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Abstract This article concerns with a computational scheme to solve two-dimensional
stochastic fractional integral equations (2DSFIEs), numerically. In these equations, the
fractional integral is considered in the Riemann–Liouville sense. The proposed method is
essentially based on two-dimensional hat basis functions and its fractional operational matri-
ces. The fractional-order operational matrices of integration are applied to reduce the solution
of 2DSFIEs to the solution of a system of linear equations which can be solved using a direct
method or iterative method. Some results concerning the convergence analysis associated
with the proposed technique are discussed. In addition, we establish the rate of convergence
of this approach for solving 2DSFIEs is O(h2). Finally, some examples are solved using
present method to indicate the pertinent features of the method.

Keywords Stochastic fractional integral equations · Fractional calculus · Operational
matrix · Hat basis functions · Brownian motion process · Error analysis

Mathematics Subject Classification 60H20 · 26A33 · 60J65

1 Introduction

Fractional calculus is introduced to fill the existing gap for describing different phenomena
in real life. After introducing fractional calculus, many problems in physics, chemistry, biol-
ogy, and engineering are modeled as fractional differential equations (Dabiri and Butcher
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2017), fractional partial differential equations (MoghaddamandMachado 2017), or fractional
integral equations. For example Bagley–Torvik equation (Youssri 2017), Nizhnik–Novikov–
Veselov equations (Osman 2017), evolution equations (Abdel-Gawad and Osman 2013), and
fractional diffusion equation (Yang et al. 2016). There are numerousmethods for solving these
equations like homotopy perturbation method (Pandey et al. 2009), Adomian decomposition
method (Li and Wang 2009), wavelet method (Lepik 2009), Lucas polynomial sequence
approach (Abd-Elhameed and Youssri 2017a), orthonormal Chebyshev polynomial method
(Abd-Elhameed andYoussri 2017b), andmany other methods which are not mentioned them,
here.

Since 1960, by increasing computational power, some random factors are inserted to deter-
ministic integral equations and are created stochastic integral equations such as stochastic
integral equations (Mohammadi 2015) or stochastic integro-differential equations (Dareiotis
and Leahy 2016; Mei et al. 2016). In more cases, the analytical solutions of these equations
are not exist or finding their analytic solution is very difficult. Thus, presenting an accu-
rate numerical method is an essential requirement in numerical analysis. Numerical solution
of stochastic integral equations because of the randomness has its own difficulties. In recent
years, mathematicians studied numerousmethods to obtain the numerical solution of stochas-
tic differential equations (Higham 2001; Tocino and Ardanuy 2002; Dehghan and Shirzadi
2015; Kamrani 2015; Gong and Rui 2015; Mao 2015; Zhou and Hu 2016) or stochastic
integral equations (Mirzaee and Samadyar 2017a, b; Mirzaee et al. 2017, 2018; Mirzaee and
Samadyar 2018a, b, c). The reader should know the concept of independence, expected val-
ues, variance, and fundamental definition of stochastic process which are necessary to read
papers in this field.

According to the above explanations, two-dimensional stochastic fractional integral equa-
tions are used to model various problems occur in different sciences (Denisov et al. 2009). In
many cases, these equations can not be solved analytically. Therefore, presenting an accurate
and efficient numericalmethod is an essential requirement in numerical analysis. In this paper,
numerical solution of 2DSFIEs via two-dimensional hat basis functions are investigated. In
general, 2DSFIEs have the following form:

f (x, y) = g(x, y) + 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1k1(x, y, s, t) f (s, t)dtds

+ 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1k2(x, y, s, t) f (s, t)dB(t)dB(s),

(1)

where (x, y) ∈ D = ([0, T ] × [0, T ]) and r = (r1, r2) ∈ (0,∞) × (0,∞). In addition,
g(x, y), k1(x, y, s, t) and k2(x, y, s, t) are the known and continuous functions and f (x, y)
is unknown function which should be approximated. Moreover, � denotes Gamma function
and B(t) is Brownian motion process which satisfies the following properties:

• B(t)−B(s) for t > s is independent of the past. Thatmeans for 0 < u < v < s < t < T ,
the increments B(t) − B(s) and B(v) − B(u) are independent.

• The increment B(t)−B(s) for t > s hasNormal distributionwithmean zero and variance
t − s.

• B(t) for t ≥ 0 are continuous functions of t .

In this paper, we use hat basis functions to get numerical solution of 2DSFIEs. Different
advantages with the proposed numerical method are listed as follows:

� Using these functions, equation under consideration is converted to a system of algebraic
equations which can be easily solved.
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� The proposed scheme is convergent and the rate of convergence is O(h2).
� The unknown coefficients of the approximation of the function with these basis are easily

calculated without any integration. Therefore, the computational cost of the proposed
numerical method is low.

� Because of the simplicity of hat functions, this method is a powerful mathematical tool
to solve various kinds of equations with little additional works.

Using a linear mapping, any closed interval [0, T ] can be converted to closed interval [0, 1].
Therefore, we let T = 1 in Sects. 5 and 6.

2 Fundamental concepts

2.1 Fractional calculus

There are many definitions for fractional integrals and fractional derivatives. For example
the Riemann–Liouville, Caputo, Weil, Hadamard, Riesz, Grunwald–Letnikov and Erdelyi–
Kober. Among them, Riemann–Liouville definition usually is used for fractional integrals,
whereas the Caputo definition is frequently applied for fractional derivatives (Podlubny 1999;
Kilbas et al. 2006).

Definition 1 The definition of Riemann–Liouville fractional integral operator I r1 of order
r1 > 0 on L1[a, b] is as follows Asgari and Ezzati (2017):

(I r1 f )(x) = 1

�(r1)

∫ x

0
(x − y)r1−1 f (y)dy. (2)

The most important properties of operator I r1 are listed in the following:

1. (I 0 f )(x) = f (x),
2. (I r1 I r2 f )(x) = (I r1+r2 f )(x),
3. (I r1 I r2 f )(x) = (I r2 I r1 f )(x).

Definition 2 Let r = (r1, r2) ∈ (0,∞) × (0,∞) and f (x, y) ∈ L1(D). The definition of
left-side mixed Riemann–Liouville fractional integral f of order r is as follows Vityuk and
Golushkov (2004):

(I r f )(x, y) = 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1 f (s, t)dtds. (3)

2.2 Hat functions and their properties

In this section, we define one-dimensional (1D) and two-dimensional (2D) hat basis functions
and use them to construct a new efficient method for solving 2DSFIEs, numerically.

2.2.1 1D-hat basis functions

1D-hat basis functions usually are defined on the interval [0, 1]. In the following definition,
we present the more general case and extend the interval [0, 1] to the interval [0, T ]. The
interval [0, T ] is divided to n subintervals of equal lengths h where h = T

n .
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Definition 3 The family of first (n + 1) 1D-hat basis functions on the interval [0, T ] are
defined as follows Babolian et al. (2009):

φ0(x) =
{

h−x
h , 0 ≤ x ≤ h,

0, otherwise.

For i = 1, 2, . . . , n − 1,

φi (x) =

⎧⎪⎨
⎪⎩

x−(i−1)h
h , (i − 1)h ≤ x < ih,

(i+1)h−x
h , ih ≤ x < (i + 1)h,

0, otherwise,

and

φn(x) =
{

x−(T−h)
h , T − h ≤ x ≤ T,

0, otherwise.

An arbitrary function f (x) can be approximated using 1D-hat basis functions as follows:

f (x) � fn(x) =
n∑

i=0

fiφi (x) = FT�(x) = �T (x)F, (4)

where

F = [ f0, f1, . . . , fn]T , (5)

�(x) = [φ0(x), φ1(x), . . . , φn(x)]T . (6)

The most important reason for using 1D-hat basis functions to approximate function f (x) is
that the entries of vector F in Eq. (5) can be computed as follows:

fi = f (ih), i = 0, 1, 2, . . . , n. (7)

In addition, an arbitrary function k(x, y) cab be expanded using 1D-hat basis functions as
follows:

k(x, y) � kn(x, y) = �T (x)K�(y) = �T (y)KT�(x), (8)

where K = [ki j ] is the (n + 1) × (n + 1) coefficients matrix which

ki j = k(ih, jh), i, j = 0, 1, . . . , n. (9)

2.2.2 2D-hat basis functions

Definition 4 2D-hat basis functions are defined on the interval [0, T ] × [0, T ] as follows:
φi j (x, y) = φi (x)φ j (y), i, j = 0, 1, . . . , n, (10)

where φi (x) and φ j (y) are 1D-hat basis functions.

A bivariate function f (x, y) can be expanded using 2D-hat basis functions as follows:

f (x, y) � fn(x, y) =
n∑

i=0

n∑
j=0

fi jφi j (x, y) = FT�(x, y) = �T (x, y)F, (11)

where
F = [

f00, f01, . . . , f0n, f10, f11, . . . , f1n, . . . , fn0, fn1, . . . , fnn
]T

, (12)
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and

�(x, y) = �(x) ⊗ �(y)

= [
φ00(x, y), . . . , φ0n(x, y), . . . , φn0(x, y), . . . , φnn(x, y)

]T
, (13)

and ⊗ denote Kronecker product.
The entries of vector F in Eq. (12) can be computed as follows:

fi j = f (ih, jh), i, j = 0, 1, . . . , n. (14)

In addition, every function with four variables k(x, y, s, t) can be expanded using 2D-hat
basis functions as follows:

k(x, y, s, t) � kn(x, y, s, t) = �T (x, y)K�(s, t) = �T (s, t)KT�(x, y), (15)

where K is coefficients matrix of order (n + 1)2 × (n + 1)2.
From 2D-hat basis functions elementary properties, we conclude

�(x, y)�T (x, y)F = F̃�(x, y), (16)

where F is a column vector of order (n + 1)2 and F̃ = diag(F).
Moreover, for every matrix A of order (n + 1)2 × (n + 1)2, we get

�T (x, y)A�(x, y) = �T (x, y) Ã = ÃT�(x, y), (17)

where Ã is a column vector of order (n + 1)2 and the elements of Ã are diagonal entries of
matrix A.

3 Operational matrix of fractional order

In this section, we derive fractional-order operational matrix and fractional-order stochastic
operational matrix of integration for hat basis function.

3.1 Fractional-order operational matrix of integration

We utilize fractional operational matrix in confronting with fractional differential equations
and fractional integral equations.

If the following relation be satisfied, thenmatrix Pr1 is named fractional-order operational
matrix:

(I r1�)(x) = 1

�(r1)

∫ x

0
(x − s)r1−1�(s)ds � Pr1�(x). (18)

Theorem 1 The fractional-order hat basis functions operational matrix of integration Pr1

is a matrix of order (n+1)×(n+1)which can be computed as follows Tripathi et al. (2013):

Pr1 = hr1

�(r1 + 2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ζ1 ζ2 ζ3 . . . ζn
0 1 ξ1 ξ2 . . . ξn−1

0 0 1 ξ1 . . . ξn−2

0 0 0 1 . . . ξn−3
...

...
...

...
. . .

...

0 0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (19)
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where

ζ j = jr1(r1 − j + 1) + ( j − 1)r1+1, j = 1, 2, . . . , n,

ξ j = ( j + 1)r1+1 − 2 jr1+1 + ( j − 1)r1+1, j = 1, 2, . . . , n − 1.

Using Eqs. (13) and (18), we get

(I r�)(x, y) = 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1�(s, t)dtds

=
( 1

�(r1)

∫ x

0
(x − s)r1−1�(s)ds

)
⊗

( 1

�(r2)

∫ y

0
(y − t)r2−1�(t)dt

)

= (Pr1�(x)) ⊗ (Pr2�(y)) = (Pr1 ⊗ Pr2)(�(x) ⊗ �(y))

= Pr�(x, y), (20)

where Pr = Pr1 ⊗ Pr2 .

3.2 Fractional-order stochastic operational matrix of integration

Theorem 2 Matrix Pr1
s is called fractional-order stochastic operational matrix, if the fol-

lowing relation be satisfied:

1

�(r1)

∫ x

0
(x − s)r1−1�(s)dB(s) � Pr1

s �(x), (21)

where Pr1
s is given by

Pr1
s = 1

h�(r1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 α2 α3 . . . αn−1 αn

0 β1,1 β1,2 β1,3 . . . β1,n−1 β1,n

0 0 β2,2 β2,3 . . . β2,n−1 β2,n
...

...
...

...
. . .

...
...

0 0 0 0 . . . βn−1,n−1 βn−1,n

0 0 0 0 . . . 0 ηn,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where

α j =
∫ h

0
(r1 − 1)( jh − s)r1−2(h − s)B(s)ds

+
∫ h

0
( jh − s)r1−1B(s)ds, j = 1, 2, . . . , n,

βi,i =
∫ ih

(i−1)h
(r1 − 1)(ih − s)r1−2(s − (i − 1)h)B(s)ds

−
∫ ih

(i−1)h
(ih − s)r1−1B(s)ds, i = 1, 2, . . . , n − 1,

βi, j =
∫ ih

(i−1)h
(r1 − 1)( jh − s)r1−2(s − (i − 1)h)B(s)ds

+
∫ (i+1)h

ih
(r1 − 1)( jh − s)r1−2((i + 1)h − s)B(s)ds

−
∫ ih

(i−1)h
( jh − s)r1−1B(s)ds +

∫ (i+1)h

ih
( jh − s)r1−1B(s)ds,
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i = 1, 2, . . . , n − 1, j = i + 1, . . . , n,

ηn,n =
∫ T

T−h
(r1 − 1)(T − s)r1−2(s − (T − h))B(s)ds −

∫ T

T−h
(T − y)r1−1B(s)ds.

Proof Using part by part integration formula, we have

1

�(r1)

∫ x

0
(x − s)r1−1φi (s)dB(s) = 1

�(r1)

∫ x

0
(r1 − 1)(x − s)r1−2φi (s)B(s)ds

− 1

�(r1)

∫ x

0
(x − s)r1−1φ′

i (s)B(s)ds. (23)

Remark Additional explanation to get Eq. (23) is as follows:

u = (x − s)r1−1φi (s), 	⇒ du = −(r1 − 1)(x − s)r1−2φi (s)ds + (x − s)r1−1φ′
i (s)ds,

dv = dB(s), 	⇒ v = B(s).

Therefore

∫ x

0
(x − s)r1−1φi (s)dB(s)

= (x − s)r1−1φi (s)B(s)
∣∣∣s=x

s=0
+

∫ x

0
(r1 − 1)(x − s)r1−2φi (s)B(s)ds

−
∫ x

0
(x − s)r1−1φ′

i (s)B(s)ds. (24)

Since B(0) = 0, so the first term in Eq. (24) is zero. By multiplying Eq. (24) in 1
�(r1)

, we get
Eq. (23).

In addition, we can expand 1
�(r1)

∫ x
0 (x − s)r1−1φi (s)dB(s), using hat basis functions as

follows:
1

�(r1)

∫ x

0
(x − s)r1−1φi (s)dB(s) �

n∑
j=0

ai jφ j (x), (25)

where

ai j = 1

�(r1)

∫ jh

0
( jh − s)r1−1φi (s)dB(s)

= 1

�(r1)

∫ jh

0
(r1 − 1)( jh − s)r1−2φi (s)B(s)ds

− 1

�(r1)

∫ jh

0
( jh − s)r1−1φ′

i (s)B(s)ds. (26)

Using definition of 1D-hat basis function and Eq. (26), we get

a0 j =
{
0, j = 0,

1
h�(r1)

∫ h
0 (r1 − 1)( jh − s)r1−2(h − s)B(s)ds + 1

h�(r1)

∫ h
0 ( jh − s)r1−1B(s)ds, j = 1, 2, . . . , n.
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For i = 1, 2, . . . , n − 1, we get

ai j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j = 1, 2, . . . , i − 1,
1

h�(r1)

∫ ih

(i−1)h
(r1 − 1)(ih − s)r1−2(s − (i − 1)h)B(s)ds − 1

h�(r1)

∫ ih

(i−1)h
(ih − s)r1−1B(s)ds, j = i,

1

h�(r1)

∫ ih

(i−1)h
(r1 − 1)( jh − s)r1−2(s − (i − 1)h)B(s)ds

+ 1

h�(r1)

∫ (i+1)h

ih
(r1 − 1)( jh − s)r1−2((i + 1)h − s)B(s)ds

− 1

h�(r1)

∫ ih

(i−1)h
( jh − s)r1−1B(s)ds + 1

h�(r1)

∫ (i+1)h

ih
( jh − s)r1−1B(s)ds, j = i + 1, . . . , n.

Finally, for i = n, we have

anj =
⎧⎨
⎩
0, j = 0, 1, . . . , n − 1,

1
h�(r1)

∫ T
T−h (r1 − 1)(T − s)r1−2(s − (T − h))B(s)ds − 1

h�(r1)

∫ T
T−h (T − y)r1−1B(s)ds, j = n.

This complete the proof. ��
Using Eqs. (13) and (21), we have

1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1�(s, t)dB(t)dB(s)

= 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1(�(s) ⊗ �(t))dB(t)dB(s)

=
( 1

�(r1)

∫ x

0
(x − s)r1−1�(s)dB(s)

)
⊗

( 1

�(r2)

∫ y

0
(y − t)r2−1�(t)dB(t)

)

= (P
r1
s �(x)) ⊗ (P

r2
s �(y)) = (P

r1
s ⊗ P

r2
s )(�(x) ⊗ �(y))

= Prs�(x, y), (27)

where Prs = Pr1
s ⊗ Pr2

s .

4 The proposed algorithm to solve 2DSFIEs

This section is devoted to find numerical solution of 2DSFIEs.Wepresent a numericalmethod
that, using the matrices provided in the previous section, transforms the original Eq. (1) to a
linear system of algebraic equations. The numerical solution of Eq. (1) is obtained by solving
this linear system.

We approximate the functions f (x, y), g(x, y), and ki (x, y, s, t), i = 1, 2, in terms of
2D-hat basis functions as follows:

f (x, y) � fn(x, y) = FT�(x, y) = �T (x, y)F,

g(x, y) � gn(x, y) = GT�(x, y) = �T (x, y)G,

ki (x, y, s, t) � kin(x, y, s, t) = �T (x, y)Ki�(s, t) = �T (s, t)KT
i �(x, y), i = 1, 2,

(28)

whereG and Ki , i = 1, 2, are known (n+1)2×1 columnvector and known (n+1)2×(n+1)2

matrices, respectively, whereas F is unknown (n + 1)2 × 1 column vector which should be
determined.

The result of substituting of Eq. (28) into Eq. (1) is

�T (x, y)F � �T (x, y)G + 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1
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× �T (x, y)K1�(s, t)�T (s, t)Fdtds

+ 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1

× �T (x, y)K2�(s, t)�T (s, t)FdB(t)dB(s). (29)

Now, using Eq. (16) concludes

�T (x, y)F � �T (x, y)G + �T (x, y)K1 F̃

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1�(s, t)dtds

+ �T (x, y)K2 F̃

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1�(s, t)dB(t)dB(s). (30)

Now, using 2D-fractional-order operationalmatrix togetherwith 2D-fractional-order stochas-
tic operational matrix of integration computed in Eqs. (20) and (27), we get

�T (x, y)F � �T (x, y)G + �T (x, y)K1 F̃Pr�(x, y) + �T (x, y)K2 F̃Prs�(x, y).

Let R1 = K1 F̃Pr and R2 = K2 F̃Prs and apply Eq. (17). Thus, we have

�T (x, y)F � �T (x, y)G + �T (x, y)R̃1 + �T (x, y)R̃2,

or
F � G + R̃1 + R̃2. (31)

Equation (31) is a very simple system with (n + 1)2 linear equations and (n + 1)2 unknown
variables. We can solve this system using an appropriate iterative method such as Jacobi
method or Gauss–Seidel method. After solving this system, the numerical solution of Eq. (1)
is computed from Eq. (28) as

f (x, y) � FT�(x, y).

5 Error analysis

This section is devoted to get the rate of convergence of the suggested method for solving
2DSFIEs. We prove that the rate of convergence is O(h2). We define

‖ f (x, y)‖ = sup
(x,y)∈D

| f (x, y)|,

where D = [0, 1] × [0, 1].
Theorem 3 Let g(x, y) ∈ C2(D) and gn(x, y) be the expansion of g(x, y) using 2D-hat
basis functions. Mirzaee and Hadadiyan established that

‖g(x, y) − gn(x, y)‖ � O(h2).

Proof See Mirzaee and Hadadiyan (2016). ��
Theorem 4 Assume that k(x, y, s, t) ∈ C2(D × D) and kn(x, y, s, t) be approximation of
k(x, y, s, t) using 2D-hat basis functions. Mirzaee and Hadadiyan proved that

‖k(x, y, s, t) − kn(x, y, s, t)‖ � O(h2).

Proof See Mirzaee and Hadadiyan (2016). ��
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Theorem 5 Suppose that f (x, y) is the exact solution of Eq. (1) and fn(x, y) be the approx-
imate solution of Eq. (1) using proposed algorithm. Moreover, suppose that the following
assumptions are satisfied:

(i) ‖ f (x, y)‖ ≤ N , (x, y) ∈ D,
(ii) ‖ki (x, y, s, t)‖ ≤ Li , i = 1, 2, (x, y, s, t) ∈ D × D,

(iii) 1 − 1
�(r1)�(r2)

(L1 + C1h2 + M2L2 + M2C2h2
)
> 0,

where M = sup{B(x); 0 ≤ x ≤ 1} and the constants N, L1, L2, C1, and C2 are generic
constants. Then, we have

‖ f (x, y) − fn(x, y)‖ � O(h2). (32)

Proof Let gn(x, y) and kin(x, y, s, t), i = 1, 2, be the approximate functions of g(x, y) and
ki (x, y, s, t),, respectively. Therefore, we have

fn(x, y) = gn(x, y) + 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1k1n(x, y, s, t) fn(s, t)dtds

+ 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1k2n(x, y, s, t) fn(s, t)dB(t)dB(s).

(33)

From Eqs. (1) and (33), we can write

f (x, y) − fn(x, y) = g(x, y) − gn(x, y) + 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1

× (
k1(x, y, s, t) f (s, t) − k1n(x, y, s, t) fn(s, t)

)
dtds

+ 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1

× (
k2(x, y, s, t) f (s, t) − k2n(x, y, s, t) fn(s, t)

)
dB(t)dB(s).

(34)

Thus

| f (x, y) − fn(x, y)| ≤ |g(x, y) − gn(x, y)| + 1

�(r1)�(r2)

∫ x

0

∫ y

0
|x − s|r1−1|y − t |r2−1

∣∣k1(x, y, s, t) f (s, t) − k1n(x, y, s, t) fn(s, t)
∣∣dtds

+ 1

�(r1)�(r2)

∫ x

0

∫ y

0
|x − s|r1−1|y − t |r2−1

∣∣k2(x, y, s, t) f (s, t) − k2n(x, y, s, t) fn(s, t)
∣∣dB(t)dB(s). (35)

Since |x − s| < 1 and |y − t | < 1, so

| f (x, y) − fn(x, y)| ≤ |g(x, y) − gn(x, y)|
+ 1

�(r1)�(r2)

∫ x

0

∫ y

0

∣∣k1(x, y, s, t) f (s, t)
− k1n(x, y, s, t) fn(s, t)

∣∣dtds
+ 1

�(r1)�(r2)

∫ x

0

∫ y

0

∣∣k2(x, y, s, t) f (s, t)
− k2n(x, y, s, t) fn(s, t)

∣∣dB(t)dB(s)

≤ ‖g(x, y) − gn(x, y)‖ + xy

�(r1)�(r2)
‖k1(x, y, s, t) f (s, t)
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− k1n(x, y, s, t) fn(s, t)‖
+ B(x)B(y)

�(r1)�(r2)
‖k2(x, y, s, t) f (s, t) − k2n(x, y, s, t) fn(s, t)‖.

We define M = sup{B(x); 0 ≤ x ≤ 1}. Since x < 1, y < 1 and using this definition, we
get

‖ f (x, y) − fn(x, y)‖ ≤ ‖g(x, y) − gn(x, y)‖ + 1

�(r1)�(r2)
‖k1(x, y, s, t) f (s, t)

− k1n(x, y, s, t) fn(s, t)‖

+ M2

�(r1)�(r2)
‖k2(x, y, s, t) f (s, t) − k2n(x, y, s, t) fn(s, t)‖.

(36)

From assumptions (i) and (ii) and Theorem 4, we conclude that

‖ki (x, y, s, t) f (s, t) − kin(x, y, s, t) fn(s, t)‖
≤ ‖ki (x, y, s, t)‖‖ f (x, y) − fn(x, y)‖

+ ‖ki (x, y, s, t) − kin(x, y, s, t)‖
(
‖ f (x, y) − fn(x, y)‖ + ‖ f (x, y)‖

)

≤ Li‖ f (x, y) − fn(x, y)‖ + Ci h
2‖ f (x, y) − fn(x, y)‖ + CiN h2, i = 1, 2. (37)

From Eqs. (36) and (37) and using Theorem 3 and assumption (iii), we get

‖ f (x, y) − fn(x, y)‖ ≤ Ch2 + 1
�(r1)�(r2)

(C1Nh2 + C2M2Nh2)

1 − 1
�(r1)�(r2)

(L1 + C1h2 + M2L2 + M2C2h2)
. (38)

From Eq. (38), we conclude ‖ f (x, y) − fn(x, y)‖ � O(h2). ��

6 Numerical examples

In this section, some numerical examples have been solved using proposed method explained
in the previous section to demonstrate the accuracy and efficiency of this method. The values
of exact solution, approximate solution, and absolute error at the some selected points is
reported in tables. To clarify accuracy and efficiency of the present method, the values of
absolute error are computes as follows:

e(x, y) = ∣∣ f (x, y) − fn(x, y)
∣∣, (x, y) ∈ D,

where f (x, y) and fn(x, y) are the exact solution and approximate solution of 2DSFIEs,
respectively. All of the computational reported in tables have been obtained by running some
computer programs written in MATLAB software. In addition, the “pinv” command is used
to solve the generated linear system of algebraic equations.

Example 1 Let us consider the following 2DSFIEs:

f (x, y) = g(x, y) + 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1x f (s, t)dtds

+ 1

�(r1)�(r2)

∫ x

0

∫ y

0
(x − s)r1−1(y − t)r2−1xy f (s, t)dB(t)dB(s),

with the exact solution f (x, y) = 1.
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Table 1 Numerical results of Example 1 in the case r1 = 7
2 and r2 = 5

2

(xi ,y j ) n = 2 n = 3

Approximate solution Absolute error Approximate solution Absolute error

(0.0,0.0) 1.00000000 0 1.00000000 0

(0.1,0.1) 1.00000179 1.79689185e-6 1.00000001 1.14794460e-8

(0.2,0.2) 1.00000718 7.18756743e-6 1.00000004 4.59177843e-8

(0.3,0.3) 1.00001617 1.61720267e-5 1.00000010 1.03315014e-7

(0.4,0.4) 1.00002875 2.87502697e-5 1.00000017 1.70971044e-7

(0.5,0.5) 1.00004492 4.49222964e-5 1.00000023 2.35214718e-7

(0.6,0.6) 1.00046162 4.61622333e-4 1.00000029 2.98391844e-7

(0.7,0.7) 1.00123966 1.23966621e-3 1.00000060 6.07764638e-7

(0.8,0.8) 1.00237905 2.37905394e-3 1.00000178 1.78548709e-6

(0.9,0.9) 1.00387978 3.87978551e-3 1.00000352 3.52448067e-6

(1.0,1.0) 1.00574186 5.74186092e-3 1.00000582 5.82474537e-6

We solve this example for two cases r1 = 7
2 , r2 = 5

2 and r1 = 9
2 , r2 = 7

2 . For case
r1 = 7

2 , r2 = 5
2 , we have

g(x, y) = 1 − 1

�
(
7
2

)
�

(
5
2

)( 4

45
x

9
2 y

5
2

)

− 1

�
( 7
2

)
�

(
5
2

)
(
5

2

∫ x

0
x(x − s)

3
2 B(s)ds

) (
3

2

∫ y

0
y(y − t)

1
2 B(t)dt

)
.

In this case, the values of approximate solution and absolute error obtained from present
method for n = 2, 3 is reported in Table 1. In addition, absolute error for n = 2 and n = 3
are plotted in Figs. 1 and 2, respectively.

For case r1 = 9
2 , r2 = 7

2 , we have

g(x, y) = 1 − 1

�( 92 )�( 72 )

( 4

77
x

11
2 y

7
2

)

− 1

�( 92 )�( 72 )

(7
2

∫ x

0
x(x − s)

5
2 B(s)ds

)(5
2

∫ y

0
y(y − t)

3
2 B(t)dt

)
.

In this case, the values of approximate solution and absolute error obtained from present
method for n = 2, 3 are reported in Table 2. In addition, absolute error for n = 2 and n = 3
are plotted in Figs. 3 and 4, respectively.

Example 2 Let us consider the following 2DSFIEs:

f (x, y) = g(x, y) + 1

�
( 7
2

)
�

(
5
2

)
∫ x

0

∫ y

0
(x − s)

5
2 (y − t)

3
2 (x + y) f (s, t)dtds

+ 1

�
( 7
2

)
�

(
5
2

)
∫ x

0

∫ y

0
(x − s)

5
2 (y − t)

3
2 y f (s, t)dB(t)dB(s),
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Fig. 1 Absolute error of Example 1 for n = 2
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Fig. 2 Absolute error of Example 1 for n = 3

Table 2 Numerical results of Example 1 in the case r1 = 9
2 and r2 = 7

2

(xi ,y j ) n = 2 n = 3

Approximate solution Absolute error Approximate solution Absolute error

(0.0,0.0) 1.00000000 0 1.00000000 0

(0.1,0.1) 0.99998700 1.29980028e-5 1.00000000 1.36548927e-9

(0.2,0.2) 0.99994800 5.19920114e-5 1.00000000 5.46195755e-9

(0.3,0.3) 0.99988301 1.16982025e-4 1.00000001 1.22894043e-8

(0.4,0.4) 0.99979203 2.07968045e-4 1.00000045 4.57758468e-7

(0.5,0.5) 0.99967504 3.24950071e-4 1.00000216 2.16039663e-6

(0.6,0.6) 0.99904572 9.54271076e-4 1.00000510 5.10954514e-6

(0.7,0.7) 0.99879256 1.20743023e-3 1.00001867 1.86703740e-5

(0.8,0.8) 0.99891557 1.08442755e-3 1.00007562 7.56221431e-5

(0.9,0.9) 0.99941473 5.85263031e-4 1.00016894 1.68941557e-4

(1.0,1.0) 1.00029006 2.90063335e-4 1.00029862 2.98628616e-4
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Fig. 3 Absolute error of Example 1 for n = 2
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Fig. 4 Absolute error of Example 1 for n = 3

where

g(x, y) = xy − 1

�
(
7
2

)
�

(
5
2

) (x + y)
(2
9
x

9
2

)(2
7
y

7
2

)

− 1

�
(
7
2

)
�

(
5
2

)(∫ x

0

(5
2
s(x − s)

3
2 − (x − s)

5
2

)
B(s)ds

)

(∫ y

0

(3
2
yt (y − t)

1
2 − y(y − t)

3
2

)
B(t)dt

)
,

with the exact solution f (x, y) = xy.
The values of approximate solution and absolute error achieved from present method for

n = 2, 3 are reported in Table 3. Also, absolute error for n = 2 and n = 3 are plotted in
Figs. 5 and 6, respectively. Moreover, computational time of these examples are compared
in the Table 4.
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Fig. 5 Absolute error of Example 2 for n = 2
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Fig. 6 Absolute error of Example 2 for n = 3

Table 4 Comparison of
computational time for given
examples

Example n = 2 n = 3

Example 1 with r1 = 7
2 and r2 = 5

2 26.174382 45.169180

Example 1 with r1 = 9
2 and r2 = 7

2 21.514387 39.789462

Example 2 with r1 = 7
2 and r2 = 5

2 24.549823 43.546987

7 Conclusion

In this article, 2D-hat basis functions have been applied to provide an efficient numerical
approach to solve 2DSFIEs. For this goal, first, we calculate operational matrix and stochastic
operational matrix of fractional order, and then, using these matrices, the solution of con-
sidered problem is converted to the solution of linear system of algebraic equations. Some
results concerning the convergence and error analysis associated with the present method
are discussed and we establish the rate of convergence of this approach for solving 2DSFIEs
is O(h2). Finally, some numerical examples are solved using proposed method to confirm
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applicability of this technique. The numerical results reported in the tables verify that the
suggested algorithm is very accurate (Table4).
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