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Abstract In this paper, a necessary and sufficient condition for the existence of a proportional
semistate feedback is established such that the closed loop system is regular and of index at
most two. The condition is characterized by a rank condition that involves only the original
system coefficient matrices. Also, a new rank condition ensuring that a given linear time-
invariant descriptor system is regular and of index at most some specific value is also derived.
The developed theory is illustrated through physical and numerical examples.
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1 Introduction

Differential equations are the key to model physical systems. However, very often physical
systems of interest are demonstrated by differential equations coupled with some algebraic
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equations. Such examples include the Leontief model of economic systems (Dai 1989b), as
well as other applications in economy, biology (Li et al. 2012; Liu et al. 2008, 2009), and
engineering (Duan 2010; Moysis et al. 2016; Pantelous et al. 2014; Riaza 2008; Udwadia
and Kalaba 1992) to name a few. In this work, we study systems of differential–algebraic
equations of the form

Eẋ(t) = Ax(t) + Bu(t), (1)

where E, A ∈ R
n×n , and B ∈ R

n×r . Here x(t) ∈ R
n and u(t) ∈ R

r represent the semistate
vector and the control (input) vector, respectively. Throughout the paper, the set of systems of
the form (1) is denoted by Σn,n,r and the set of matrix pairs (E, A), where both the matrices
are of the orderm×n, is denoted byΣm,n . Systems of the form (1) are also popularly known
as descriptor or singular systems.Wewould also prefer to call system (1) as descriptor system.
If the matrix E is nonsingular, then the descriptor system transforms to a state space system.

We now recall the Kronecker Canonical Form (KCF) of any matrix pair (E, A) ∈ Σm,n

and related concepts (Gantmacher 1959). These concepts will be incredibly employed in the
subsequent development of this work. Corresponding to any matrix pair (E, A) ∈ Σm,n ,
there exist invertible matrices U ∈ R

m×m and V ∈ R
n×n such that the pencil (λE − A) can

be brought to the KCF

U (λE − A)V = block-diag(0δ×δ′ , λEη − Aη, λI f − J f , λNσ − Iσ , λEε − Aε), (2)

where δ, δ′, f are nonnegative integers; J f ∈ R
f × f is a matrix in Jordan form and η, ε, σ

are unique multi-indices. Moreover, the block matrices in (2) have the following properties:

1. λEη − Aη has a block diagonal structure and each block takes the form

λEηi − Aηi = λ

[
I
0T

]
−

[
0T

I

]
,

with order (ηi + 1) × ηi ;
2. Nσ is a nilpotent matrix in Jordan form;
3. λET

ε − AT
ε has the same block structure as λEη − Aη; naturally, dimensions of their

blocks are different.

A system [E A B] ∈ Σn,n,r or matrix pair (E, A) ∈ Σn,n is said to be regular if rank (λE −
A) = n, where rank represents the maximum rank of the matrix pencil λE − A. Notice that
if δ = δ′ = l(η) = l(ε) = 0 in (2), where l(·) represents the length of multi-indices, then
matrix pair (E, A) is regular and the KCF (2) reduces to the Weierstrass Canonical Form
(WCF)

U (λE − A)V = block-diag(λI f − J f , λNσ − Iσ ). (3)

The regularization and index reduction are two vital concepts in the descriptor systems
theory. By regularization of a system [E A B] ∈ Σn,n,r , we mean that there exists a semistate
feedback matrix K ∈ R

r×n such that the closed loop system [E A + BK B] ∈ Σn,n,r is
regular. The regularity is an important property because it ensures the unique solvability of
the system (Dai 1989b; Duan 2010). In general, the index of a descriptor system [E A B] ∈
Σn,n,r is a nonnegative integer that roughly measures its distance from the set of state space
systems. Therefore, analytical and numerical treatment for descriptor systems with higher
index (greater than two) is more delicate than that of lower index descriptor systems. There
are different notions of index for general time-varying/nonlinear descriptor systems, viz.
differentiation index (Campbell and Gear 1995), perturbation index (Hairer and Wanner
1996), tractability index (März 1992), strangeness index (Kunkel and Mehrmann 1994). It
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is notable that for regular descriptor systems, all these index concepts (except strangeness
index) turn out to be the same and is equal to the nilpotency index of Nσ in the WCF (3).
Therefore, throughout the paper, index of a regular system (1) means the nilpotency index of
the matrix Nσ in the WCF (3).

Bunse-Gerstner et al. (1992) have proved that if the system is I-controllable (impulse
controllable), then there exists a semistate feedback such that the closed loop system is
regular and of index at most one. For characterization of various types of controllability
concepts for descriptor systems, see Dai (1989b), Mishra and Tomar (2016) and Mishra and
Tomar (2017) and references therein. A sufficient condition guaranteeing the existence of a
feedback such that the closed loop system is regular and of minimal index has been obtained
by developing staircase and double staircase condensed forms for system coefficient matrices
(Byers et al. 1997). Further, regularization of descriptor systems has also been done via output
plus partial semistate derivative feedback (Duan and Zhang 2003). An up-to-date discussion
on numerical techniques developed for regularization of descriptor systems can be found in
Nichols and Chu (2015). The problem of index reduction for rectangular descriptor systems
has also gained the attention of many researchers. See, for example, Berger and Van Dooren
(2015), Mishra et al. (2017) and references therein.

In summary, most of the previous works focus on sufficient conditions on the system
operators for the existence of a feedback such that the closed loop system is regular with
index at most one. This work uncovers some additional features, for instance, it investigates
the case when a system does not satisfy such sufficient conditions for regularization. Instead,
it satisfies some weaker conditions. Therefore, one natural question arises: Is it possible to
design a feedback, under some less restrictive conditions, such that the closed loop system
becomes regular and of index at most two? The present article settles this question by estab-
lishing a necessary and sufficient condition for the existence of a semistate feedback such
that the closed loop system is regular and of index at most two. Also, we have provided a
beautiful necessary and sufficient algebraic criterion to check the regularity and the index of
a descriptor system simultaneously. The idea of regularizing descriptor systems with index
at most two is motivated by the desire to work with systems which have continuous (need not
be differentiable) input functions but do not satisfy the conditions required for the existence
of a semistate feedback such that the closed loop system is regular and of index at most one. It
is notable that the solution of regular descriptor system of index at most two does not contain
impulses due to continuous input functions corresponding to any consistent initial condition.

The rest of the paper is organized as follows: results on regularization and index reduction
are presented in Sect. 2. Illustrating examples are provided in Sect. 3. Section 4 concludes
the paper.

2 Regularization and index reduction

For given matrix pair (E, A) ∈ Σm,n and μ ∈ N, we define the following block matrix

Eμ =

⎡
⎢⎢⎢⎢⎢⎣

E
A E

A E
. . .

. . .

A E

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

μ block rows. (4)

Clearly, Eμ ∈ R
μm×μn and E1 = E . Writing the matrix Eμ in terms of the KCF, the rank

of the matrix Eμ can readily be calculated as
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rank Eμ = μ rank Eη + μ rank I f + μ rank Eε + (μ − 1) rank Iσ

+ rank Nμ
σ (5)

The following theorem provides an estimate for the difference of the ranks of two suc-
cessive Eμ′s and also gives a necessary and sufficient condition for the fact that the index of
nilpotency of matrix Nσ in (2) is at most μ.

Theorem 1 For given matrix pair (E, A) ∈ Σm,n and μ ∈ N, the following inequality
holds:

rank Eμ+1 − rank Eμ ≤ rank (λE − A). (6)

Moreover, in (6), equality holds if and only if the index of nilpotency of the matrix Nσ in the
KCF (2) of pair (E, A) is at most μ.

Proof In view of (5), the LHS (left-hand side) of (6) is equal to

rank Eη + rank I f + rank Iσ + rank Eε + rank Nμ+1
σ − rank Nμ

σ .

The RHS (right-hand side) of (6) is equal to

rank Eη + rank I f + rank Iσ + rank Eε .

Since rank Nμ+1
σ − rank Nμ

σ ≤ 0, the inequality (6) follows. Now, in (6), the equality holds
if and only if

rank Nμ+1
σ = rank Nμ

σ ,

which is equivalent to the fact that the index of nilpotency of matrix Nσ is at most μ. This
completes the proof of the theorem. ��

It can be seen that for μ = 1 the above theorem, in equality case, reduces to Proposition
2 of Hou and Muller (1999). The next theorem provides an algebraic criterion to check the
regularity and the index of a square descriptor system.

Theorem 2 The system [E A B] ∈ Σn,n,r is regular and of index at most μ if and only if

rank Eμ+1 − rank Eμ = n. (7)

Proof Suppose Eq. (7) holds. From Theorem 1, it follows that rank(λE − A) = n. Thus, the
system is regular. The converse is also a simple consequence of Theorem 1. ��

Remark 1 An alternative proof of Theorem 2 (without use of Theorem 1) is given in
Appendix.

Remark 2 It is notable that Eq. (7) for μ = 1 gives that any system is regular and of index
at most one if and only if

rank

[
E 0
A E

]
= n + rank E . (8)

The above condition (8) has been derived by Dai (1989a). If we take E0 ≡ 0 (null matrix),
then the Eq. (7) also provides a criterion for index zero systems, i.e. state space systems.
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It is well known that for any system [E A B] ∈ Σn,n,r , there exist two invertible matrices
M, N ∈ R

n×n such that

MEN =
[
In0 0
0 0

]
, MAN =

[
A11 A12

A21 A22

]
, and MB =

[
B1

B2

]
, (9)

The above decomposition (9) is called dynamic decomposition form for system (1) and
matrices M and N may be obtained easily by the singular value decomposition (SVD) of
the matrix E . Moreover, in view of (9), one can easily infer that Eq. (8) is equivalent to the
invertibility of the matrix A22. Next, we provide an equivalent condition to (7) for μ = 2 in
view of dynamic decomposition (9).

Theorem 3 For μ = 2, the Eq. (7) is equivalent to

rank

[
A22 0

A21A12 A22

]
= n − n0 + rank A22, (10)

where matrices Ai j (i = 1, 2 and j = 1, 2) are obtained from (1) using dynamical decom-
position (9).

Proof For μ = 2, in view of (9), Eq. (7) is equivalent to

rank

⎡
⎢⎢⎢⎢⎢⎢⎣

In0 0 0 0 0 0
0 0 0 0 0 0
A11 A12 In0 0 0 0
A21 A22 0 0 0 0
0 0 A11 A12 In0 0
0 0 A21 A22 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

= n + rank

⎡
⎢⎢⎣
In0 0 0 0
0 0 0 0
A11 A12 In0 0
A21 A22 0 0

⎤
⎥⎥⎦ ,

which is equivalent to

rank

⎡
⎣A12 In0 0
A22 0 0
0 A21 A22

⎤
⎦ = n + rank A22,

which is further equivalent to (10). This completes the proof of the theorem.
��

The above theorem provides an equivalent criterion for any square system to be regular
and of index at most two. We now prove the following lemma which is important for the
subsequent discussion.

Lemma 1 For any matrices X, Y, Z of compatible order, the following inequality

rank

([
X
Y

]
Z

)
− rank X Z ≤ rank

[
X
Y

]
− rank X, (11)

holds.

Proof Let P be an orthogonal matrix such that

X P = [
X1 0

]
, Y P = [

Y1 Y2
]
, and P−1Z =

[
Z1

Z2

]
, (12)
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where matrix X1 is full column rank and matrix partitions are compatible. Further, since X1

is full column rank and number of columns in X1 and Y1 is same, there exists a matrix W
such that Y1 = WX1. Now, we obtain

rank

([
X
Y

]
Z

)
− rank X Z = rank

([
X1 0
Y1 Y2

] [
Z1

Z2

])
− rank

([
X1 0

] [
Z1

Z2

])

= rank

[
X1Z1

Y1Z1 + Y2Z2

]
− rank X1Z1

≤ nrank

[
X1Z1

Y1Z1

]
+ rank Y2Z2 − rank X1Z1

(∵ rank (R1 + R2) ≤ rank R1 + rank R2)

≤ rank

[
X1Z1

W1X1Z1

]
+ rank Y2Z2 − rank X1Z1

≤ rank

([
I
W

]
X1Z1

)
+ rank Y2Z2 − rank X1Z1

(
∵

[
I
W

]
is full column rank

)

≤ rank Y2Z2

≤ rank Y2. (13)

Similarly, we obtain

rank

[
X
Y

]
− rank X = rank Y2. (14)

Thus, the proof is followed by (13) and (14). ��
Next, we provide a necessary and sufficient condition on system (1) for the existence of

a semistate feedback such that the closed loop system is regular and of index at most two.

Theorem 4 For given system [E A B] ∈ Σn,n,r , there exists a semistate feedback matrix
K ∈ R

r×n such that [E A + BK ] ∈ Σn,n is regular and of index at most two if and only if

rank

⎡
⎣E 0 0 0 0
A B E 0 0
0 0 A B E

⎤
⎦ = n + rank

[
E 0 0
A E B

]
. (15)

Proof Let (15) hold. In view of (9), (15) is equivalent to

rank

[
A22 B2 0 0

A21A12 A21B1 A22 B2

]
= n − n0 + rank

[
A22 B2

]
. (16)

Let P be a matrix such that

P
[
A22 B2

] =
[

0 0
A22 B2

]
and P

[
A21A12 A21B1

] =
[
U11 U12

U21 U22

]
, (17)

where matrix partitions are compatible and the matrix
[A22 B2

]
is full row rank. Using

Eqs. (16) and (17), we have

rank

⎡
⎣A22 B2 0 0
U11 U12 0 0
U21 U22 A22 B2

⎤
⎦ = n − n0 + rank

[A22 B2
]
, (18)
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which is further equivalent to

rank

[
A22 B2

U11 U12

]
= n − n0 (19)

The last equality is equivalent to the existence of a matrix K2 ∈ R
r×(n−n0) such that

rank

[
A22 + B2K2

U11 + U12K2

]
= n − n0. (20)

That is, the matrix

[
A22 + B2K2

U11 + U12K2

]
is full column rank. Therefore,

rank

⎡
⎣ A22 + B2K2 0
U11 + U12K2 0
U21 + U22K2 A22 + B2K2

⎤
⎦ = n − n0 + rank (A22 + B2K2) (21)

rank

⎡
⎣ A22 + B2K2 0

P−1
[
U11

U21

]
+ P−1

[
U12

U22

]
K2 P−1

[
0

A22

]
+ P−1

[
0
B2

]
K2

⎤
⎦ (22)

= n − n0 + rank

(
P−1

[
0

A22

]
+ P−1

[
0
B2

]
K2

)
(23)

Respecting (17), the above equality is equivalent to

rank

[
A22 + B2K2 0

A21(A12 + B1K2) A22 + B2K2

]
= n − n0 + rank(A22 + B2K2), (24)

which is same for index at most two condition for the pair (E, A+ BK ) provided we choose
K = [

0 K2
]
N−1.

Conversely, suppose there exists a matrix K ∈ R
r×n such that

rank

⎡
⎣ E 0 0
A + BK E 0

0 A + BK E

⎤
⎦ = n + rank

[
E 0

A + BK E

]
. (25)

As per the notations of Lemma 1, let us take

X=
[
E 0 0 0 0
A B E 0 0

]
, Y= [

0 0 A B E
]
, and Z =

⎡
⎢⎢⎢⎢⎣

I 0 0
K 0 0
0 I 0
0 K 0
0 0 I

⎤
⎥⎥⎥⎥⎦ . (26)

Then, (25) is equivalent to

rank

([
X
Y

]
Z

)
− rank X Z = n. (27)

Respecting the Lemma 1, we obtain

rank

[
X
Y

]
− rank X ≥ n. (28)
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Now,

rank

[
X
Y

]
≤ rank X + rank Y ≤ rank X + n. (29)

In view of (28) and (29), the proof follows. This completes the proof of the theorem. ��
Remark 3 In Theorem 4.2 of Byers et al. (1997), it has been proved that if the system is
regularizable, then there exists a semistate feedback such that the closed loop system is
regular with some index that can be determined by calculating the index of a matrix obtained
by a decomposition of the systemmatrices. Nevertheless, calculation of such a decomposition
is not a simple task. However, Theorem 4 of the current article requires a simple rank test
directly on the system coefficient matrices for the existence of a semistate feedback matrix
such that the closed loop system is regular and of index at most two.

Remark 4 It is now a well-known fact that if any system [E A B] ∈ Σn,n,r is I-controllable,
then there exists a semistate feedback such that [E A + BK ] is regular and of index at most
one. It is easy to see that condition (15) is milder than I-controllability. Thus, if any system
is I-controllable, then automatically condition (15) is satisfied. It is easy to see that in such
cases if the algorithm given in proof of Theorem 4 is performed, then closed loop system
will automatically be of index at most one. The remark is illustrated in Examples 1 and 3 in
the next section.

3 Illustrating examples

Example 1 A general constrained mechanical system can be modelled as

ẋ1(t) = x2(t) (30a)

ẋ2(t) = Cx1(t) + Dx2(t) + HT x3(t) + Gu1(t) (30b)

0 = Hx1(t) + u2(t) (30c)

Here, x1(t) is the position, x2(t) the velocity, (30c) is a physical constraint, and HT x3(t) is
the force caused by the constraint.Gu1(t) is the applied force and u2(t) allows the adjustment
of the constraint. The system (30) can be written in the abstract form (1), if we take

E =
⎡
⎣I 0 0
0 I 0
0 0 0

⎤
⎦ , A =

⎡
⎣ 0 I 0
C D HT

H 0 0

⎤
⎦ , B =

⎡
⎣ 0 0
G 0
0 I

⎤
⎦ ,

x(t) =
⎡
⎣x1(t)
x2(t)
x3(t)

⎤
⎦ , and u(t) =

[
u1(t)
u2(t)

]
.

For numerical purpose, we take the matrices C , D, H , and G as follows:

C =
[− 2 1

1 − 2

]
, D =

[
0.25 1
1 0.25

]
, H = [

1 − 1
]
, and G =

[
1
1

]
.

Notice that x1(t), x2(t) are 2× 1 and x3(t) is 1× 1. For the sake of simplicity, let us denote

x1(t) =
[
x11(t)
x12(t)

]
and x2(t) =

[
x21(t)
x22(t)

]
.
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Then the matrices E , A and B can be rewritten as

E=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦, A=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0

− 2 1 0.25 1 1
1 − 2 1 0.25 − 1
1 − 1 0 0 0

⎤
⎥⎥⎥⎥⎦, and B=

⎡
⎢⎢⎢⎢⎣

0 0
0 0
1 0
1 0
0 1

⎤
⎥⎥⎥⎥⎦.

(31)

This Example has been taken from Mishra et al. (2016). It can be checked that the system
(31) is regular and of index three as (7) is satisfied for the least value of μ = 3. Moreover,
the system (31) is I-controllable, i.e.

rank

[
E 0 0
A B E

]
= n + rank E . (32)

So, system (31) automatically satisfies (15). Now, applying Theorem 4, we obtain

K =
[
0 0 0 0 0
0 0 0 0 1

]
. (33)

Now, it can be seen that the closed loop system [E A + BK ] ∈ Σn,n is regular and of index
one.

Example 2 Let the system (1) be represented by the following matrices E , A, and B as

E=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦, A=

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0

− 2 1 0.25 1 1
1 − 2 1 0.25 − 1
1 − 1 0 0 0

⎤
⎥⎥⎥⎥⎦, and B=

⎡
⎢⎢⎢⎢⎣

1 1
0 0
0 0
0 0
0 0

⎤
⎥⎥⎥⎥⎦.

(34)

Note that the system (34) is same as the system (31) except that we have changed the matrix
B so that it satisfies (15) but does not satisfy (32). The index of the system (34) is three. Now,
applying Theorem 4, we obtain[

A22

U11

]
=

[
0
0

]
and

[
B2

U12

]
=

[
0 0
0 1

]
. (35)

So, matrix K2 =
[
0
1

]
fulfils the purpose. Hence, a desired feedback matrix K can be given

the same as (33). Now, it can be seen that the closed loop system [E A + BK ] ∈ Σn,n is
regular and of index two.

Example 3 Let the system (1) be represented by the following matrices E , A, and B as

E =
⎡
⎣1 0 0
0 0 0
0 1 0

⎤
⎦ , A =

⎡
⎣0 0 0
1 0 0
0 0 1

⎤
⎦ , and B =

⎡
⎣0
1
1

⎤
⎦ . (36)

In contrast to previous examples, the system (36) is irregular but satisfies (15). Hence, apply-
ing Theorem 4, we get [

A22

U11

]
= 0 and

[
B2

U12

]
= −1. (37)
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Hence, a desired feedback matrix K can be given as

K = [
0 0 −1

]
. (38)

Thus, the closed loop system [E A+ BK ] ∈ Σn,n is regular and of index one because (7) is
satisfied for the least value of μ = 1. This is because the system (36) satisfies (32) also.

Example 4 Let the system (1) be represented by the following matrices E , A, and B as

E =
⎡
⎣1 0 0
0 0 0
0 1 0

⎤
⎦ , A =

⎡
⎣0 0 0
1 0 0
0 0 1

⎤
⎦ , and B =

⎡
⎣1 1
0 0
0 0

⎤
⎦ . (39)

The only difference in this Example in context of previous Example 3 is that here the matrix
B has been changed a bit. Since the system (39) satisfies (15), applying Theorem 4, we obtain
a feedback matrix K as

K =
[
0 0 0
0 0 −1

]
. (40)

Now, it can be seen that the closed loop system [E A + BK ] ∈ Σn,n is regular and of index
two.

4 Concluding remarks

A simple unified algebraic criterion involving the system coefficient matrices has been pre-
sented to check the regularity and the index of a square descriptor system. It is always
desirable to reduce the index of descriptor systems to avoid the complexity in the numerical
solution. In this connection, we have presented a necessary and sufficient condition for the
existence of a semistate feedback such that the closed loop system is regular and of index
at most two. The proposed condition is milder than the existing conditions in the literature
for the existence of a semistate feedback such that the closed loop system is regular and of
index at most one. The developed theory has been illustrated by several examples.

Appendix

An alternative proof of Theorem 2

Let the system be square and satisfy (7). Then, we have

rank Eμ + rank
[
E A

] − rank Eμ ≥ n, (41)

which is equivalent to rank
[
E A

] = n. That is, the matrix
[
E A

]
is full row rank which

ensures the non-existence of zero blocks in the KCF. Hence, δ = δ′ = 0 in Kronecker
canonical form.
Now, it can be checked that (7) is equivalent to

|η| + |ε| + rank Nμ+1
σ = n − |σ | − f + rank Nμ

σ . (42)
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Before proceeding further, let us mark the following observations:

|η| + |ε| + l(ε) + f + |σ | = n,

and, |η| + l(η) + |ε| + f + |σ | = n,

⇒ |η| + |ε| + l(ε) = |η| + l(η) + |ε| = n − |σ | − f,

So, |η| + |ε| < n − |σ | − f if |η| + |ε| 
= 0.

Here, it is notable that all the parameters |η|, l(η), |ε|, l(ε), f, |σ |, n are nonnegative.
Now, suppose that the system is not regular and since the system is square, the matrices Eε

and Eη are not void in the Kronecker canonical form. This implies that |η|, |ε| 
= 0 and

hence, |η| + |ε| < n − |σ | − f . Also, we know that rank Nμ+1
σ ≤ rank Nμ

σ . Therefore, (42)
does not hold. In case the system is regular, the matrices Eε and Eη are void and hence (42)
is equivalent to

rank Nμ+1
σ = rank Nμ

σ , (43)

which is equivalent to the fact that the system has index at most μ. This completes the proof
of the theorem.
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