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Abstract This article uses the state smoothing methodology applied to nonlinear systems
to refine the attitude of artificial satellites. In this paper, simulated data of telemetry and
ephemeris of a satellite with the specifications of China Brazil Earth Resources Satellite are
considered and the dynamic system is described by the set of kinematic equations in terms
of the Euler angles and the bias vector of gyroscope. The estimator used to determine the
forward estimates in time is the Unscented Kalman filter, while the Rauch–Tung–Striebel
fixed interval estimatormakes the estimate backward time. The results show that, although the
time of the estimation process is slightly increased, the smoother presents estimated attitude
and bias closer to the real values than the estimated values when using only the Unscented
Kalman filter. Therefore, the smoother can be considered as a technique that provides refined
measurements of the attitude and bias of the gyroscope that may serve to calibrate the Kalman
filter for next estimates.
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1 Introduction

The knowledge of the satellite space orientation (attitude) is important for a satellite mission.
Every spacecraft carries a payload that must be directed in some way, and the performance of
this payload will depend directly on the ability to know the spacecraft attitude. Therefore, the
choice of appropriate determination methods of the attitude is fundamental for the missions.
The attitude determination process must take into account a suite of attitude sensors of
the appropriate accuracy and a attitude determination method that uses the data from those
sensors. The used methods of attitude estimation include the filters and state smoothing.
The problem of state smoothing is a logical extension of the filtering, which is the class
methods to compute the best estimate of the state of a system given by the dynamics model
of the system and a set of observations. For a given fixed time interval, t1, t2, . . . , tN , the main
difference between optimal filtering and state smoothing is that the first type estimators allow
to estimate the best state at time tk given all the observations from t1 to tk . However, the state
smoothers allow to find the best estimate at time tk using all the observations corresponding
to the analyzed interval from t1 to tN with tk ≤ tN , as shown in Fig. 1.

This article concentrates the studies on optimal techniques of estimation applied to nonlin-
ear problems. Due to nonlinearity of the dynamic system and the observations, the estimator
used to determine the “forward” estimates in time is the unscented Kalman filter—UKF
(Crassidis andMarkley 2003). The estimated results are saved and used by the Rauch–Tung–
Striebel smoother—RTS (Sarkka 2013) of fixed-interval (“backwards” estimate in time) in
order to obtain the refined state estimate. The fixed-interval smoothing is usually used for
offline data reduction to obtain refined estimates of better quality than those obtained by
online filters, since they incorporate the information contained in all measurements in the
range.

2 Formulation of the attitude estimation problem

Consider the following nonlinear discrete-time stochastic system (Psiaki and Wada 2007)

ẋk+1 = fk(xk, ηk), k = 0, 1, . . . N − 1
yk+1 = hk+1(xk+1, νk+1), k = 0, 1, . . . N − 1

(1)

where xk is the n-dimensional system state vector at time k, fk is the n-dimensional dynamic
nonlinear transition function,yk+1 is them-dimensional nonlinear sensormeasurement vector
at time k + 1, hk+1 is the m-dimensional nonlinear measurement function, N is the terminal
sample, and ηk and νk+1 represent the process and measurement noise with Gaussian white
noise and covariances given by Q and R, respectively.

Fig. 1 Illustration of the filtering method versus smoothing method. Adapted from Sarkka (2013)
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In this paper, the system given by Eq. (1) will be associated with the characteristics of the
CBERS-2 satellite. The attitude of CBERS-2 satellite is stabilized in three axes and can be
described with respect to the orbital system Oxoyozo. In this reference system, the motion
around the direction of the orbital velocity is called roll, the motion around the direction
normal to the orbit is called pitch, and the motion around the direction Nadir/Zenith is called
yaw, and is represented by Euler angles φ, θ andψ , respectively. In this work, the state vector
will be composed of attitude angles (φ, θ , ψ) and, due to the use of gyroscope observations
(Rate Integration Gyros), by the components of the gyros biases (εx , εy , εz). The use of
gyros measurements allows the substitution of the dynamic equations by simple kinematic
equations which, for the CBERS-2 satellite, are represented by Fuming and Kuga (1999):

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ =

⎡
⎣
1 S(φ)T (θ) C(φ)T (θ)

0 C(φ) −S(φ)

0 S(φ)/C(θ) C(φ)/C(θ)

⎤
⎦

⎧⎨
⎩

⎡
⎣

ωx

ωy

ωz

⎤
⎦ − R

⎡
⎣

0
−ω0

0

⎤
⎦

⎫⎬
⎭ (2)

whereω0 is the orbital angular velocity,ωx ,ωy ,ωz are the components of the angular velocity
on the satellite systemOxyz, and R is the transitionmatrix from the orbit reference coordinate
system to the satellite body coordinate system obtained by a rotation sequence 321 (rotation
of angles ψ of the axis zo, rotation of angles θ of the axis y′ and rotation of angles φ of the
axis x).

For the specific case of the CBERS-2 satellite, it is assumed that φ and θ are small angles,
making it possible to perform simplifications (type: a ≈ 0, sin(a) ≈ a, cos(a) ≈ 1) in
Eq. (2). In this way, the equation of the state that composes the system represented in Eq. (1)
is defined by

⎡
⎢⎢⎢⎢⎢⎢⎣

φ̇

θ̇

ψ̇

ε̇x
ε̇y
ε̇z

⎤
⎥⎥⎥⎥⎥⎥⎦
k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ω0 sinψ + ωx + θωz

ω0 cosψ + ωy + φωz

ω0(θ sinψ − φ cosψ) + ωz + φωy

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
k

+ ηk (3)

To ascertain the attitude of an artificial satellites, it is necessary to use the attitude sensors.
In this work, real measurements of Infrared Earth Sensors (IRES) and Digital Solar Sensors
(DSS) are used. The IRES sensors measure the modifications of the angles φ (φE ) and θ (θE )
and their observations are modeled by Garcia et al. (2016)

φE = φ + νφE

θE = θ + νθE

(4)

The DSS sensors indirectly measure the changes in the angles ψ (αψ )and θ (αθ ) of the
satellite. Such observations are modeled by

αψ = tan−1
( −Sy
Sx cos(60◦) + Sz cos(150◦)

)
+ ναψ (5)

when |Sx cos(60◦) + Szcos(150◦)| ≥ cos(60◦), and

αθ = 24◦ − tan−1
(
Sx
Sz

)
+ ναθ

when
∣∣∣24◦ − tan−1

(
Sx
Sz

)∣∣∣ < 60◦, with Sx , Sy and Sz being the components of the unit

vector associated with the sun vector in the satellite system (Garcia et al. 2016).
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The measurement equation that composes the system represented in Eq. (1) is defined by

⎡
⎢⎢⎣

φE

θE
αψ

αθ

⎤
⎥⎥⎦
k+1

=

⎡
⎢⎢⎢⎢⎣

φ

θ

arctan
( − Sy
Sx cos 60◦ + Sz cos 150◦

)

24◦ − arctan
(
Sx
Sz

)

⎤
⎥⎥⎥⎥⎦
k+1

+ νk+1. (6)

3 Bayesian optimal filtering and smoothing equations

In general, the estimation problems involve the choice of algorithms which use the measure-
ments obtained before and at the current time for computing the best estimate of the current
state. This feature makes the algorithm able to obtain estimates in real time. However, in
some cases there is no need for the algorithm to work online and the main concern is to get
an estimate of the high-precision state. To do this, the smoothing uses all the measures of the
interval considered to offer superior accuracy in the estimate of each instant.

Considering the superiority of the UKF compared to the other estimators (Garcia et al.
2016), and the problem of estimation of nonlinear state, in this paper will be used the com-
bination of two techniques to estimate the attitude with high precision of a satellite. Initially,
the UKF is used to obtain the forward state estimate in time. The UKF output is saved and
used as input by the RTS fixed-range smoothing, which recalculates the estimate backwards
in time. The algorithm that uses the combination of these two estimation techniques will be
called Unscented Rauch–Tung–Striebel smoother (URTS). The formulations involved in the
UKF and URTS algorithms will be presented below.

3.1 Forward estimation with unscented Kalman filter

The UKF uses a deterministic sampling approach where the state is represented using a
minimal set of sample points (Wan and van der Merwe 2004). The filter is initialized with
information from x̂0, P̂0, R and Q at the initial time k = 0. The next step of the filter is to
propagate the state to the next instant and update the propagated state with the measurements
of the current instant. This process is performed from k = 1, . . . , N .

Before beginning the step of propagating the state, the initial sigma points are distributed
as follows (Garcia et al. 2016; Wan and van der Merwe 2004):

χ̂
(0)
0 = x̂0

χ̂
(i)
0 = x̂0 ±

(√
(n + λ)P̂0

(i)

)
i = 1, . . . 2n

(7)

where λ ε R, (
√

(n + λ)P0i ) is the ith column of the matrix square root of (n + λ)P0.
The next step of the filter is to propagate the sigma points through the dynamic model,

given in Eq. (1):

˙̄χ (i)
k = f (χ̂ (i)

k−1) i = 0, . . . 2n

Y(i)
k = h(χ̄

(i)
k )

(8)

The state and measurement vector propagated and its covariances are obtained by

x̄k = λ

(n + λ)
χ̄

(0)
k +

2n∑
i=1

1

2(n + λ)
χ̄

(i)
k i = 1, . . . 2n (9)
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ȳk = λ

(n + λ)
Y(0)
k +

2n∑
i=1

1

2(n + λ)
Y(i)
k (10)

P̄k = λ

(n + λ)
[χ̄ (0)

k − x̄k][χ̄ (0)
k − x̄k]T +

2n∑
i=1

1

2(n + λ)
[χ̄ (i)

k − x̄k][χ̄ (i)
k − x̄k]T + Q

(11)

Pyy
k = λ

(n + λ)
[Y(0)

k − ȳk][Y(0)
k − ȳk]T +

2n∑
i=1

1

2(n + λ)
[Y(i)

k − ȳk][Y(i)
k − ȳk]T + Rk

(12)

Pxy
k = λ

(n + λ)
[χ̄ (0)

k − x̄k][Y(0)
k − ȳk]T +

2n∑
i=1

1

2(n + λ)
[χ̄ (i)

k − x̄k][Y(i)
k − ȳk]T (13)

The step of updating the filter is obtained by calculating the gain matrix of KalmanK, given
by

Kk = Pxy
k [Pyy

k ]−1 (14)

Then, the state estimate and state error covariance updates are

x̂k = x̄k + Kk(yk − ȳk) (15)

P̂k = P̄k − KkP
yy
k KT

k (16)

The sigma-points are scattered again from the estimated state and covariance for the next
step of the filter by

χ̂
(0)
k = x̂k

χ̂
(i)
k = x̂k ± (

√
(n + λ)P̂k

(i)
) i = 1, . . . 2n

(17)

As the objective of this paper is to estimate the state through smoothing processes, then in
addition to the standard UKF equations will also be calculated the cross covariance matrix
D. This matrix takes into account the estimated state at the current step and at the previous
step. The cross covariance is obtained by Psiaki and Wada (2007):

Dk = λ

(n + λ)
[χ̂ (0)

k−1 − x̂k−1][χ̄ (0)
k − x̄k]T +

2n∑
i=1

1

2(n + λ)
[χ̂ (i)

k−1 − x̂k−1][χ̄ (i)
k − x̄k]T

(18)

During the estimation process with the UKF, the vectors x̄k , x̂k , and matrices P̄k , P̂k , Dk

are stored to serve as input to the smoothing process.

3.2 Backward estimation with RTS smoother

The RTS smoother is applied after the measurements have been processed forward by the
UKF. The smoother is initialized from the last time step considering the following initial
conditions: xsN = x̂N ,Ps

N = P̂N . The recursive process runs backwards for k = N−1, . . . , 0,
and computes the smoother gainKs

k , the smoothed mean xsk and the covariance P
s
k as follows

(Sarkka 2013):
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Ks
k = Dk+1[P̄k+1]−1

xsk = x̂k+1 + Ks
k(x

s
k+1 − x̄k+1)

Ps
k = P̂k+1 + Ks

k(P
s
k+1 − P̄k+1)[Ks

k]T
(19)

4 Results using a truth-model simulation

A truth-model simulation has been used to provide data of testing for comparison of the
performance between two estimation methods: Unscented Kalman filter and Unscented RTS
Smoother. The simulations of ephemeris and telemetry have been carried out using as refer-
ence the CBERS-2 model (Carrara 2015) and the estimations were made using the Matlab
software. The CBERS-2 has polar sun-synchronous orbit with an altitude of 778km, crossing
Equator at 10:30 AM in descending direction, frozen eccentricity and perigee at 90◦ pro-
viding a global coverage every 26 days. The attitude sensors available are two DSS (Digital
Sun Sensors), two IRES (Infrared Earth Sensor), and one triad of mechanical gyros. Table 1
shows the values used in the initialization of the UKF, as well as some parameters used in
the simulation of the data.

To evaluate theURTS smoothing behavior with respect to theUKFfilter in attitude estima-
tion problems involving non-linear systems, the estimated state and their respective variance
are shown in Figs. 2, 3, 4 and 5. Figure 2 shows the attitude angles estimated (φ = roll, θ

= pitch, ψ = yaw) by the UKF and the URTS smoother. It is observed that, at the begin-
ning of the estimation process, the difference between the smoothed values and the real
values is lower than that of the filtered values, but at the end of the estimation the esti-

Table 1 Initial conditions and simulation parameters

Symbol Description Value

�t Sampling rate 0.5 s

t Observation time 50 s

φ, θ, ψ Attitude angles [0 0 0]T deg

εx , εy , εz Gyro bias in axis x, y, z [5.76 4.89 2.68]T deg/h

x Vector state [φ θ ψ εx εy εz ]T
Covariances

R Measurement noise covariance matrix diag(σ 2
IRES σ 2

IRES σ 2
DSS σ 2

DSS)

σ 2
DSS Measurement noise variance of sensors

DSS
0.62 deg

σ 2
IRES Measurement noise variance of sensors

IRES
0.062 deg

P State noise covariance matrix diag(σ 2
att σ 2

att σ 2
att σ 2

bias σ 2
bias σ 2

bias)

σ 2
att Attitude noise variance 0.52 deg

σ 2
bias Bias noise variance in axis x, y, z 0.52 deg/h

Q Model noise covariance matrix diag(σ 2
Qatt σ 2

Qatt σ 2
Qatt σ 2

Qbias σ 2
Qbias σ 2

Qbias)

σ 2
Qatt Attitude model noise variance 0.12 deg

σ 2
Qbias Bias model noise variance (10−4)2 deg/h
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Fig. 2 Comparison of the attitude values: true attitude, attitude estimated by UKF and attitude estimated by
URTS

mated attitude and smoothed attitude tend to be of the same order of magnitude. To evaluate
the accuracy of the estimated attitude obtained by smoothing and filtering, Table 2 shows
the RMSE (Root Mean Squared Error) performance. The RMSE indicates how close the
observed values are to the estimated values by model. In Table 2, the URTS smoother
presented lower values of RMSE indicating better fit. RMSE is a good measure of how
accurately the model predicts the response, and is an important criterion for fitting if the
main purpose of the model is prediction. Figure 3 shows the estimated values for the gyro
bias in the x , y, and z axes obtained by the filter and smoother, in addition to the true
value obtained from the simulation. Figure 3 and Table 2 confirm the superiority of the
URTS smoother because during the estimation period it remained closer to the true val-
ues.

Finally, a quantitative analysis of the processing time spent by the CPU in the estimation
process is summarized in Table 3. The values shown in Table 3 were obtained from the
implementation of the UKF and URTS algorithms in MATLAB language in an Intel Core i3
with 4GB of dynamical memory, running Windows 7, 64 bits version. For a more reliable
estimation of the processing time, the average of 100 iterations for each algorithm was
calculated. Note that, even with the increase in the number of observations of the sensors, the
increase in CPU expense via URTS (UKF + RTS smoother) is approximately 2% of the time
required to estimate the attitude via UKF. This corroborates the efficiency of the softener due
to the precision gain of the estimates and the consequent consistency in the reconstitution of
the estimated state.

Figures 4 and 5 illustrate the convergence of covariances of the attitude and gyro bias
during the estimation process for UKF filter and URTS smoother. The covariance of the
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Fig. 3 Comparison of the gyro bias values: true gyro bias, gyro bias estimated byUKF and gyro bias estimated
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Fig. 4 UKF filter and URTS smoother variances for attitude
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Fig. 5 UKF filter and URTS smoother variances for gyro bias

Table 2 RMSE values of attitude and gyro bias

Estimator RMSE attitude (deg) RMSE gyro bias (deg/h)

φ θ ψ εx εy εz

UKF 0.0702 0.1143 1.2836 0.0004 0.0062 0.0028

URTS 0.0382 0.0667 0.5635 0.0002 2.610−5 0.0004

Table 3 Estimated CPU time for
processing different numbers of
observations performed by the
sensors using the UKF and URTS
estimators

Observations CPU Time (s)

UKF URTS

20 0.0411 0.0418

40 0.0786 0.0806

60 0.1167 0.1189

smoother is always smaller than that of the filter, except for the final step, where the covari-
ances are the same (initial condition of the smoother). The covariance of the gyro bias has
imperceptible variation for both estimators as shown in Fig. 5, but it can still be affirmed about
its convergence in the considered period. In the first step of the estimation, the covariance on
the x-axis for the filter was 0.5000 deg/h, while for the softener was 0.4999 deg/h. The same
is observed for the other axes.
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5 Conclusions

The purpose of this article was to analyze the efficiency of the attitude estimation by combin-
ing the results obtained by the unscented Kalman filter with the results obtained by the RTS
smoothing, when a nonlinear state model is considered. The Unscented Kalman filter has
been shown to be superior to the other nonlinear estimators regarding the processing time and
accuracy of the estimated values, as seen in Garcia et al. (2016). The results obtained in this
work showed that the combination of the sigma-points with the state smoothing technique
achieves significant precisions in relation to the results obtained only by the UKF filter. This
happens because the smoothing technique allows it to exploit the availability of additional
data that comes after the sampling time at which a given state estimate applies. With the
obtained results, it is concluded that in operations that do not require real-time requirements,
the use of smoothing can be a useful resource for refinement of the estimates, thus allowing
the reconstitution of the attitude with greater precision.
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