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Abstract This paper presents a methodology for optimizing pre-calculated collision-free
paths of differential-drive wheeled robots. The main advantage of this methodology is that
optimization is done by considering the kinematics and mechanical constraints of the mobile
robot. In accordance to this proposal, the optimized path is achieved by applying recursively a
local smoothing on an initial pathwhich is originallymodeled as a one-dimensional piecewise
linear function. By this recursive smoothing, it can be ensured that the original piecewise
linear function can be transformed into a smooth one that fulfill the constraints established by
the kinematic equations of thewheeledmobile in terms of aminimumradius of curvature.As a
result of this, a trajectory which guarantees lower power consumption and lower mechanical
wear, is obtained. To show the better performance of the proposed approach, numerical
simulation results are contrasted to those obtained from other reported methods with regards
to path length, minimum radius of curvature, cross track error, continuity and resulting
acceleration.

Keywords Path optimization · Smooth · Piecewise-linear · Differential-drive robot · Radius
of curvature

Mathematics Subject Classification 65D10 · 68T40 · 37C50

1 Introduction

Path optimization is one of the trending topics of research in the area of path planning for
mobile robots (Latombe 1991). Generally, the optimization is focused on determining a path
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that ensures the best use of the mechanical resources of the mobile robot by considering the
kinematics restrictions imposed by the trajectory shape. Since there are many types of robots
with different capabilities, limitations, and applications, it is difficult to find a general defini-
tion of “optimal path”. Basically, optimization focuses on two important aspects: energy and
security. Concerning to energy, power consumption of a robot is directly related to its phys-
ical structure as well as to its mechanical constrains to move and rotate. In regard to safety,
this is related to the planned path which should ensure that the robot and obstacles are free
of collision in the presence of some inevitable errors such as imperfections in the obstacles,
finite calculations or uncertainty in the workspace (Lavalle 2006). In accordance with pub-
lished literature so far, there are techniques dealing with the problem of path optimization in
mobile robots, being one of them, the so-called path smoothing. As representative examples
of this technique it can be mentioned those based on spline interpolation (Kamasamudram
2013; Chang and Huh 2015; Elbanhawi et al. 2015), in recursive forms such as Bézier curves
(Ho and Liu 2009; Choi et al. 2010; Yang and Choi 2013) or geometric shapes as arcs (Lepej
et al. 2015; Brezak and Petrovic 2011; Li and Meek 2005) or hypocycloids (Ravankar et al.
2016), etc. In all these cases, the methodologies perform a trajectory segmentation near the
breakpoints, producing systems of polynomial equations with high computational complex-
ity, or generating a large amount of points (that are stored in memory) that subsequently the
robot will assign as speed for each wheel. Alternatively, our proposal is oriented to optimize
collision-free paths described as continuous piecewise-linear (PWL) functions by follow-
ing a smoothing procedure similar to that described in Jimenez-Fernandez et al. (2016a).
Its main advantage is that the optimized path takes also into consideration the kinematics
of the differential-drive wheeled robot. In contrast to the previously mentioned methods,
the benefits associated to this methodology are: easy representation of the trajectory as one-
dimensional PWL functions, which can reproduce an infinite number of points in comparison
to any pre-calculated table, fast evaluation (a direct function evaluation) and easy modifica-
tion of the smoothing level in the breakpoints by only changing a parameter. This paper is
organized as follows: Sect. 2 presents the smooth piecewise model in which our proposed
methodology is based. Section 3 describes the kinematics equations for a differential-drive
wheeled robot. Section 4 explain in detail the methodology to determine the best smoothing
coefficients which ensure an optimal path in terms of the radius of curvature and the kine-
matics model equations. Section 5 illustrates how the motion planning for the robot ensures
that the optimized path is correctly traversed. In Sect. 6 simulation examples are presented
to demonstrate the effectiveness of the proposed methodology. Finally, Sect. 7 exposes the
concluding remarks of this work.

2 Smooth piecewise-linear model

Although exists many PWL models reported in literature (Leenaerts and Van-Bookhoven
1998; Guzelis andGoknar 1991; Kahlert and Chua 1990; Julian et al. 1999), themethodology
here proposed is based on the canonical description of Chua and Kang (1997), Kang and
Chua (1978) and Chua and Deng (1986, 1988). This model is preferred over all others due
to its compact and explicit formulation expressed as:

f (x) = a0 + a1x +
n∑

j=1

b j |x − x j | (1)
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Fig. 1 Smooth approximation of |x − x j | for x j = 1, α = 20, 7, 4

where a0, a1 and b j are constants that represent model parameters meanwhile x j denotes the
j th breakpoint in a single-valued PWL function constituted by n linear segments.
In accordance with Jimenez-Fernandez et al. (2016a, b), a smooth version of (1) can be
achieved by approximating the absolute-value terms

∣∣x − x j
∣∣ by

|x − x j | = ln(1 + e−α(x−x j )) + ln(1 + eα(x−x j ))

α
(2)

where α is the smoothing parameter which allows different approach levels depending on
the assigned value. The effect of varying α in (2) is shown in Fig. 1.

Based in this approximation, the form of (1) can be now expressed in terms of exponential
and natural logarithms as:

f (x) = A0 + A1x +
n∑

j=1

Bj ln
(
1 + e−α(x−x j )

)
(3)

where similarly as (1) A0, A1 and Bj are model parameters.
For further information about (3) reader is referred to Jimenez-Fernandez et al. (2016a, b).

3 Differential robot kinematics

It is well known that a differential-drive wheeled robot is a non-holonomic system because it
can not change its direction instantly (Lavalle 2006). This type of robot consists of two main
wheels that are independently controlled by a motor and a caster wheel placed in the rear.
To build a simple model of the kinematics of a differential robot only two parameters are
needed: the distance D between the left and right wheels, and the wheel radius r . According
to Lavalle (2006), this kinematic model can be expressed by the following equations system:

vx = r
(vR + vL)

2
cos(θR)

vy = r
(vR + vL)

2
sin(θR)
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Fig. 2 Representation of
position and speed of the
differential robot

θ

θ

ω

Fig. 3 Curve path described for
a differential robot

ω = r(vR − vL)

l

vT = vR + vL

2
vψ = vR − vL (4)

where vx and vy are the translational speed, vT is a combination of translational speeds as
shown in Fig. 2, r is the radius of the robot’s wheels, θR is the angle between the axis of
symmetry of the mobil and the axis x of the work space, ω is the angular velocity, vR and vL
are the speeds of the left and right wheels, respectively. The two action variables represented
by vT (translation) and vψ (rotation), are also considered.

Based on (4), it is possible to deduce the location and orientation of the robot because
these parameters change according to differential-drive, this means, decrease or increase
the speed of the left or right wheel. If vR = vL, then this describes a straight path, but if
vR �= vL, then this rotates clockwise or counter-clockwise depending on the speed of each
wheel. The curvature produced by the rotational motion has at its rotation center the so-called
ICC (instantaneous center of curvature). The parameters involved in a curved trajectory are
shown in Fig. 3.
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Representing each wheel speed (vR and vL) in terms of angular velocity ω, the following
equations system are obtained:
In the case of a left-turn:

vR = ω(R + l/2)
vL = ω(R − l/2).

(5)

In the case of a right-turn:

vR = ω(R − l/2)
vL = ω(R + l/2)

(6)

from (5) it can be stated that

vR

R + l/2
= vL

R − l/2
(7)

and respectively, from (6) it follows

vR

R − l/2
= vL

R + l/2
(8)

and after solving (7) and (8) for R, results

R = ± l

2

vR + vL

vR − vL
(9)

where R is the radius having the curvature described by the path followed by the mobile. In
accordance to (9) it must be noted that R is considered as positive in the right-turn case and
negative in the left-turn case.

Having knowledge of the physical functioning of the differential-drive wheeled robot,
it is possible to deduce a strategy that allows to generate a smooth path which takes into
consideration the radius of curvature described by the mobile when it is turning.

4 Control of smoothing by a curvature radius criteria

An optimal trajectory that produces a less wear of a differential-drive wheeled robot, is
that which minimizes abrupt changes of direction (smooth trajectory) because it avoids the
rotational inversion of the wheels and it also demands the least amount of variations in
speed. However, determining a smooth path by approximating the absolute value in a PWL
trajectory is only a part of the work. The next step is to link it to the physical dimensions of
the mobile robot to obtain suitable values of the smoothing parameters (α j ). Moreover, it is
also imperative to prevent inversion in the rotational direction of the wheels in the presence
of a path with sharp curves. In that regard, taking into account Fig. 3, it can be observed
that the minimum radius of curvature that should describe the mobile to avoid rotational
inversion in the wheels is R > l/2 because it ensures that the ICC will always be outside of
the robot body. If R = l/2, then the ICC will be in the center of one of the wheels giving
as result that during rotation only one of these to be in motion and the other in zero speed,
this condition is undesirable because the kinetic energy will be completely lost in one of the
motors. This situation derives in two problems: an increase of energy consumption because
of having to recover the movement of the stopped motor and mechanical wear caused by the
vibration during each turning on/off of the motor. To determine in which part of the path the
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turning radius does not fulfill the above described condition, the radius of curvature for a
curve described in Cartesian coordinates (x, y) is defined as follows:

Rc =

[( dx
dt

)2 +
(
dy
dt

)2] 3
2

∣∣∣ dxdt
d2 y
dt2

− dy
dt

d2x
dt2

∣∣∣
(10)

where x(t) and y(t) are the smooth PWL parametric equations describing the path to follow
by the differential robot.

4.1 Methodology to ensure an appropriate radius of curvature

Consider a collision-free trajectory approximated by n linear segments in a Cartesian space.
To ensure that the minimum radius of curvature along the path always be greater than l/2,
first, it is necessary to describe the trajectory as a smooth PWL function and then to adjust
its smoothing parameters α j , for j = 2, 3, . . . , (n + 1), at the breakpoint which requires it.
In most cases it corresponds to a decrease in value. The methodology proposed to determine
the appropriate coefficient for each breakpoint can be summarized as follows:

1. Obtain the pair of smooth PWL parametric equations {x(t), y(t)} from a list P of initial
breakpoints and smoothing coefficients that describe the path to follow by the robot.

P = {
(X1, Y1), (X2, Y2, α2) · · · (Xi−1, Yi−1, α j ), (Xi , Yi )

}

for i = 1, 2, . . . , (n + 1) being Xi and Yi coordinates in the Cartesian space and α j

specific constants that must be initially selected (usually a large value) in such a way that
they guarantees to hold the collision-free condition. It is important to point out that the
first and last points (P1 and Pn+1) do not have assigned any smoothing parameter (α j ).
The reason for this is that three points are necessary to define an arc. Due to this fact,
index j runs from 2 to n. It should be noted that due to the trajectory must be followed
by the robot during certain period of time, the resulting parametric functions are also
time-dependent functions, here denoted as: {x(t), y(t)}.

2. Replace the parametric equations {x(t), y(t)} in the radius of curvature formula (10),

Rc(t) =

[(
dx(t)
dt

)2 +
(
dy(t)
dt

)2] 3
2

∣∣∣ dx(t)dt
d2 y(t)
dt2

− dy(t)
dt

d2x(t)
dt2

∣∣∣

where Rc(t) is also a time-dependent function.
From this function, the minimum radius min{Rc(t)} described in the trajectory is deter-
mined. In our proposal, this is done by a discrete evaluation of Rc(t). The precision of
this result will depend on the step size, and therefore, on the number of evaluation points.
For N samples per linear segment in a PWL trajectory, the min{Rc(t)} is expressed as:

min{Rc(t)} = {Rc(t1), Rc(t2), . . . , Rc(tk)}
where t1 = 0 and tk+1 = (tk) + h for k = 1, 2, . . . , (N × n) − 1; with h denoting the
step size given by

h = λ

N × n
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Fig. 4 Search breakpoint with minimum radius of curvature

where length of λ will be defined by the range of the parametric functions: {x(t), y(t)},
from the starting point P1 to the ending point Pn+1.

3. If there is any breakpoint that does not satisfy the condition of aminimum radius of curva-
ture (lower than l/2), it is identified by obtaining the value of t that produces min{Rc(t)}.
Then, a sweep of N/2 samples after and before this point is performed (from t = tk−N/2

to tk+N/2 with respect to the value of t where Rc(t) < l/2). After that, if during the
search process an integer value is found, then it is assumed this corresponds to the posi-
tion of the coordinate pair of the array P which is necessary to make an adjustment in its
smoothing parameter. Fig. 4 shows graphically the search of the breakpoint with a radius
of curvature conflict.

4. Once the i th breakpoint has been identified, it proceeds to modify the smoothing param-
eter associated with the coordinate pair. To gradually increase the radius of curvature,
the smoothing parameter is slightly decreased as αi = αi − δ.

5. From here, all the previous steps are recursively repeated by considering the updated
smoothing parameters. This process will stop until the condition min{Rc(t)} > l/2 be
satisfied for all the breakpoints.

This methodology is summarized as an algorithm in Algorithm 1, where smoothPWL()

represents the function to obtain the smooth parametric functions.
Similarly, in Algorithm 2 the function smoothPWL() is expressed as an algorithm.

5 Motion planning

After considering the kinematic of the differential robot, the smooth trajectory and the radius
of curvature formula, the velocities of each of the wheels can be assigned within a normalized
range where 1 corresponds to the maximum speed of the motors (VelmaxMot = 1) and 0 to
the minimum speed (VelminMot = 0). Negative speed (reverse rotation of the motor) is not
considered because the path has been optimized so that there is no such effect.
When the robot describes a straight path, it is considered that both wheels are rotating at
maximum speed, however, when it turns, the speed of the inner wheel must be decreased

123



Optimization of collision-free paths… 4951

Algorithm 1 Procedure to smooth with constraints in radius of curvature
Input: P = {(X1, Y1), (X2, Y2, α2) · · · (Xi , Yi , α j ), (Xi , Yi )}

Minimum radius of curvature: R
Initial smooth coefficient k

Output: P = {(X1, Y1), (X2, Y2, α
′
2) · · · (Xi , Yi , α

′
j ), (Xi , Yi )}

1: procedure calcCoef();
2: for i = 0 to n − 1 do
3: px [i] [0] ← i + 1
4: px [i] [1] ← P [i + 1] [0]
5: px [i] [2] ← k
6: py [i] [0] ← i + 1
7: py [i] [1] ← P [i + 1] [1]
8: py [i] [2] ← k
9: end for
10: while temp �= R do
11: temp ← R
12: x(t) ← smoothPWL(px)
13: y(t) ← smoothPWL(py)
14: for i = 0 to (N × n) do
15: t ← i

N

16: Rc(t) =

[(
dx(t)
dt

)2+
(
dy(t)
dt

)2] 3
2

∣∣∣∣
dx(t)
dt

d2 y(t)
dt2

− dy(t)
dt

d2x(t)
dt2

∣∣∣∣
17: Matri x Rc[i][1] ← Rc(t)
18: Matri x Rc[i][0] ← t
19: if Rc(t) < temp then
20: T ← i
21: end if
22: temp ← Rc(t)
23: end for
24: back ← T − ( N2 )

25: for j = 1 to N do
26: if Matri x Rc[back][0] = I nteger then
27: point ← Matri x Rc[back][0] + 1
28: end if
29: back ← back + 1
30: end for
31: P[point][2] ← P[point][2] − 0.5
32: end while
33: end procedure

while the speed of the outer wheel that moves through the arc pathmust continue at maximum
speed. From this, Eq. (9) can be used to obtain the speed of one of the wheels as follows:
From this, Eq. (9) can be used to obtain the turn right speed (vR) and the turn left speed (vL)
of the wheels as follows:

vR = vL(2R − l)

2R + l
(11)

vL = vR(2R − l)

2R + l
(12)

where vR = VelmaxMot in (12), vL = VelmaxMot in (11), l is the distance between the
wheels of the mobile robot and R is the time-dependent radius of curvature which is replaced
by the discrete evaluation of Eq. (10) for t = 0 to t = t(N×n)−1 + h with h denoting
the step size as defined in the Step 2 in the previous section. The resulting list of speeds
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Algorithm 2 Function to calculate parametric functions
Input: Decomposed breakpoints list: p //where p can be px or py
Output: Smooth parametric equation: F(t)
1: function smoothPWL(p);
2: y ← 0
3: for j = 0 to n − 1 do

4: a0 ← a0 +
(
1
2 (m ( j, p) − m ( j − 1, p))

)
abs (p [ j] [0])

5: end for
6: a0 ← y − a0
7: a1 ← 1

2 (m (−1, p) + m (n, p))
8: for j = 0 to n − 1 do

9: AppABS ← ln
(
1+e−p[ j][2](−t+p[ j][0])

)
+ln

(
1+ep[ j][2](−t+p[ j][0])

)

p[ j][2]

10: S ← S +
(
1
2 (m ( j, p) − m ( j − 1, p))

)
+ AppABS

11: end for
12: F (x) ← a0 + a1t + S
13: Return F(t)
14: end function
1: function m(s,g); // calculate slope
2: if s = −1 then
3: slope ← g[s+1][1]−y

g[s+1][0]−0
4: else
5: slope ← g[s+1][1]−g[s][1]

g[s+1][0]−g[s][1]
6: end if
7: Return slope
8: end function

Fig. 5 Method for determining
the direction of rotation of the
mobile robot

r

corresponds to a set of speeds of both wheels, therefore, it is necessary to classify the speed
of the left wheel to the speed of the right wheel. To establish a numerical criteria to determine
to which wheel the calculated speed corresponds is necessary to determine the direction
of the rotation as shown in Fig. 5. This figure represents three consecutive discrete points:
{x(tk), y(tk)} , {x(tk+1), y(tk+1)} , and {x(tk+2), y(tk+2)} in a path with an angle ϕ with
respect to x axis. It is also considered that a change of direction given by the angle ϕr or the
angle ϕl occurs between the last two points.

123



Optimization of collision-free paths… 4953

From this, the turn condition can be defined in terms of a signum function sgn(·) in such
a way that a positive result will correspond with a turn right and a negative with a turn left.
This criteria can be summarized as

g = sgn(ϕ − ϕt )

Turn condition

{
Right, if g = +1,when ϕt = ϕr

Left, if g = −1,when ϕt = ϕl

Based on this, evaluations of smooth PWL functions {x(t), y(t)} are performed to determine
the current position of the mobile robot, a time after tk+1 and two times after tk+2.

Taking this into account, the angle ϕ is obtained with respect to the points {x(tk), y(tk)}
and {x(tk+1), y(tk+1)} by

ϕ = atan2

(
y(tk+1) − y(tk)

x(tk+1) − x(tk)

)

similarly, ϕr or ϕl are obtained for the points {x(tk+1), y(tk+1)} and {x(tk+2), y(tk+2)} by

ϕr,l = atan2

(
y(tk+2) − y(tk+1)

x(tk+2) − x(tk+1)

)

If sgn(ϕ − ϕt ) = +1 then it is turning to the right, therefore, VelR = vR and VelL =
VelmaxMot . On the contrary, if sgn(ϕ − ϕt ) = −1 it is then turning to the left, therefore,
VelR = VelmaxMot and VelL = vL.

6 Simulation results

In this section, two examples of collision-free PWL trajectories are shown to demonstrate
the effectiveness of the proposed methodology. The software Maple Release 18 was used to
perform the symbolic and numerical manipulations as well as to plot the graphs of resulting
functions. In both examples, it is considered that the distance between the wheels of the
differential robot is l = 14 cm and the trajectory is also in centimeters.

6.1 Example 1

The following smooth PWL path (Fig. 6) whose breakpoints and smoothing coefficients are
shown in Table 1 is taken as example.

Based on the function construction strategy of Jimenez-Fernandez et al. (2016b), the
parametric equations describing the trajectory are given by

x(t) = − 1

α2α3

(
5
(

− 21tα2α3 + 19α3 ln
(
1 + e−α2(t−1)

)

+19α3 ln
(
1 + eα2(t−1)

)
− 18α2 ln

(
1 + e−α3(t−2)

)

−18α2 ln
(
1 + eα3(t−2)

)
+ 17α2α3

))

y(t) = − 1

α2α3

(
5
(
2tα2α3 + 7α3 ln

(
1 + e−α2(t−1)

)
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Fig. 6 Example of a PWL path
and smooth PWL path in an area
with obstacles (circles)

Table 1 Breakpoints and
smoothing coefficients for the
smooth path depicted in Fig. 6
(coordinates in cm)

P X Y α

1 0 0 –

2 10 110 10

3 90 30 10

4 100 130 –

+7α3 ln
(
1 + eα2(t−1)

)
− 7α2 ln

(
1 + e−α3(t−2)

)

−7α2 ln
(
1 + eα3(t−2)

)
+ 7α2α3

))
(13)

for an arbitrary value of α j .
After substituting these equations in the radius of curvature formula (10) and subsequently

evaluating it, the graph of Fig. 7 is obtained.
In this figure, it can be observed two concave formations that correspond to the radius of

curvature described by the two turns in the smooth trajectory which starts in the point P1,
and ends in the point P4. To get a more detailed look at particular portion of graph Rc(t), a
zoom-in view of Fig. 7 is shown in Fig. 8.

In Fig. 8 it can be clearly seen that the minimum radius described by the trajectory under
analysis is 4.32 cm. From this result, it can be noticed that the condition of no inversion in
the rotational direction of one of the wheels has been broken because the minimum radius of
curvature is 7 cm (distance l = 14 cm between wheels established in this problem).
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Fig. 7 Graph of radius of
curvature for the smooth path in
Fig. 6 (Rc in cm)

Fig. 8 Zoom-in view of Fig. 7

Table 2 Breakpoints and
smoothing parameters after
applying the optimization
methodology (coordinates in cm)

P X Y α

1 0 0 –

2 10 110 6

3 90 30 5.5

4 100 130 –

Using data of Table 1 and applying the described optimization methodology, the new
smoothing parameters which describe a path that avoids the rotational inversion of a wheel
in sharp curves of Table 2 are determined.

Figure 9 shows a comparison between the trajectory with initial smoothing parameters
and the new one using the coefficients of Table 2.

Performing motion planning of the smooth PWL trajectory with curvature restrictions of
Fig. 9 whose smoothing coefficients are shown in Table 2, the speed of each wheel is obtained
by Eqs. (11) and (12). These results are shown in Fig. 10a, b, respectively. In this figure the
path length corresponds to the normalized length between breakpoints.
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Fig. 9 Example of a
collision-free PWL path, smooth
PWL path and smooth PWL path
with restrictions in radius of
curvature in an area with
obstacles (circles)

Figure 10 shows the decrease in speed when the differential robot is rotating in any of
the breakpoints of the trajectory. It can also be seen that the minimum speed that must reach
the wheels is very close to zero without reaching it, to avoid the loss of kinetic energy in the
robot motors.

6.2 Example 2

For this example, the breakpoints and initial smooth parameters shown in Table 3 are consid-
ered. Similarly as in the previous example, the distance between the wheels of the differential
robot is also considered as l = 14 cm.

After applying the path optimization methodology, the new smoothing parameters of
Table 4 are determined.

Using data of Table 4 the optimal smooth PWL trajectory which overcomes the radius of
curvature restriction and avoids the rotational inversion of wheels can be obtained. Figure 11
shows such optimal trajectory (in point line style) contrasted with the other graphs: initial
smooth PWL trajectory (dashed line) and PWL (solid line).

As can be seen in Fig. 11, the fifth breakpoint in the trajectory that starts in P1, and ends
in P7, is related to the highest smoothing action (lowest coefficient, being α5 = 5.5). In
the other cases, smoothing action was lower than in P5 because the angles formed in these
breakpoints do not form an angle as closed as in this specific point.

In Fig. 12, the graphs of motion planning for the mobile robot consisting normalized
speeds for each wheel are shown.

Taking into consideration that the parametric equations x(t) and y(t) represent the position
of the robot respect to time, then it is possible to obtain the accelerations that the trajectory
describes using the second derivative of the parametric equations. This result is shown in
Fig. 13.
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(a)

(b)

Fig. 10 Normalized wheel speed. a Velocity of the right wheel. b Velocity of the left wheel

Table 3 Breakpoints and
smoothing parameters for the
path of example 2 (coordinates in
cm)

P X Y α

1 0 0 –

2 10 60 20

3 60 60 20

4 80 5 20

5 160 5 20

6 110 80 20

7 150 120 –

Table 4 Breakpoints and
optimized smoothing parameters
obtained for example 2
(coordinates in cm)

P X Y α

1 0 0 –

2 10 60 13

3 60 60 17

4 80 5 20

5 160 5 5.5

6 110 80 17.5

7 150 120 –
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Fig. 11 PWL path, smooth PWL path and smooth PWL path with restrictions in radius of curvature in an
area with obstacles (circles)

(a)

(b)

Fig. 12 Normalized wheels speed. a Velocity of the right wheel. b Velocity of the left wheel
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Fig. 13 Second derivative of the smooth PWL functions x(t) and y(t) with initial smoothing coefficients and
after applying the proposed approach

From Fig. 13, it can be seen that the acceleration peaks caused by the turns along the
path are reduced in amplitude because of the smoothing action, mainly the corresponding
peak at t = 4. In this regards, it is important to clarify that although PWL models have the
problem of differentiability at breakpoints, in our case, the acceleration curves of Fig. 13
could be computed due to the smooth piecewise trajectories were described in the form of
the model reported in Jimenez-Fernandez et al. (2016b) what ensures a complete derivative
continuity.

7 Results and discussion

In this section, the performance of the proposed optimization methodology is compared
with two traditional smoothing approaches: the Bézier (Choi et al. 2008) based and the
polynomial-interpolation (Huh and Chang 2014) based methodologies. In this comparative
analysis, five performance indicators have been considered: path length, minimum radius of
curvature, cross track error, continuity and resulting acceleration. With the aim of illustrating
these indicators, two illustrative examples are provided.

7.1 Example 1

Consider a min {Rc} = 7.4 cm in a collision-free PWL path described by the following
breakpoints:
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Fig. 14 Planned path (PWL), proposed (smooth PWL), Bézier and polynomial-interpolation trajectories
(circles denote obstacles)

P =
{
(0, 0), (10, 60), (60, 60), (71, 80), (70, 100),

(50, 121), (70, 140), (100, 130), (110, 60), (90, 20),

(120, 20), (180, 1), (170, 50), (140, 90), (180, 120)
}

The PWL planned path (P) and the set of smooth trajectories for our proposed method-
ology, Bézier, and polynomial interpolation approaches are shown in Fig. 14.

In Fig. 15, it can be observed the cross track error which is estimated by the deviation
of the optimized smooth trajectory (proposed) and the others, here considered, smoothing
approaches with respect to the PWL planed path of reference.

Path length, minimum radius of curvature and mean-error of the average cross track
(derived from Fig. 15) are listed in Table 5.

From the above Table, it can be seen that our proposal is able to generate not only a
smoother but also a shorter trajectory, this with a minimum cross track error (mean-error)
compared to the others approaches.

In Fig. 16, in the first column, it can be observed the functions {x(t), y(t)} of each one
of the trajectories generated by the analyzed methodologies. These graphs corresponds with
a parametric decomposition of path length. Likewise, in the second and third columns, their
respective first derivative (velocity) and second order derivative (acceleration) are shown.
These graphs show that the proposed approach generates continuous and smoother trajecto-
ries.

7.2 Example 2

Similarly as in the previous example, a min {Rc} = 7.4 cm is considered. Now, the collision-
free PWL planed path is described by the following breakpoints:
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Fig. 15 Cross track error of the polynomial-interpolation, Bézier, and the proposed smoothing approaches

Table 5 Path length, radius of curvature (min {Rc}) and cross track error results

Approach Path length (cm) min {Rc} (cm) Mean-error (cm)

Bézier 606.35 1.69 2.30

Polynomial 617.84 5.14 3.22

Proposed 533.70 7.40 1.97

P =
{
(0, 0), (10, 100), (40, 100), (90, 20), (120, 10),

(140, 20), (150, 30), (101, 90), (100, 110), (125, 120),

(140, 100), (180, 20), (220, 30)
}

In Fig. 17 the smooth trajectories generated by the proposed smooth PWL, Bézier and
polynomial interpolation approaches are shown. This trajectory represents a peculiar study
case due to their quick turns and close distance between consecutive breakpoints.

From Fig. 17, it can be appreciated high overshoots in the polynomial interpolation
approach. This is more evident between segments P2P3, P6P7, P8P9 and P12P13. These
sudden deviations of the path are reflected in the more pronounced cross track error peaks
shown in Fig. 18.

A comparative performance of the three smoothing approaches under analysis is summa-
rized in Table 6.

From the above Table, it can be seem that both methodologies, polynomial and Bézier
do not reach the minimum radius of curvature (7.4 cm). In contrast, our proposal with
a min {Rc} = 7.4 cm ensures that there is no turning inversion in any of the wheels of
differential-drive robot. The effect of not fulfilling the condition of minimum radius of cur-
vature can be appreciated as the presence of negative velocities in the motion planning graphs
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Fig. 16 Path length (first column), velocity (second column) and acceleration (third column) profiles with
the three methodologies

depicted in Fig. 19. In Fig. 20 a comparison between acceleration generated by the method-
ology based on Bézier curves and the proposed methodology is graphically shown. From this
figure, the better performance of our proposal is again highlighted. First, the discontinuities
at the junctions of Bézier curves lead to sudden acceleration peaks, this in contrast with the
proposed methodology where minor perturbations with a smoother behavior are obtained.
Second, a lower acceleration is achieved by our proposal. As can be seen in Fig. 20, the
acceleration due to Bézier methodology is over zero levels while the proposed smooth PWL
approach reach levels close to zero several times along to the path length.

8 Conclusion

The proposed methodology against other existing approaches like polynomial and Bézier
reveals better performance characteristics. For example, from a practical point of view, based
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Fig. 17 Planned path (PWL), proposed (smooth PWL), Bézier and polynomial-interpolation trajectories
(circles denote obstacles)

Fig. 18 Cross track error of the polynomial-interpolation, Bézier, and the proposed smoothing approaches

Table 6 Path length, radius of curvature (RC) and cross track error results

Approach Path length (cm) min {Rc} (cm) Mean-error (cm)

Bézier 577.27 1.35 2.66

Polynomial 600.67 4.18 4.12

Proposed 550.68 7.40 0.90
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Fig. 19 Normalized wheel speed. Velocity of the right wheel (top), velocity of the left wheel (bottom)

Fig. 20 Acceleration for Example 2, comparison between the proposedmethodology and the Bézier approach

on the criteria of minimum radius of curvature, it ensures that there is no turning inversion in
any of the wheels of differential-drive robot, a more stability is presented in those cases where
the trajectory under study includes close breakpoints and abrupt turns, and it generates trajec-
tories with lower cross track error what avoids collision with obstacles. From a mathematical
perspective, the proposed methodology also shows important advantages. For example, com-
pared to polynomial and Bézier, it suffers a minimum deviation along the planed path, it has
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the capability of controlling independently the smoothness grade at specific breakpoints, and
finally, a function continuity is guaranteed in addition to lower overshooting for high order
derivatives which translates into lower levels of acceleration.
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