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Abstract Using chain rule, we propose a modified secant equation to get a more accurate
approximation of the second curvature of the objective function. Then, based on this modified
secant equation we present a new BFGS method for solving unconstrained optimization
problems. The proposed method makes use of both gradient and function values, and utilizes
information from two most recent steps, while the usual secant relation uses only the latest
step information.Under appropriate conditions, we show that the proposedmethod is globally
convergent without convexity assumption on the objective function. Comparative numerical
results show computational efficiency of the proposedmethod in the sense of theDolan–Moré
performance profiles.

Keywords Unconstrained optimization · Nonlinear function · Two-step secant equation ·
Global convergence
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1 Introduction

Consider the unconstrained nonlinear optimization problem

min f (x), x ∈ R
n, (1)
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where f is twice continuously differentiable. The quasi-Newtonmethods are popular iterative
methods for solving (1), whose iterates are constructed as follows:

xk+1 = xk + αkdk,

where αk is a step size and dk is a descent direction obtained by solving Bkdk = −gk, where
gk = � f (xk) and Bk is an approximation of the Hessian matrix of f at xk which satisfies
the secant equation.

The standard secant equation can be established as follows (see Dennis and Schnabel
1983). We have

gk+1 − gk =
∫ 1

0
�2 f (xk + tsk)dtsk, (2)

where sk = xk+1 − xk . Since Bk+1 is to approximate G(xk+1) = ∇2 f (xk+1), the secant
equation is defined to be

Bk+1sk = yk, (3)

where yk = gk+1 − gk . The relation (3) is sometimes called the standard secant equation.
A famous family of quasi-Newton methods is Broyden family Broyden (1965) in which

the updates are defined by

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+ yk yTk

sTk yk
+μwkw

T
k , wk = (sTk Bksk)

1/2

[
yk

sTk yk
− Bksk

sTk Bksk

]
, (4)

where μ is a scale parameter. The BFGS, DFP and SR1 updates are obtained by setting
μ = 0, μ = 1 and μ = 1/(1 − sTk Bksk/sTk yk), respectively.

Among quasi-Newton methods, the most efficient method is the BFGS method Broyden
(1970).

When f is convex, the global convergence of the BFGS method have been studied by
some authors (see Byrd and Nocedal 1989; Byrd et al. 1987; Griewank 1991; Powell 1976;
Toint 1986). However, the BFGS method is very efficient as regards numerical performance,
but Dai (2003) have constructed an example to show that this methodmay fail for non-convex
functions with inexact Wolfe line searches. In addition, Mascarenhas (2004) showed that the
nonconvergence of the standard BFGS method even with exact line search.

Global convergence of the BFGSmethod for the general functions underWolfe line search
is still an open problem. Recently, Yuan et al. (2017, 2018) provided a positive answer, and
proved the global convergence of BFGS method under a modified weak Wolfe–Powell line
search technique for general functions.

To obtain better quasi-Newtonmethods, manymodifiedmethods have been presented (see
Li and Fukushima 2001a, b; Wei et al. 2006; Yuan and Wei 2009, 2010; Yuan et al. 2017,
2018; Zhang et al. 1999; Zhang and Xu 2001).

Li and Fukushima (2001a, b) made a modification on the standard BFGS method as fol-
lows:

Bk+1sk = yk, (5)

with

yk = yk + rksk, rk = C‖gk‖2 + max

(
− yTk sk

‖sk‖2 , 0

)
, (6)

where C is a positive constant.
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They showed this method is globally convergent without a convexity assumption on the
objective function f .

The usual secant equation employs only the gradients and the available function values are
ignored. To get a higher order accuracy of approximating the Hessian matrix of the objective
function, several researchers have modified the usual secant equation (3) to make full use of
both the gradient and function values (see Wei et al. 2006; Yuan and Wei 2009, 2010; Yuan
et al. 2017, 2018; Zhang et al. 1999; Zhang and Xu 2001).

Wei et al. (2006), using Taylor’s series, modified (3) as follows:

Bk+1sk = ỹk, (7)

where ỹk = yk + ϑk
‖sk‖2 sk and ϑk = 2( fk − fk+1) + (gk + gk+1)

Tsk .
Recently, Yuan and Wei (2010) considered an extension of the modified secant equation

(7) as follows:

Bk+1sk = yk + max(ϑk, 0)

‖sk‖2 sk . (8)

Numerical results of Yuan and Wei (2010) showed that the modified BFGS method sug-
gested by Yuan and Wei outperformed the CG methods proposed by Wei et al. (2006) and Li
and Fukushima (2001b) and the standard BFGS method Broyden (1970).

Suchmodified secant equationsmake use of both the available gradient and function values
only at the last two points. Here, we employ chain rule, and introduced a different secant
relation utilizing information from three most recent points and using both the available
gradient and function values. Then, we make use of the new secant equation in a BFGS
updating formula.

This work is organized as follows: In Sect. 2, we first employ chain rule to derive an alter-
native secant equation and then we outline our proposed algorithm. In Sect. 3, we investigate
the global convergence of the proposed method. Finally, in Sect. 4, we report some numerical
results.

2 Two-step BFGS method

In this section, we obtain a new secant equation. Next, we use this secant equation and we
give the algorithm.

2.1 Proposed modified secant equation

Here, we intend to make use of three iterates xk−1, xk and xk+1 generated by some quasi-
Newton algorithm. Using chain rule to function �2 f (X (t)), we know

g(X (1)) − g(X (−1)) =
∫ 1

−1
�2 f (X (t))

dX (t)

dt
dt, (9)

where X (t) is a differentiable curve in Rn .

Now, suppose that X (t) is the interpolating curve so that

X (−1) = xk−1, X (0) = xk, X (1) = xk+1. (10)
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Of course there are various choices for X (t). Here, motivated by Ford and Saadallah (1987),
we define a nonlinear interpolating with a free parameter as follows:

X (t) ≡ x(t, θ) ≡ q(t)
1

1 + tθ
, (11)

where q(t) = a0+a1t+a2t2 ({ai }2i=0 are constant vectors) and θ is a parameter to be chosen
later.

Since q(t) = x(t, θ)(1+ tθ) is a second degree polynomial and hence, may be written in
its Lagrangian form

q(t) =
2∑
j=0

L j (t)q(t j ), (12)

where q(t j ) = x(t j , θ)(1 + t jθ) and the L j (t) are the basic Lagrange polynomials:

L j (t) =
2∏

i=0,i �= j

t − ti
t j − ti

, j = 0, 1, 2. (13)

After some algebraic manipulations, (12) can be written as

q(t) ≡
[
t (t + 1)(1 + θ)

2
xk+1 + (1 − t2)xk + t (t − 1)(1 − θ)

2
xk−1

]
. (14)

Therefore

x(t, θ) ≡
[
t (t + 1)(1 + θ)

2
xk+1 + (1 − t2)xk + t (t − 1)(1 − θ)

2
xk−1

]
1

1 + tθ
. (15)

Taking the derivative from both sides of (15), we obtain:

dx(t, θ)

dt
�

(
(1 + 2t)(1 + θ)

2
xk+1 − 2t xk + (2t − 1)(1 − θ)

2
xk−1

)
1

1 + tθ

+
(
t (t + 1)(1 + θ)

2
xk+1 + (1 − t2)xk + t (t − 1)(1 − θ)

2
xk−1

) −θ

(1 + tθ)2
.

(16)

On the other hand, using Lagrange interpolation we have

�2 f (x(t, θ)) �
2∑
j=0

L j (t) �2 f (xk+ j−1). (17)

Substituting relation (17) into (9), we obtain:

g(xk+1) − g(xk−1) =
∫ 1

−1
�2 f (X (t))

dX (t)

dt
dt

=
2∑
j=0

∫ 1

−1
L j (t) �2 f (xk+ j−1)

dX (t)

dt
dt, (18)

where dX (t)
dt ≡ dx(t,θ)

dt given by (16).
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Now, by considering Bk+1 as a new approximation of ∇2 f (xk+1), (18) leads to

Bk+1

∫ 1

−1
L2(t)

dX (t)

dt
dt = g(xk+1) − g(xk−1)

−Bk

∫ 1

−1
L1(t)

dX (t)

dt
dt − Bk−1

∫ 1

−1
L0(t)

dX (t)

dt
dt, (19)

where Bk−1 and Bk approximate ∇2 f (xk−1) and ∇2 f (xk), respectively.
Equation (19) provides a new modified secant relation as follows:

Bk+1s
∗
k = y∗

k , (20)

where y∗
k and s∗

k are given by

s∗
k =

∫ 1

−1
L2(t)

dX (t)

dt
dt, (21)

and

y∗
k = yk + yk−1 − Bk

∫ 1

−1
L1(t)

dX (t)

dt
dt − Bk−1

∫ 1

−1
L0(t)

dX (t)

dt
dt, (22)

with dX (t)
dt ≡ dx(t,θ)

dt given by (16).
Now, the issue is choosing a strategy to determine a numerical value for θ . Define

ϕ(t, θ) = f (x(t, θ)). (23)

Clearly we have ∫ 1

−1
ϕ′(t, θ) = fk+1 − fk−1. (24)

On the other hand, a reasonable estimate of the integral would be given by
∫ 1

−1
ϕ′(t, θ) � 2ϕ′(0, θ)

= 2x ′(0, θ)gk . (25)

Remark A In constructing this estimate of the integral, we are using advantage of the fact
that t = 0 is an interior point of the interval of integration [−1, 1].

On the other hand, from Eq. (16) we have

x ′(0, θ) � 1

2

[
sk + sk−1 + θsk − θsk−1

]
. (26)

From (24), (25) and (26), we obtain

θ ≡ fk+1 − fk−1 − sTk gk − sTk−1gk

sTk gk − sTk−1gk
. (27)

Obviously (27) is a good estimation of θ and it dose not require expensive computations.

Also, it is easy to see that if the denominator, (1+tθ) in (11), becomes zero over the interval
[−1, 1], then the interpolating curve x(t, θ) is undesirable. To overcome this difficulty, since
the denominator (1 + tθ) is positive at t = 0, we impose the two conditions as follows:

1 + θ > 0 1 − θ > 0
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that is,
− 1 < θ < 1. (28)

In implementing the new algorithm, if the condition (28) dose not hold, then we set θ = 0.

2.2 Proposed BFGS algorithm

Here, we apply themodified secant equation given in the previous subsection thenwe propose
new modified BFGS method such that Bk+1 update by

Bk+1 = Bk − Bks∗
k s

∗
k
TBk

s∗
k
TBks∗

k

+ y∗
k y

∗
k
T

s∗
k
Ty∗

k

, (29)

where y∗
k and s∗

k are given by

s∗
k =

∫ 1

−1
L2(t)

dX (t)

dt
dt, (30)

and

y∗
k = yk + yk−1 − Bk

∫ 1

−1
L1(t)

dX (t)

dt
dt − Bk−1

∫ 1

−1
L0(t)

dX (t)

dt
dt, (31)

with dX (t)
dt and θ are given by (16) and (27) respectively.

We note that this new modified BFGS contains information from the three most recent
points where the usual BFGS method and modified BFGS method introduced by Li and
Fukushima (2001b), Wei et al. (2006) and Yuan andWei (2010), make use of the information
merely at the two latest points. In addition, both the available gradient and function values
are being utilized.

We know, s∗
k
Ty∗

k > 0, is sufficient to ensure Bk+1 to be positive definite (see Nocedal
and Wright 2006) and consequently, the generated search directions are descent directions.
However, for a general function f, s∗

k
Ty∗

k may not be positive for all k ≥ 0, and consequently
Bk+1 may not be positive definite.

For preserving positive definiteness of the updates, we set

Bk+1 =
⎧⎨
⎩

Bk − Bks∗k s∗k
TBk

s∗k
TBks∗k

+ y∗
k y

∗
k
T

s∗k
T y∗

k
,

s∗k
T y∗

k
‖s∗k ‖2 ≥ δ,

Bk, otherwise.
(32)

where δ is a positive constant.

Remark B From (32), it is easy to see that s∗
k
Ty∗

k > 0 therefore the matrix Bk+1 generated
by (32), is symmetric and positive definite for all k.

We can now give a new BFGS algorithm using new secant relation (20), as Algorithm 1.
Algorithm 1: The new modified BFGS method.
Step 1: Give ε as a tolerance for convergence, σ1 ∈ (0, 1), σ2 ∈ (σ1, 1), a starting point
x0 ∈ R

n, and a positive definite matrix B0. Set k = 0.
Step 2: If ‖gk‖ < ε then stop.
Step 3: Compute a search direction dk : Solve Bkdk = −gk .
Step 4: Compute the step length αk satisfying the following Wolfe conditions:

f (xk + αkdk) ≤ f (xk) + σ1αkg
T
k dk, (33)

g(xk + αkdk)
Tdk ≥ σ2g(xk)

Tdk . (34)
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Step 5: Set xk+1 = xk + αkdk . Compute s∗
k and y∗

k by (30) and (31) respectively, with θ

given by (27). If s∗
k
Ty∗

k < 10−4‖s∗
k ‖‖y∗

k ‖ then set s∗
k = sk and y∗

k = yk .
Step 6: Update Bk+1 by (32).
Step 7: Set k = k + 1 and go to Step 2.

Next, we will investigate the global convergence of Algorithm 1.

3 Convergence analysis

To establish the global convergence of the Algorithm 1, we need some commonly used
assumptions.

Assumption A (i) The level set D = {x | f (x) ≤ f (x0)} is bounded, where x0 is the
starting point of Algorithm 1.

(ii) The function f is twice continuously differentiable and there is constant L > 0, such
that

‖G(x) − G(y)‖ ≤ L‖x − y‖, ∀x, y ∈ D.

It is clear that Assumption A implies

‖G(x)‖ ≤ m, ∀x ∈ D, (35)

where m is a positive constant

Since Bk is a approximate G(x) at xk, similar to Yuan and Wei (2009) and Zhu (2005)
we give the following assumption.

Assumption B Assume that Bk is a good approximation to G(x) at xk ., i.e.,

‖Bk − G(xk)‖ ≤ εk, (36)

where εk ∈ (0, 1) are suitable quantities.
On the other hand, we have

‖Bk‖ − ‖G(xk)‖ ≤ ‖Bk − G(xk)‖ ≤ εk,

Hence, we can give
‖Bk‖ ≤ γ, ∀k ≥ 0, (37)

where γ = εk + m.

Using Assumption A and the Wolfe conditions, { f (xk)} is a nonincreasing sequence,
which ensures {xk} ⊂ D and the existence of x∗ such that

lim
k→∞ f (xk) = f (x∗). (38)

To establish the global convergence of Algorithm 1, we present the following useful Lemmas.

Lemma 3.1 Let f satisfies assumptions A and B, and {xk} be generated by Algorithm 1 and
there exist constants a1 and a2 such that

‖Bksk‖ ≤ a1‖sk‖, sTk Bksk ≥ a2‖sk‖2, (39)

for infinitely many k. Then, we have

lim inf
k→∞ g(xk) = 0. (40)
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Proof Since sk = αkdk, it is clear that (39) holds true if sk is replaced by dk . From (39) and
the relation gk = −Bkdk, we have

dTk Bkdk ≥ a2‖dk‖2, a2‖dk‖ ≤ ‖gk‖ ≤ a1‖dk‖. (41)

Let 
 be the set of indices k for which (39) hold. Using (34) and Assumption asB, we have

Lαk‖dk‖2 ≥ (gk+1 − gk)
Tdk ≥ −(1 − σ2)g

T
k dk . (42)

This implies that, for any k ∈ 
,

αk ≥ −(1 − σ2)gTk dk
L‖dk‖2 = (1 − σ2)dTk Bkdk

L‖dk‖2 ≥ (1 − σ2)a2
L

. (43)

Moreover, by (38), we obtain

∞∑
k=1

( fk − fk+1) = lim
N→∞

N∑
k=1

( fk − fk+1) = lim
N→∞ f (x1) − f (xN )) = f (x1) − f (x∗),

which yields

∞∑
k=1

( fk − fk+1) < ∞.

Using (33), we get

∞∑
k=1

αkg
T
k dk < ∞,

which ensures

lim
k→∞ αkg

T
k dk = 0.

This together with (43) lead to

lim
k∈
,k→∞ dTk Bkdk = lim

k∈
,k→∞ −gTk dk = 0.

which a long with (41), yields (40). ��
Now, we prove the global convergence of Algorithm 1.

Theorem 3.1 Let f satisfy the assumptions A and B and {xk} be generated by Algorithm 1.
Then, we have

lim inf
k→∞ g(xk) = 0. (44)

Proof Using Lemma 3.1, it is sufficient to show relation (39) holds for infinitely many k.
Using (37), we have

‖Bksk‖ ≤ ‖Bk‖‖sk‖ ≤ γ ‖‖sk‖. (45)

Since Bk, in Algorithm 1 is symmetric and positive definite then there exists a2 such that

sk
TBksk ≥ a2‖sk‖2.

Then, Lemma 3.1 completes the proof. ��
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Table 1 Test problems taken from CUTEr library

No Test function Dim No Test function Dim No Test function Dim

1 AIRCRFTB 8 41 GULF 3 81 ARWHEAD 500

2 ALLINITU 4 42 HATFLDD 3 82 BOX 100

3 ARGLINA 200 43 HEART8LS 10 83 BRKMCC 2

4 BARD 3 44 HELIX 3 84 BROYDN7D 1000

5 BIGGS3 6 45 HILBERTA 2 85 CHAINWOO 1000

6 BIGGS5 6 46 HILBERTB 10 86 COSINE 1000

7 BIGGS6 6 47 HILBERTF 5 87 CUBE 2

8 BOX2 3 48 HILBERTG 2 88 CURLY10 1000

9 BOX3 3 49 HILBERTH 2 89 CURLY20 1000

10 BROWNAL 200 50 JENSMP 2 90 CURLY30 1000

11 BROWNBS 200 51 KOWOSB 5 91 DENSCHNE 3

12 BRYBND 5000 52 LIARWHD 5000 92 DENSCHNF 2

13 CHNROSNB 50 53 LIARWHD 1000 93 EDENSCH 36

14 DECONVU 60 54 test LIARWHD 100 94 EG2 1000

15 DENSCHNA 2 55 MANCINO 100 95 ENGVAL1 100

16 DENSCHNB 2 56 MOREBV 5000 96 FLETCBV2 5000

17 DENSCHNC 12 57 NLMSURF 5000 97 FLETCHCR 1000

18 DIXMAANA 3000 58 NONDIA 5000 98 FMINSURF 961

19 DIXMAANB 3000 59 NONDQUAR 5000 99 GENHUMPS 5000

20 DIXMAANC 3000 60 OSBORNEB 11 100 GENROSE 500

21 DIXMAAND 3000 61 PALMER5C 6 101 HAIRY 2

22 DIXMAANE 3000 62 POWELLSG 1000 102 HATFLDFL 3

23 DIXMAANF 3000 63 QUARTC 1000 103 HUMPS 2

24 DIXMAANG 3000 64 ROSENBR 2 104 JIMACK 3549

25 DIXMAANH 3000 65 S308 2 105 MARATOSB 2

26 DIXMAANI 3000 66 SCHMVETT 3 106 MSQRTALS 529

27 DIXMAANJ 3000 67 SISSER 2 107 MSQRTBLS 529

28 DIXMAANK 3000 68 SNAIL 2 108 NCB20 110

29 DIXMAANL 3000 69 SPARSQUR 1000 109 NCB20B 21

30 DIXON3DQ 1000 70 SPMSRTLS 1000 110 NONCVXU2 1000

31 DQDRTIC 1000 71 SROSENBR 1000 111 PENALTY1 50

32 DQRTIC 1000 72 TESTQUAD 5000 112 PENALTY2 50

33 EIGENALS 110 73 TOINTTGSS 5000 113 PENALTY3 100

34 EIGENBLS 110 74 TQUARTIC 5000 114 POWER 100

35 EIGENCLS 110 75 TRIDIA 5000 115 SINEVAL 2

36 ENGVAL2 3 76 VAREIGVL 50 116 SINQUAD 5

37 EXPFIT 2 77 WATSON 12 117 SPARSINE 5000

38 EXTROSNB 1000 78 WOODS 200 118 TOINTQOR 50

39 FMINSRF2 32 79 YFITU 5 119 VARDIM 10

40 GROWTHLS 3 80 ZANGWIL2 2 120 VIBRBEAM 8
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4 Numerical results

We compare the performance of the following four methods on some unconstrained opti-
mization problems:

Fig. 1 The Dolan–More performance profiles using number of function evaluations

Fig. 2 The Dolan–More performance profiles using number of iterations
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Fig. 3 The Dolan–More performance profiles using CPU times

MBFGS: proposed method (Algorithm 1).
BFGS: the usual BFGS method using (3) [2].
BFGSAk(2): the modified BFGS method of Wei et al. using (5) Wei et al. (2006).
MBFGSAk(2): the modified BFGS of Yuan and Wei using (7) Yuan and Wei (2010).

We have tested all the considered algorithms on 120 test problems from CUTEr library
Gould et al. (2003). A summary of these problems are given in Table 1. All the codes were
written in Matlab 7.14.0.739 (2012a) and run on PC with CPU Intel(R) Core(TM) i5-4200
3.6 GHz, 4 GB of RAM memory and Centos 6.2 server Linux operating system. In the four
algorithms, the initial matrix is set to be the identity matrix and ε = 106. In Algorithm 1 we
set σ1 = 0.01, and σ2 = 0.9 and δ = 10−6.

We used the performance profiles of Dolan and More (2002) to evaluate performance of
these four algorithms with respect to CPU time, the number of iterations and the total number
of function and gradient evaluations computed as N f +nNg where N f and Ng , respectively,
denote the number of function and gradient evaluations (note that to account for the higher
cost of Ng , as compared to N f the former is multiplied by n).

Figures 1, 2 and 3 demonstrate the results of the comparisons of the four methods. From
these figures, it is clear that Algorithm 1 (MBFGS) is the most efficient in solving these 120
test problems.

5 Conclusion

We introduced a modified BFGS (MBFGS) method using a new secant equation. An inter-
esting feature of the proposed method was taking both the gradient and function values into
account. Another important property of the MBFGS method was the utilization of informa-
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5124 R. Dehghani et al.

tion from the twomost recent steps instead of the last step alone. Under suitable assumptions,
we established the global convergence of the proposed method. Numerical results on the col-
lection of problems from the CUTEr library showed the proposedmethod to bemore efficient
as compared to several proposed BFGS methods in the literature.
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