Fig. 4 A simple RLC circuit for

Example 6.5

e DT — €
Table 4 The numerical errors with different values of N and o = 1 for Example 6.5
N Ve = (Vo VL — (Vo VR — (VRN llip =Gl
2 2.0405 x 10~4 1.0203 x 1073 2.1276 x 1073 53189 x 1073
4 4.0491 x 1077 2.0245 x 1076 4.4219 x 107° 1.1054 x 10~©
6 4.4201 x 10710 2.2101 x 107 4.9396 x 10~° 1.2349 x 10~°
8 3.1173 x 10713 1.5586 x 10~12 3.5011 x 10~12 8.7527 x 1013
10 1.0192 x 10714 5.0961 x 10713 6.1055 x 10713 1.5264 x 10713

After replacing ig with ig and ic with iy, we get the following differential algebraic
equation

(49)

SDeX (1) = AX (1),
BX(t) + GVg =0,

where o = 1, X = (Ve(1), VL(1), Vr(@),ip (1), ig(@))" and

000 L o

000%0 001 0 R 0
A=]l0 0o 0o 0 o, B=|l1 1 1 0 0], G=|1

000 0 0 00 0 1 -1

000 0 0

Clearly, for homogeneous initial conditions, « = 1 and current i; = sin¢, we have the
exact solutions Vo = %(1 —cost), Vi = %(1 —cost), Vg = —Rsint,i; = sint and
Vi = (é + %)(cost — 1)+ Rsint.

Now we consider (49) withinputdata R = 4, L = 0.4, C = 2 and implement the proposed
scheme for various « and report the obtained numerical results in Table 4 and Fig. 5. In Table
4, we have listed the obtained numerical errors with various values of N and « = 1. In Fig.
5, we plot the approximate solutions for different values of «. In overall, the reported results
indicate that as « tends to 1, the approximate solutions tend to the exact solution of (49) with
o = 1. This confirms the effectiveness and reliability of the proposed generalized Jacobi
Galerkin method in approximating the practical models of fractional differential algebraic
equations.
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Fig. 5 The approximate solutions with different values of @ and N = 10 for Example 6.5

7 Conclusion

In this article, we developed and analyzed the generalized Jacobi Galerkin method for the
numerical solution of a class of the nonlinear fractional differential algebraic equation. First,
we investigated the existence and uniqueness theorem along with the regularity and well-
posedness properties of the exact solution and proved that some derivatives of the exact
solution have singularity at the origin. To obtain a numerical solution with good convergence
properties we considered the Galerkin solution of the problem by a linear combination of
the recently defined generalized Jacobi functions which matched with the singularity of the
exact solution. We also estimated the numerical errors obtained from implementation of
the presented method. Finally, we confirmed the effectiveness of the numerical scheme by
illustrating some numerical examples.
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