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Abstract We present a semi-numerical solution to a fractal telegraphic dual-porosity fluid
flowmodel. It combines Laplace transform and finite difference schemes. The Laplace trans-
form handles the time variable whereas the finite difference method deals with the spatial
coordinate. This semi-numerical scheme is not restricted by space discretization and allows
the computation of a solution at any time without compromising numerical stability or the
mass conservation principle. Our formulation results in a non-analytically-solvable second-
order differential equation whose spatial discretization yields a tridiagonal linear algebraic
system. Moreover, we describe comparisons between semi-numerical and semi-analytical
solutions for particular cases. Results agree well with those from semi-analytic solutions.
Furthermore, we expose a parametric analysis from the coupled model in order to show the
effects of relevant parameters on pressure profiles and flow rates for the case where neither
analytic nor semi-analytic solutions are available.
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1 Introduction

The Laplace transform (LT) method has been widely used to solve linear problems in sev-
eral areas of science and engineering. After proper transformation of the space variable,
the application of LT to dynamic models is useful for finding semi-analytic solutions for
many real dynamic problems in the so-called Laplace domain (Everdingen and Hurst 1949;
Warren and Root 1963; Barker 1988; Chang and Yortsos 1993; Park et al. 2000; Camacho-
Velázquez et al. 2008; Moreles et al. 2013). Those solutions need to be inverted in order to
obtain appropriate solutions in the time domain; if analytical inversion is not possible, then
numerical procedures such as the Stehfest (1970) or de Hoog et al. (1982) algorithms are
employed. Sometimes, just the short- or long-term system behavior is of interest, and for
this purpose asymptotic approaches are commonly used to avoid the inversion needed for
complete solutions (Flamenco-Lopez and Camacho-Velazquez 2001; Flamenco-López and
Camacho-Velázquez 2003). For solute transport and fluid flow problems in porous media,
such as aquifers (Barker 1988), oil, and geothermal reservoirs, the LT method helps to find
semi-analytic solutions (Everdingen and Hurst 1949; Camacho-Velázquez et al. 2008; War-
ren and Root 1963; Razminia et al. 2014; Hernandez-Coronado et al. 2012), exhibiting
many advantages over purely numerical procedures. The main example is where subsequent
inverse modeling is implemented in order to retrieve model parameters of interest. However,
for more complex problems, the semi-analytic solution is not always available, and other
alternatives need to be explored. In this context, numerical solutions are commonly used, but
if they are not properly handled, some restrictions related to the spatial discretization process
appear; specifically, numerical dispersion, instabilities due to the discretization procedure
(González-Calderón et al. 2017), and violations of the mass conservation principle (Herrera-
Hernández et al. 2013, 2017). Recently, hybrid methods combining LT and finite differences
(LTFD) have been successfully applied to solve problems of slightly compressible fluid flow
in oil reservoirs (Moridis and Reddel 1991; Moridis et al. 1994), two-phase fluid flow (Habte
and Onur 2014), and even in advection–dispersion-type models in economy (Tagliani and
Milev 2013) or heat conduction problems (Chen and Chen 1988). This sort of hybrid method
presents some valuable characteristics which are absent in numerical solutions: (1) there are
no restrictions on the time variable due to a discretization process since it is approximated in
the Laplace domain, so the solution can be generated for any specific value, and (2) the initial
conditions and other time-dependent properties are easily treated in the Laplace domain.
However, it is worth mentioning that the LTFDmethod has some disadvantages compared to
the purely-numerical approach: (1) as time approaches zero, the Laplace parameter tends to
diverge and oscillating solutions could appear, and (2) the LTFD method is not robust when
solutions behave in a non-smooth way (Wang and Zhan 2015). As the aim of this work is to
present the model solution for non-Fickian and fractal double-porosity/single-permeability
reservoirs, and to analyze the LTFD methodology as a potential tool for modeling fluid
reservoirs, we put special attention on the details described above.

In this work, through the combination of the Laplace transform and finite difference
methods, we develop and validate semi-numerical solutions for a fractal telegraphic double-
porositymodel previously derived in (Hernández et al. 2013). In the citedwork, only particular
cases of the complete telegraphic double porosity model were reported; these were used to
validate our model solutions before attacking the complete model problem, whose solution
has not been reported before in the literature. Further, a parametric analysis of physical
parameters was carried out.
The paper is outlined as follows: in Sect. 2, we present the mathematical model along with
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4344 E. C. Herrera-Hernández et al.

initial and boundary conditions. Section 3 presents a detailed description of theLTFDmethod.
Results and discussions are shown in Sect. 4. Finally, concluding remarks and perspectives
are summarized in Sect. 5.

2 Theory

2.1 The double-porosity model

As in the pioneeringwork ofWarren and Root (1963), the physical model consists of a porous
medium constituted by two media: one where fluid flows and the other where fluid is stored.
The former is associated with the connected fracture network and the latter to the rockmatrix.
One of the main differences between the Warren and Root model and the one solved in this
paper is that here the porous medium is assumed to be a percolating cluster, where backbone
structure plays the role of the fracture network and dead-ends play the role of the rock matrix.
Fluid motion occurs in the backbone network whereas dead-end structures can participate
or not in the flow, depending on physical parameters. Thus, the dimensionless mathematical
model describing the fluid behavior in isotropic fractal reservoirs due to participation of the
fracture network and rock matrix is given by Hernández et al. (2013)

(1 − ω)
∂h1
∂t

= λ

rdde−d (h2 − h1) (1)

ωτ
∂2h2
∂t2

+
(
ω + λτrd−dbb

) ∂h2
∂t

= 1

rdbb−1

∂

∂r

(
rβ ∂h2

∂r

)

+
(
λτrd−dbb − [1 − ω] rdde−dbb

) ∂h1
∂t

, (2)

where β = dbb − 1 − θ

In the last equation, h1 = h1(r, t) is the dimensionless dead-ends hydraulic head and
h2 = h2(r, t) is the dimensionless hydraulic head inside the percolation backbone. The
parameters dbb and dde are the fractal dimensions of the backbone network and dead-end
structure, respectively, d is the Euclidean dimension in which the system is embedded, ω is
the backbone storativity ratio, and τ is the relaxation time associated with fluid flow within
the backbone fracture network. The parameter λ quantifies the fluid exchanged between
the percolation backbone and the dead-end structure while θ is related to the connectivity
degree of the backbone network. More details of the model can be found in Hernández et al.
(2013).

Equation (1) represents the hydraulic head evolution inside the dead-ends, including mass
exchange between dead-end and backbone. Meanwhile, Eq. (2) is related to head evolution
inside the backbone due to gradient-driven flux and dead-end contributions. Note fromEq. (1)
that fluid accumulation inside dead-ends depends only on the local head gradient between the
backbone and the dead-ends. Furthermore, the amount of fluid passing from the dead-ends
to the backbone is determined by the exchange parameter λ. In this sense, the discharge
point is not connected to dead-ends, but rather is only connected to the backbone structure.
On the other hand, opposite to the usual double porosity model, fluid inside the backbone
flows at a finite velocity, which is the main characteristic of this model, and its motion
depends on the flux-driven term and the mass exchange with the dead-ends, as described in
Eq. (2).
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2.2 Initial and boundary conditions

Because the model is of second order in time and space for the backbone equation and of first
order in time for the dead-end equation, we need two initial conditions and two boundary
conditions for Eq. (2) and one initial condition for Eq. (1). Writing the initial conditions as
general space-dependent functions, we have

h1(t = 0, r) = g1(r), 1 ≤ r ≤ L , (3)

h2(t = 0, r) = g2(r) and,
∂h2(t = 0, r)

∂t
= g3(r) (4)

The boundary conditions depend on the operating conditions being modeled. In this work,
we define two cases: (1) a bounded reservoir with constant head at the wellbore and (2) a
bounded reservoir with constant head gradient at the wellbore. For the first case, we set a
constant head at the inner boundary as follows:

h2(r = 1, t) = hw, (5)

which is a Dirichlet-type condition, and for the outer boundary we impose zero flux (a
Neumann-type boundary condition), i.e.,

∂h2
∂r

|r=L = 0. (6)

For the second case, we fix the head gradient at the inner boundary (i.e., at the well) as
follows:

∂h2
∂r

|r=1 = −1, (7)

while at the outer boundary, a zero-flux boundary condition is taken into account, i.e., Eq. (6).
The above boundary condition implies an instantaneous flow rate at the wellbore of the form

Q(t) = 1 − exp

(
− t

τ

)
. (8)

Equation (8) is a consequence of the flux inherent memory in the telegraphic double porosity
model, which implies a general behaviour for the fluid flux given by

Q(t) = − 1

τ

∫ t

0
exp

(
− t − t̂

τ

)
∂h2
∂r

|r=1 dt̂ . (9)

Note that, to evaluate the amount of fluid discharged at any time, it is necessary to take
into account the memory process through the integration of the solution from the beginning.
Equation (7) comes from the derivation of the generalized Darcy’s law, which is not restricted
to only the instantaneous response of flow to head gradients. In fact, the exponential function
inside the integral operator represents an appropriated kernel encompassing ballistic diffusion
for short times and normal diffusion for long times (Hernández et al. 2013). These features
are useful for modeling flow processes in highly heterogeneous porous media (Dentz and
Tartakovsky 2006).
Finally, notice that Eq. (8) is a more realistic condition than the one commonly used in
drawdown well test analysis, which states a constant flow rate.
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3 Methodology

3.1 Laplace transform

The LT for any time-dependent function h(r, t) is given by

h̄ = L(h(r, t)) =
∫ ∞

0
h(r, t)e−stds, (10)

where s is the LT variable and h̄(r, s) is the hydraulic head in Laplace domain. Some useful
properties of LTs are:L(ht (r, t)) = sh̄−h(r, 0) andL(htt (r, t)) = s2h̄− sh(r, 0)−ht (r, 0),
where ht (r, t) and htt (r, t) are first- and second-order partial derivatives with respect to time,
respectively.

By applying the LT to Eq. (1) and using its respective initial conditions given by (3), the
following transformed equation is obtained

(1 − ω)
(
sh̄1 − g1(r)

) = λ

rdde−d

(
h̄2 − h̄1

)
, (11)

which can be solved for h1 and the following expression is derived

h̄1 = h̄2λ + g1(r)(1 − ω)rdde−d

s(1 − ω)rdde−d + λ
. (12)

On the other hand, applying the LT to Eq. (2) and using its respective initial conditions given
by Eq. (4), one obtains the following equation:

ωτ
(
s2h̄2 − g3(r) − sg2(r)

) +
(
ω + λτrd−dbb

) (
sh̄2 − g2(r)

)

= 1

rdbb−1

∂

∂r

(
rβ ∂ h̄2

∂r

)
+

(
λτrd−dbb − (1 − ω)rdde−dbb

) (
sh̄1 − g1(r)

)
(13)

where gi , i = 1, 2, 3, are the initial conditions for both dependent variables. After introducing
(12) into (13) and doing some algebraic effort, considering that partial derivatives become
ordinary derivatives in the Laplace domain, we obtain

d

dr

(
rβ dh̄2

dr

)
− fs(r)h̄2 = γs(r) (14)

where function fs(r) is given by

fs(r) = ωτ s2rdbb−1 +
(
ωrdbb−1 + λτrd−dbb

)
s

−
(
λτrd−dbb − (1 − ω)rdde−dbb

) sλ

s(1 − ω)rdde−d + λ
, (15)

whereas γs(r) is

γs(r) =
(

s(1 − ω)rdde−d

s(1 − ω)rdde−d + λ
− 1

)
g1(r)

(
λτrd−dbb − (1 − ω)rdde−dbb

)

+ ωτ (g3(r) + sg2(r)) +
(
ω + λτrd−dbb

)
g2(r). (16)

Analytical solutions for Eq. (14) are only possible in some particular cases, for example: (a)
dbb = dde = d = 2 and θ = 0. (b) ω = 1, λ = 0, θ > 0, d = 2 and dbb ≤ 2. In the first case,
we have a telegraphic Euclidean double-porosity model, while in the second one we have
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a fractal telegraphic single-porosity model. Both have been solved elsewhere for an infinite
reservoir (Hernández et al. 2013). Further, analytical solutions for infinite Euclidean non-
telegraphic double porosity models, τ = 0, were studied in Everdingen and Hurst (1949),
Warren and Root (1963), Camacho-Velázquez et al. (2008). The semi-numerical solution
presented here encompasses all mentioned cases that can be derived from Eqs. (1) and (2)
through proper selection of parameters.

If the transformation ξ = ∫
r−βdr is proposed for the spatial coordinate, then the new

space-independent variable must be evaluated based on the relation

ξ =
{
log(r) β = 1 ,
1

1−β
r1−β β �= 1 ,

(17)

so that Eq. (14) becomes

d2h̄2
dξ2

− f̂s(ξ)h̄2 = γ̂s(ξ) (18)

where f̂s(ξ) = bβ/bξβ/b fs(ξ), γ̂s(ξ) = bβ/bξβ/bγs(ξ) and b = 1/(1 − β). To simplify
algebraic manipulation, from this point forward the subscripts for h̄2, f̂s , and γ̂s will be
omitted.

3.2 Finite differences in the Laplace domain

Defining the approximation of the dependent variable as h̄i ≈ h̄(ξi ) at the ith grid element,
the functions in Eq. (18) become f̂i = f̂ (ξi ) and γ̂i = γ̂ (ξi ), then using centered finite
differences to approximate the second-order derivative we have

d2h̄

dξ2
≈ h̄i−1 − 2h̄i + h̄i+1


ξ2
. (19)

Therefore, the discretized representation of Eq. (18) is given by

h̄i−1 − (2 + 
ξ2 f̂i )h̄i + h̄i+1 = 
ξ2γ̂i . (20)

The space domain is uniformly discretized as ξi = ξi−1 + dξ , i = 2, . . . , M . ξ1 = 0 for
β = 1 and b otherwise. For β = 1, dξ = log(r)/M and (Lb − rbw)/bM otherwise. M is
the number of subdivisions for the ξ coordinate. Note that Eq. (20) is only valid within the
spatial domain for 2 ≤ i ≤ M − 1. At the boundaries, i = 1 and i = M , proper equations
have to be used based on the case analyzed. For constant head at the wellbore, h = hw . The
LT of this inner boundary condition is h̄w = hw/s, which corresponds to the first spatial
node, whose discretized equation is

h̄1 = hw

s
. (21)

The corresponding LT for the outer boundary condition, Eq. (6), is ∂ h̄/∂ξ = 0, and the
proper equation for the last node using backward finite difference schemes is

h̄M − h̄M−1 = 0. (22)

The dimensionless fluid flow in the Laplace domain results from the application of LT to
Eq. (7)

Q̄ = − 1

sτ + 1

∂ h̄

∂ξ
|ξ1 . (23)
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On the other hand, boundary conditions in the Laplace domain for asymptotically convergent
flow are generated after applying the LT to Eqs. (6) and (9). As the outer boundary condition
is similar to the former case, Eq. (22) can be used in the same manner for the last node of
the spatial domain. The inner boundary condition can be derived from (9), and its discretized
representation is

h̄1 − h̄2 = 
ξ

s
. (24)

The hydraulic head at the wellbore is evaluated by Eq. (23) based on

h̄1 = 
ξ (sτ + 1)Q̄ + h̄2, (25)

where Q̄ is the constant asymptotic flow rate, which takes some predefined value as t
increases. Note that Eqs. (24) and (25) are equivalent, and both of them can be used to
represent the inner boundary conditions and hydraulic head evolution at the wellbore.

3.3 Numerical inverse Laplace transform

The inverse LT is evaluated numerically with Stehfest’s algorithm (Stehfest 1970). The pro-
cedure consists of taking an approximation of the real part of the Laplace parameter (Moridis
et al. 1994; Habte and Onur 2014), s, in order to evaluate a specific time, t , as follows:

sν = ln(2)

t
ν, ν = 1, . . . , Np (26)

where Np is an even number of parameters used in the approach. For a particular time, the
Laplace parameter is a vector, s, of Np elements. Each element of s, i.e., si , is substituted
into discretized equations based on the particular case being solved. For constant head at
the wellbore, s is used in Eqs. (20)–(22), whereas for asymptotically constant flow rate, s
is substituted in Eqs. (20), (22), and (24). The result is a tridiagonal linear algebraic system
whose matrix form is

⎡
⎢⎢⎢⎢⎢⎢⎣

d1 e1 0
1 d2 1

1 d3
. . .

. . .
. . . 1

0 cM dM

⎤
⎥⎥⎥⎥⎥⎥⎦

ν

⎡
⎢⎢⎢⎢⎢⎣

h1
h2
h3
...

hM

⎤
⎥⎥⎥⎥⎥⎦

ν

= 
ξ2

⎡
⎢⎢⎢⎢⎢⎣

γ1
γ2
γ3
...

γM

⎤
⎥⎥⎥⎥⎥⎦

ν

(27)

which, in compact notation, can be written as Mνhν = γν , where Mν is the matrix shown
in Eq. (27), hν is the unknown vector of the head-transformed h̄, and γ is the known right-
hand-side vector which mainly depend on the initial and boundary conditions. Solution of
the algebraic system is performed efficiently through the Thomas’ algorithm (Thomas 1949),
which is a direct numerical method that approximates the solution of (27) stated by

hν = M−1
ν γν ν = 1, . . . , Np. (28)

Coefficients in Mν correspond to those in Eq. (20), where, for 2 ≤ i ≤ M − 1, di =
−2−
ξ2 f̂i and ci = ei = 1. Coefficients for the first and last rows depend on the boundary
conditions. For constant head at the wellbore and based on Eqs. (21) and (22), d1 = 1, e1 = 0,
γ1 = 1/sν + 
ξ2γ̂1, cM = 1, and dM = −1. For asymptotically constant flow rate, the only
change is at the inner boundary as the other coefficients remain the same as in the former
case. In this case d1 = 1, e1 = −1, and γ1 = 
ξ/sν + 
ξ2γ̂1. Note that γ̂1 depends on the
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initial conditions and, based on the definitions of the dimensionless variables in Hernández
et al. (2013), they are zero; therefore, γ̂1 must be zero as well.
The solution arises from the summation of these individual solutions, hν , based on the
following equations:

h(r, t) = ln(2)

t

Np∑
ν=1

Wν hν, (29)

Wν = Fν

LM∑
κ=L0

κ
Np
2 (2κ)!(

Np
2 − κ

)
!κ!(κ − 1)!(ν − κ)!(2κ − ν)!

, (30)

where Fν = (−1)
Np
2 +ν , L0 = (ν + 1)/2, and LM = min(ν, Np/2). Note that Eqs. (29) and

(30) allow us to evaluate the flow rate given by (23) by changing hν for Qν . We must recall
that the solution in (29) corresponds to the backbone hydraulic head h2 in Eqs. (1) and (2),
and that it is related to dead-ends through Eq. (12).

3.4 Semi-analytic solutions

To qualitatively validate the semi-numerical solutions, we define some model parameters
in Eqs. (1) and (2) so that the semi-analytic solutions are feasible to obtain. Semi-analytic
solutions are exact in space and approximate in time as a numerical inversion algorithm is
needed to invert the solution from the Laplace domain. The first case we use to validate
our seminumerical method corresponds to λ = 0 and ω = 1. The general semi-analytical
solution in Laplace space for this particular case is

h̄2 = r
1−β
2

[
A1(s)Iυ

(√
α

dw

rdw

)
+ A2(s)Kυ

(√
α

dw

rdw

)]
(31)

where α = τ s2 + s, dw = (θ + 2)/2 and υ = (1 − β)/2dw . Iυ and Kυ are the modified
Bessel functions of order υ of the first and second kinds, respectively. The constants A1(s)
and A2(s) in the solution depend on the boundary conditions and must be evaluated for each
case: constant head and asymptotically constant flow rate at the inner boundary with zero-
flux at the outer boundary. Note that this general solution encompasses different cases related
to several parameter combinations, and even though we deactivated parameters connected
with dual porosity for the fractal case, the solution is also valid for the telegraphic Euclidean
dual-porosity system where d = dbb = dde = 2 and θ = 0; then dw = 1 and υ = 0.
Particular solutions are not presented in this work as they can be derived from Eq. (31) using
the appropriate boundary conditions.

4 Results and discussion

In Table 1, we summarize several validated cases for two types of volumetric reservoirswhose
analytic solutions are feasible to obtain in the Laplace domain: (1) telegraphic Euclidean
dual porosity and (2) telegraphic fractal single porosity. The model solutions are derived
for two different inner boundary conditions: (a) constant hydraulic head and (b) constant
hydraulic head difference which implies asymptotically constant flow rate. Meanwhile, the
outer boundary condition obeys zero flux or homogeneous Neumann boundary condition.
For constant head, the flow rate is evaluated with Eq. (9), whereas for asymptotically constant
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Table 1 Cases for validation with semi-analytical solutions for (1) telegraphic Euclidean dual-porosity reser-
voirs, and (2) telegraphic fractal single-porosity reservoirs

1. Telegraphic Euclidean dual-porosity reservoir (τ �= 0, dbb = dde = 2, θ = 0, λ �= 0, ω �= 0)
h2 Q

ω = {0.1, 0.4, 0.8}, λ = 10−3, and τ = 100 Fig. 2a Fig. 2b

λ = {10−1, 10−5, 10−9}, τ = 100, and ω = 10−1 Fig. 2c Fig. 2d

τ = {100, 101, 102}, λ = 10−3, and ω = 10−1 Fig. 2e Fig. 2f

2. Telegraphic fractal single-porosity reservoir (τ �= 0, dbb ≤ 2, dde = 2, θ �= 0, λ = 0, ω = 1)

θ = {0.05, 0.1, 0.3}, λ = 0, ω = 1, τ = 101, and dbb = 1.95 Fig. 3a Fig. 3b

dbb = {1.5, 1.6, 2.0}, λ = 0, ω = 1, τ = 101, and θ = 0.1 Fig. 3c Fig. 3d

Table 2 Cases for the fractal telegraphic dual-porosity model whose analytical solution is not feasible

Fractal telegraphic dual porosity reservoir (τ �= 0, dbb ≤ 2, dde ≤ 2, θ �= 0, λ �= 0, ω �= 1)
h2 Q

θ = {0.1, 0.3, 0.5}, dbb = dde = 1.8 ω = 0.5, λ = 10−6, and τ = 101 Fig. 4a Fig. 4b

dde = {1.6, 1.8, 2.0}, dbb = 1.8, θ = 0.2, ω = 0.5, λ = 10−6, and τ = 101 Fig. 4c Fig. 4d

dbb = {1.6, 1.8, 2.0}, dde = 1.8, θ = 0.2, ω = 0.5, λ = 10−6, and τ = 101 Fig. 4e Fig 4f

flow rate at the inner boundary, the wellbore hydraulic head is presented. For the first type
of reservoir, we varied relevant dual-porosity parameters as ω and λ, while the remaining
parameters were fixed. For telegraphic fractal single-porosity reservoirs, we set λ = 0 and
ω = 1, and the model parameters related to fractality, θ and dbb, were varied. Based on the
original definitions of the dimensionless variables in the general model, the initial conditions
for every case studied were taken as zero.

In Table 2, we summarize solutions for the general case: the fractal telegraphic dual-
porosity model, whose solution has not been previously reported. As for validation cases,
some model parameters are fixed and others are varied so that their effects can be isolated.
The fixed parameters are related to dual porosity, permeability and telegraphic effects (ω, λ
and τ , respectively). On the other hand, the varied parameters are those linked to fractality,
such as dbb, dde, and θ . In the first column on the right side of Tables 1 and 2, we list the
figures where comparison of semi-numerical and semi-analytical dimensionless head (h2)
and flow (Q) is plotted.
Due to the fact that short-timemeasurements in the applications considered in thismanuscript
(pressure tests) are usually not relevant, we choose the discretization values so that the oscil-
lating behavior appears at short times, see Fig. 1. In this way, we use M = 104 nodes in the
spatial discretization and Np = 12 terms for the Laplace parameter in the Stehfest series dur-
ing numerical inversion. The semi-numerical and semi-analytic solutions were implemented
and tested in FORTRAN 90. Semi-analytic solutions were generated by numerically invert-
ing Eq. (31) with the appropriate boundary conditions, using the same number of parameters
in the Stehfest series as in the semi-numerical case.

In the following figures, the semi-analytical solutions are denoted by dashed red curves,
whereas semi-numerical solutions are shown as continuous blue lines.
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M =103

M =102

M =105

Fig. 1 (Color online) Effect of the discretization parameter M , i.e., 
ξ on the semi-numerical solutions for
constant hydraulic head at the wellbore and parameters: dbb = dde = d = 2, ω = 0.01, λ = 1.0e − 05, and
τ = 100

In Fig. 2, the effects of somemodel parameters over dimensionless head andfloware depicted.
The semi-numerical case with semi-analytic solutions is compared for constant head at the
wellbore in Fig. 2b, d, f, so the dimensionless flow is depicted; meanwhile, for asymptotically
constant flow rate, in Fig. 2a, c, e the dimensionless hydraulic head is plotted. It is worth
emphasizing that the dimensionless backbone head increases with time owing to the way it
was defined [see Eq. 11 in Hernández et al. (2013)]. The simulations carried out correspond
to drawdown tests subject to constant production rate. Qualitatively, the general behavior is
well described by the semi-numerical solution. Nonetheless, the head and flow are slightly
overestimated in most cases. Such discrepancies are larger for flow, while the head differs
only for long times. Observe that a maximum flow rate is reached for almost all the cases
presented, which is significantly affected by the relaxation time τ and the storativity ratio ω.
In a general sense, the change of parameters has significant effects on the model solution, and
such effects are well captured by the semi-numerical procedure; therefore, the LTFDmethod
can be reliably used for further applications. As mentioned by Hernández and coworkers,
there is a time scale at which the reservoir begins to behave as an homogeneous one, this
time can be elucidated when the governing equation for h2, Eq. (2), is decoupled from the
matrix head. In both Euclidean and fractal cases, and mainly because the well is located at
r = 1, such a time is τ = th = (1 − ω)/λ. th can be easily observed as the inflection points
for curves plotted in Fig. 2. These are th = 200, 600, and 900 for Fig. 2a, b, th =, 9 × 104,
and 9 × 108 for Fig. 2c, d, and th = 900 for Fig. 2e, f.

The validated cases for telegraphic fractal single-porosity reservoirs are presented in Fig. 3.
The dimensionless head behavior for asymptotically constant flow at thewellbore is plotted in
Fig. 3a, c, whereas the dimensionless flow for constant head at the same point is presented in
Fig. 3b, d. The effects of the fractal model parameters, θ and dbb, are exhibited therein. Once
again, from a quantitative point of view, the semi-numerical and semi-analytical solutions
match for almost all the cases analyzed. Nevertheless, small differences between solutions
appear; these are mainly for flow, where the semi-numerical method slightly overestimates
relative to semi-analytic results. Wemust stress that short-term behavior is more complicated
to reproduce than long-term dynamic behavior, just as shown in Fig. 1 where the effect of
the discretzation parameter, M , is depicted. This can be explained by the manner in which
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Fig. 2 (Color online) Validated cases for the telegraphic Euclidean dual-porosity system (dbb = dde = 2 and
θ = 0). Comparison between semi-numerical (continuous blue line) and semi-analytic solutions (dashed red
line) for dimensionless head (a), (c), and (e), and flow (b), (d) and (f). The inner boundary at the wellbore
was subjected to constant head and a constant head gradient. A zero-flux condition was imposed at the outer
boundary for each case
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Fig. 3 (Color online) Validation cases for a telegraphic fractal single-porosity system (λ = 0 and ω = 1) .
Comparison between semi-numerical (continuous blue line) and semi-analytic solutions (dashed red line) for
dimensionless head (a) and (c), and for flow (b) and (d). The inner boundary at the wellbore was subjected to
constant head and asymptotically constant flow. A zero-flux condition was imposed at the outer boundary

time is treated in the methodology, mainly in the numerical inversion of model solutions
from the Laplace domain. As it is indicated in Eq. (26), a singularity appears in the Laplace
domain as t → 0. If the short-term behavior is of interest, an asymptotic solution may
be derived from Eq. (14) by considering the limit t → 0, which in Laplace space implies
s → ∞; however, this is out of the scope of this work. Observe that unstable solutions are
more evident when dbb = 1.5, θ = 0.1, and τ = 10. Comparing results plotted in Figs. 2
and 3, one can conclude that the LTFDmethod is more suitable at any time for heterogeneous
reservoirs where contributions of fluid from the matrix to the backbone network take place.
For single-porosity reservoirs, one can exploit the capabilities of the LTFD method to model
long-time behavior for flow and head.

Now, we focus on the situation where solutions of the general model are not feasible
either analytically or semi-analytically. Such caseswere solved using the semi-numeric LTFD
method, and some model solutions are plotted in Fig. 4. In our investigation, we varied the
fractal parameters in order to explore their effects on flow performance and pay special atten-
tion to the physical meaning. Possible interconnections of fractal parameters were left aside
as the main aim of this work is to present semi-numerical solutions. A deeper investigation
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Fig. 4 (Color online) Cases for a telegraphic fractal dual-porosity system. Here, the dimensionless head at
the wellbore is plotted in (b), (d), and (f) for asymptotically constant flow rate at the inner boundary and zero
flux at the external boundary. Meanwhile, the dimensionless flow for constant head at the wellbore and zero
flux at the outer boundary is presented in (a), (c), and (e)

of the dynamics of fractal non-Fickian reservoirs will be carried out in future, where physical
connections between fractal parameters and rock fabric will be determined. Specially, the
LTFDmethod will be applied to characterize highly heterogeneous aquifers, geothermal, and
oil reservoirs.

Results plotted in Fig. 4 exhibit characteristic regimes of dual-porosity models: short-,
middle-, and long-term behaviors. As demonstrated above, for short times, small oscillations
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are observed in Fig. 4a, b, e, f, especially when the backbone fractal dimension and the
permeability exponent differ from the Euclidean values, θ = 0 and dbb = 2, respectively. As
a matter of fact, the parameters dbb and θ have dominant effects over the head and flow in
comparison with the dead-end fractal dimension dde. An increase of θ has the same effect as
an equivalent decrease of dbb. This can be inferred from comparison between Fig. 4a, b, f,
e. Results plotted in Fig. 4a, b correspond to the flow regime lying between linear and radial
dimensions (see the values of dbb and dde) and for moderate backbone-dead-end interactions
(see the values of ω and λ). At this point, it is worth recalling that θ quantifies effective
connections in the backbone fracture network, where larger values indicate poor connectivity
leading to smaller flow rate, as depicted in Fig. 4a. This effect is also verified for substantial
increments of the dimensionless head in Fig. 4b, suggesting that it decreases significantly.
Meanwhile, results plotted in Fig. 4c, d indicate that fluid production is enhanced from the
onset of homogeneous behavior, th , when dde increases. This effect is more noticeable in the
case of the backbone fractal dimension. This phenomenon is explained, in part, by the fact
that, in our simulations, there is little fluid exchanged between the backbone and dead-end
networks; therefore, themain contribution to the flow rate comes from the backbone network.
Summarizing, it is concluded that the closer the fractal dimension of dead-end and backbone
structures are to the Euclidean dimension, the better the rate improvement obtained, while
the opposite holds when the connectivity index, θ , approaches unity.

5 Conclusions

In this paper, we have implemented a semi-numerical method to solve a fractal telegraphic
dual-porosity fluid flow model whose coupled solution is not feasible to obtain semi-
analytically. The transient part was handled using the Laplace transform technique, while
spatial derivatives were discretized using central finite differences. Thus, step time constric-
tions are avoided as no discretization is required, and the space discretization fulfills the
mass conservation without compromising numerical stability. As inversion from the Laplace
domain to dimensionless time is not possible analytically, the Stehfest algorithm was used
to compute the time evolution of flow rate and hydraulic head. Our approach was validated
for analytically solvable cases, and good agreement was observed. It was found that larger
values of fractal dimensions of dead-end and backbone networks improve the flow rate while
the connectivity index diminishes the flow rate as it approaches unity. The capability of the
methodology presented here encourages its application to characterizing fractured water,
geothermal, and petroleum reservoirs.
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