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Abstract A theoretical study of mixed convection stagnation point flow towards a stretch-
ing surface is presented. The governing boundary layer equations are transformed into a set
of highly nonlinear ordinary differential equations using suitable similarity transforms. The
semi-analytical solution is obtained using optimal homotopy analysis method (OHAM) and
the numerical solution is obtained via finite element method (FEM). Solutions obtained via
two different approaches are in excellent agreement, which validates the accuracy of present
analysis. In a special case, the present OHAM solution is also validated with the earlier avail-
able results. Effect of pertinent flow parameters on the skin friction coefficient and Nusselt
number is presented in tabular form, whereas the velocity, temperature and nanoparticle dis-
tribution are presented in graphical forms. Further, a quadratic multiple regression analysis
on numeric data of skin friction coefficient and Nusselt number is performed. The findings
suggest that velocity slip assists the fluid motion in presence of buoyancy forces, whereas it
exhibits a retarding nature on fluid motion when no buoyancy forces exist.
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1 Introduction

The demand for efficient and high-performance coolants in various industries ranging from
automobile to electronics, medical tometallurgical and polymer to power production, encour-
aged the researchers to look at alternate options for high-performance coolants rather than
traditional coolants, viz. water, ethylene glycol, etc. To enhance the thermal conductivity
of these conventional liquids, researchers moved towards artificial liquids by suspending
micron-sized metallic particles into traditional heat transfer liquids. Although these artificial
liquids possess higher thermal conductivity, they had limited use in industries due to their
clogging and stability issues. Themodern nanotechnology allowed the researchers to look for
colloidal suspension of nanometer-sized metallic or even non-metallic particles in traditional
heat transfer liquids (base liquid). Due to homogeneity of nanoparticles with the base liquids
molecules these artificially made liquids are assumed to have immense potential for applica-
tion in various industries. Masuda and his colleagues Masuda et al. (1993) adopted the above
said idea and demonstrated an enhanced thermal conductivity in colloidal suspension ofwater
γ -Al2O3. Choi (1995) in his article coined the name nanofluid for the above-mentioned arti-
ficial liquid. Buongiorno (2006) pointed out that the increase in heat transfer in nanofluid
is not just due to the enhanced thermal conductivity, but due to the thermal dispersion and
intensified turbulence caused bymotion of nanoparticles. He assumed seven slip mechanisms
(Brownian diffusion, inertia, thermophoresis, diffusiophoresis, fluid drainage, Magnus effect
and gravity) which are responsible for relative motion between nanoparticle and base fluid
molecules. Out of these seven slip mechanisms, he proposed that only Brownian and ther-
mophoretic diffusions play an important role in enhancing heat transfer rate of nanofluids.
Based on the above assumption he modeled the transport equations for conservation of mass,
momentum and energy for nanofluids. To explore the various aspects of enhanced thermal
conductivity of these fluids, many researchers devoted their time and efforts to find pos-
sible reason behind this abnormal behavior of nanofluids. A useful collection of previous
research studies on nanofluids can be found in the book by Das et al. (2007) and review
articles (Kakaç and Pramuanjaroenkij 2009). Recently, some innovative and valuable studies
on nanofluid flow and heat transfer were carried out by several researchers and published
in forms of research articles (Rashidi et al. 2017; Esfahani et al. 2017; Shirvan et al. 2017;
Rashidi et al. 2018). Kuznetsov and Nield (2013) noted that physically it is impossible to
keep the nanoparticle volume fraction constant at the surface. They came out with an idea of
zero mass flux of the nanoparticles at the surface which they incorporated in their article. In
their article they revisited their problem Nield and Kuznetsov (2009) with zero nanoparticle
mass flux condition and noticed that, contrary to the results reported in earlier studies the
new approach dilutes the impact of Brownian diffusion on heat transfer drastically. They also
presented a linear regression estimate for the Nusselt number corresponding to Brownian dif-
fusion, thermophoresis and buoyancy effects. The revised model is acknowledged widely in
the scientific community and utilized to study nanofluid flow problems by many researchers
(Kuznetsov and Nield 2014; Halim et al. 2017; Tripathi et al. 2017).

Flowpast an extruded surfacewas theoretically first studied byCrane (1970). He presented
solution for skin friction coefficient and heat transfer coefficient of a viscous fluid considering
the stretching rate of the sheet linearly proportional to distance of the sheet. However, it was
observed that velocity of extruded surface in many industrial application does not possess the
Crane’s (1970) proposed stretching velocity model. This limitation was addressed by many
authors (see Refs. Pop and Na 1996; Seth et al. 2016). In all above studies it was assumed
that the free stream velocity is zero, which is not the case in many practical applications.
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Due to this reason several researchers carried out investigations where it was assumed that
the free stream is not zero and also moving with certain velocity (Ibrahim and Makinde
2016; Seini and Makinde 2014; Olanrewaju and Makinde 2013). Potential application of
nanofluids attracted the researchers to study the flow of nanofluid over an extruded sheet.
Khan and Pop (2010) became the first to study the heat transfer mechanism of nanofluids
on stretching surface. In their study, they used Buongiorno’s model and demonstrated that
the Nusselt number and Sherwood number both as a decreasing function of Brownian and
thermophoretic diffusion parameters.Makinde andAziz (2011) extended the pioneeringwork
of Khan and Pop (2010) for convectively heated stretching surface. Boundary layer formed in
nanofluid due to a nonlinearly stretching sheet was introduced by Rana and Bhargava (2012).
They obtained the similarity solution using finite element method as well as finite difference
method and concluded that increasing power law velocity of stretching sheet reduces the rate
of heat and mass transfer at the sheet. Nanofluid flow induced by exponentially stretching
surface was modeled and investigated by Nadeem and Lee (2012). They solved the transport
equations proposed by Buongiorno (2006) using a semi-analytic homotopy analysis method
(HAM). Ellahi et al. (2017) studied the Fe3O4 and water-based nanofluid flow induced by
a rotating stretchable disk. Rehman et al. (2017) presented a thermophysical analysis of
stagnation point flow of a non-Newtonian nanofluid past an inclined stretching cylindrical
surface. Ishfaq et al. (2016) presented a linear as well as quadratic correlation model for
the Nusselt number of nanofluid past a stretching sheet following passively controlled wall
nanoparticle nanofluid model.

Magnetic field is used in various industries to control the boundary layer of the elec-
trically conducting fluid flow, viz. polymer industry, metallurgy and nuclear fission. The
magnetic field and temperature-dependent viscosity effect on the fluid flow and heat transfer
is investigated by Makinde et al. (2016). They solved their problem numerically using the
Nachtsheim and Swigert shooting technique along with a 6th order R-K integration algo-
rithm. Study of MHD boundary layer flow of nanofluid near a stagnation point is carried
out by Kandasamy et al. (2011). Bhatti et al. (2017) carried out an analysis to explore the
effect of variable magnetic field and coagulation within a Jeffrey nanofluid containing gyro-
tactic micro-organism. Hassan et al. (2017) published a paper which deals with behavior
of nanoparticle shapes on mass and heat flow of ferro-fluid past a rotating stretchable disk
in the presence of a low oscillating magnetic field. Magnetic field effect on a non-aligned
stagnation point flow of a nanofluid with variable viscosity was studied by Khan et al. (2016).
Seth et al. (2017) modeled the transient magnetohydrodynamic flow of nanofluid past a sheet
with power law stretching velocity and reported that unsteadiness causes an enhancement in
the shear stress, Nusselt number and Sherwood number. Hayat with his colleagues (Hayat
et al. 2017) reported the magnetohydrodynamic flow of a non-Newtonian (Powell–Eyring)
nanofluid induced by a nonlinearly stretching surface by employing the newly proposed
Buongiorno’s revised nanofluid model. A critical review of literature dealing with MHD
convective flows of nanofluid is presented by Chamkha and his colleagues in their review
article (Chamkha et al. 2015).

The density difference present within the fluid due to the temperature or concentration
or due to both is also a reason for the convective flow. The flow induced by above means is
known as “free” or “buoyant” or “natural”convective flow. When forced convection and free
convection phenomenon are of comparable magnitude in a process, then it is termed as mixed
convection. The free convection heat-removal mechanism is desired in many thermal engi-
neering processes as it requires small power consumption and produces negligible operating
noise. However, the inherently poor energy efficiency of natural convection, in comparison
to the forced convection, and also the intrinsic small thermal conductivity of conventional
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coolants, limit the heat cooling rate via free convection. As it is confirmed that nanofluids pos-
sess a higher thermal conductivity, free convective heat transfer mechanism in nanofluids can
play a phenomenal role. Khanafer et al. (2003) developed the single-phase nanofluid model
to investigate the buoyancy-driven flow of Cu–water nanofluid filled in a cavity heated differ-
entially at their sides and presented a correlation for Nusselt number. Kuznetsov and Nield
(2013) utilized the Buongiorno’s (2006) model to describe buoyancy-driven flow past a verti-
cal plate. Makinde et al. (2013) analyzed theMHDmixed convection stagnation point flow of
nanofluid on stretching/shrinking sheet. Their numerical results indicate that a dual solution
exist in case of shrinking sheet. They also reported that both the skin friction coefficient and
the Sherwood number decrease, while the Nusselt number increases with increasing strength
of buoyancy forces. Shirvan et al. (2017) studied the natural convection heat transfer within
a copper water-based nanofluid enclosed in a corrugated square cavity. A detailed analysis
of natural convective flows of MHD nanofluids under different geometrical situations using
single-phase as well as double-phase nanofluids models is presented by Sheikholeslami and
Ganji (2016).

Viscous dissipation within the fluid due to the work done by relative fluid layers plays an
important role in various energy-efficient systems and also in case of electrically conducting
fluid in a magnetically influenced region heat generated due to the movement of electrically
conducting fluid known as “Joule heating” have potential to affect on the performance of the
system and ignorance of these effects may lead to a faulty model. Makinde (2013) studied the
combined effect of these twoenergydissipative processwithin the boundary layerflowformed
by nanofluid past a flat plate. Again Pal and Mandal (2015) investigated these phenomenon
within a mixed convection nanofluid flow past a deforming surface. Makinde et al. (2013)
investigated the effect of viscous and Joule dissipation on mixed convection stagnation point
flow of nanofluid on a stretching surface. Apart from these assumptions, the classical non-
adherence assumption between the solid fluid interface does not give the realistic results in
many processes, viz. in the designing of various microfluidic systems, red blood flow through
capillaries and inmany technological processes such as lubrication and permeability ofmicro-
porous media. Keeping in view these practical processes, many investigators employed the
partial velocity slip condition to model nanofluid flow with heat and mass transfer problems
(see Refs. Seth and Mishra 2017; Makinde et al. 2017; Ibrahim and Makinde 2016).

In view of the above studies, in the present investigation we have explored the slip mech-
anism and energy dissipation on mixed convection stagnation point flow of nanofluid. Apart
from presenting the values of skin friction and Nusselt number corresponding to active flow
parameters in a tabular form, we have also carried out a statistical analysis for estimating skin
friction coefficient and Nusselt number with the help of quadratic multiple regression model.
The present problem has the potential to serve as a model for many industrial processes, viz.
manufacturing of polymeric sheets, glass sheets, crystalline materials, etc.

2 Mathematical modeling of the problem

2.1 Equations governing the flow system

The physical situation is that of a nanofluid impinging normally on a surface which is being
stretched in such a way that the speed at any point on the surface is proportional to a power
law index of its distance from the origin, i.e., us = axn . The free stream is also moving with
same proportional velocity u∞ = bxn as the surface (a, b and n are the constants). A physical
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Fig. 1 Schematic diagram and coordinate system of the flow problem

sketch depicting the flow configuration and coordinate system of the problem is presented
in Fig. 1. The origin O of the Cartesian coordinate system is considered as the stagnation
point from which the sheet is stretched due to application of equal and opposite forces. The
flow is confined within the region y ≥ 0. The surface is kept at a constant temperature
T = Ts, whereas the nanoparticle volume fraction C at the surface is governed passively
as suggested in Kuznetsov and Nield (2014). A transverse magnetic field of intensity B is
applied in a direction parallel to y-axis. The key assumptions which are made while deriving
the governing equations are: no chemical reaction between base fluid and nanoparticles, base
fluid and nanoparticles are in thermal equilibrium, the nanofluid is viscous, incompressible
and electrically conducting, the magnetic Reynolds number is small enough to discard the
induced magnetic filed (Davidson 2001), there is no external electric field and the induced
electric field due to polarization of charges is negligible, the effect of density variation due
to temperature or concentration differences is negligible except in case of buoyancy forces
(Boussinesq approximation).
Under the above described constraints, the boundary layer equations are given as follows
(Makinde et al. 2013; Olanrewaju and Makinde 2013):

∂u
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+ ∂v
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+ σ B2(u∞ − u)2 + μ

(
∂u

∂y

)2

, (3)

u
∂C
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+ v

∂C

∂y
= DB

(
∂2C

∂ y2

)
+ DT

T∞

(
∂2T

∂ y2

)
. (4)

The boundary conditions of the above described model are

u = us + uslip, v = 0, T = Ts,
∂C
∂y = −

(
DT

DBT∞

)
∂T
∂y at y = 0,

u → u∞, T → T∞, C → C∞ as y → ∞,

}
(5)

where (u, v), us = axn, uslip = L ∂u
∂y , u∞ = bxn, n, ρnp, ρn f , ρn f ∞, β, υ, k,

(
ρcp

)
np,(

ρcp
)
n f , μ, DB , DT and L are the velocity vector, stretching sheet velocity, slip velocity,

free streamvelocity, stretching index, density of nanoparticles, density of nanofluid, reference
density of nanofluid, volumetric expansion coefficient of nanofluid, kinematic viscosity, ther-
mal conductivity, specific heat capacity of nanoparticles, specific heat capacity of nanofluid,
dynamic viscosity of nanofluid, Brownian diffusion coefficient, thermophoretic diffusion
coefficient and slip coefficient, respectively.

2.2 Similarity variables and similarity transformation

To obtain similarity solution of Eqs. (2), (3) and (4) subjected to the boundary conditions (5),
following similarity transforms are introduced

η = y

√
(n + 1) us

2νx
, ψ =

√
2usνx

n + 1
f (η) , θ (η) = T − T∞

Ts − T∞
φ (η) = C − C∞

C∞
, (6)

where η, ψ , θ and φ are, the similarity variable, stream function, non-dimensional tempera-
ture and non-dimensional nanoparticle volume fraction, respectively.With these assumptions,
continuity Eq. (1) is automatically satisfied.
Using (6) in Eqs. (2), (3) and (4), we obtain

f ′′′ + f f ′′ − 2n

n + 1
f ′2 + λ (θ − Nrφ) − M

(
f ′ − γ

) + 2n

n + 1
γ 2 = 0, (7)

1

Pr
θ ′′ + f θ ′ + Nbθ ′φ′ + Nt

(
θ ′)2 + Ec

(
f ′′2 + M

(
γ − f ′)2) = 0, (8)

φ′′ + Sc f φ′ + Nt

Nb
θ ′′ = 0. (9)

The boundary conditions (5) assumes the following form

f (η) = 0, f ′ (η) = 1 + s f ′′ (η) , θ (η) = 1, Nbφ′ (η) + Ntθ ′ (η) = 0 at η = 0,
f ′ (η) → γ, θ (η) → 0, φ (η) → 0 as η → ∞,

}

(10)

where
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,

123



Modeling and analysis of mixed convection stagnation point flow. . . 4087

Nt =
(
ρcp

)
npDT (Tw − T∞)(
ρcp

)
n f T∞υ

,

Nb =
(
ρcp

)
npDB (C∞)(

ρcp
)
n f υ

, Ec = u2s(
cp

)
n f (Ts − T∞)

, s = L

√
a

υ

are the mixed convection parameter, local Grashof number, buoyancy ratio parameter, local
Reynolds number, stagnation parameter, local magnetic parameter, Prandtl number, Schmidt
number, Lewis number, thermophoresis parameter, Brownian diffusion parameter, local Eck-
ert number and slip parameter, respectively.

2.3 Physical quantities of engineering interests

The local skin friction or frictional drag coefficientC fx and local Nusselt number Nux which
stimulate the stress at the surface and heat transfer rate from surface to fluid, respectively,
are defined by

C fx = τs

ρ u2s
and Nux = xqs

k(Ts − T∞)
, (11)

where τs and qs are the surface shear stress and surface heat flux, respectively, and are given
by

τs = μ

(
∂u

∂y

)
y=0

and qs = − k

(
∂T

∂y

)
y=0

. (12)

The dimensionless form of expressions in Eq. (11) is given as

C fx Re
1/2
x =

√
(n + 1)

2
f ′′(0) and Nux Re

−1/2
x = −

√
(n + 1)

2
θ ′(0), (13)

where f ′′(0) and θ ′(0) are, respectively, dimensionless wall velocity gradient and wall tem-
perature gradient. It is important to note that with the new boundary condition the Sherwood
number, which represents the dimensionless mass flux, is identically zero (Kuznetsov and
Nield 2014).

3 Solution methodology

Nonlinearity present in the system of Eqs. (7)–(9) restricts us to find a closed-form solution of
this system of ordinary differential equations. But one can aim for an approximate solution of
desired accuracy. The approximate solution can be obtained either numerically or analytically.
There are various analytical methods which provide an approximate solution of nonlinear
ordinary differential equations in terms of a series, viz. perturbation method, variational
iteration method, differential transform method, Adomian decomposition method, homo-
topy analysis method, homotopy perturbation method, optimal homotopy analysis method,
etc. In the same way there is a long list of numerical methods which provides sufficiently
good approximate solution, viz. shooting method, finite difference method, finite element
method, finite volume method, control volume finite element method, collocation method,
etc. However, the choice of an efficient numerical scheme for individual problem depends
upon various merits of the problem. The present problem has been solved analytically as
well as numerically. For analytical solution we have employed optimal homotopy analysis
method, whereas for numerical solution, we have used finite element method.
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3.1 Analytical approach: optimal homotopy analysis method (OHAM)

Liao (2010) proposed a method to solve nonlinear problems that is known as the optimal
homotopy analysis method (OHAM), which is simply an improved version of HAM (Liao
1992). The OHAM is preferred among all other analytical approaches because of the follow-
ing reasons:

1. OHAM does not necessitate any large/small parameter in the problem.
2. The convergence region can be controlled easily.
3. The rate of approximation of series solution is modifiable.
4. It delivers freedom to choose altered sets of base functions.

It is well known that in the frame of HAM the solutions of the problem are presented in terms
of series, in reference of our problem, the unknown terms f (η), θ(η) and φ(η) are obtained
in terms of series solution as follows:

f (η) = f0(η) +
∞∑
k=1

fk(η), θ(η) = θ0(η) +
∞∑
k=1

θk(η), φ(η) = φ0(η) +
∞∑
k=1

φk(η), (14)

where f0(η), θ0(η) and φ0(η) are the initial guesses chosen in a way such that it satisfies the
given boundary conditions (10). Thus,

f0(η) = γ η + (1 − s)

(1 + γ )

(
1 − e−sη) , θ0(η) = e−η, φ0(η) = − Nt

Nb
e−η. (15)

And the functions fk(η), θk(η) and φk(η) are obtained from higher order HAM deformation
equations given by

L f
[
fk(η) − χk(η) fk−1(η)

] = hf R
f
k (η), (16)

L f
[
θk(η) − χk(η)θk−1(η)

] = hθ R
θ
k (η), (17)

L f
[
φk(η) − χk(η)φk−1(η)

] = hφR
φ
k (η), (18)

which are bound to the following boundary conditions:

fk(0) = 0, f ′
k(0) = 0, θk(0) = 0, Nbφ′

k(0) + Ntθ ′
k(0) = 0,

fk(∞) = 0, f ′
k(∞) = 0, θk(∞) = 0, φk(∞) = 0,

}
(19)

where hf , hθ and hφ and L f , Lθ and Lφ are the convergence control parameters to be
determined later and auxiliary linear operators are defined by:

L f = ∂3

∂η3
− ∂

∂η
, Lθ = ∂2

∂η2
− ∂

∂η
, Lφ = ∂2

∂η2
− ∂

∂η
(20)

and

R f
k = f ′′′

k−1 +
k−1∑
j=1

(
f j (η) f ′′

k−1− j (η) − 2n

n + 1
f ′
j fk−1− j (η)

)
+ λθk−1(η)

− M
(
f ′
k−1(η) − γ

) + 2n

n + 1
γ 2, (21)

Rθ
k = 1

Pr
θ ′′
k−1(η) +

k−1∑
j=1

(
f j (η)θ ′

k−1− j (η) + Nbθ ′
j (η)φ′

k−1− j (η) + Nt
(
θ ′
j (η)θ ′

k−1− j (η)
)
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+ Ec
(
f ′′
j (η) f ′′

k−1− j (η)
)

+ M Ec
(
f ′
j (η) − γ

) (
f ′
k−1− j (η) − γ

))
, (22)

Rφ
k = φ′′

k−1 +
k−1∑
j=1

(
Sc f j (η)φk−1− j (η)′

) + Nt

Nb

(
θ ′′
k−1(η)

)
, (23)

where

χk =
{
0 k ≤ 1
1 k > 1.

(24)

It may be noted that the series solution of f, θ and φ contains convergence control param-
eters hf , hθ and hφ (Hayat et al. 2017), which controls the convergence region as well as
convergence rate of these homotopy series solutions. Unlike HAMwhere the values of hf , hθ

and hφ were used to chosen from the so called h-curves, in OHAM, the kth order optimum
values of these parameters are obtained by minimizing the kth order total discrete averaged
squared residual error (Liao 2010) defined as:

E f
k = 1

l + 1

l∑
j=1

[
Nf

(
k∑

i=1

fi
(
η j

) k∑
i=1

θi
(
η j

) k∑
i=1

φi
(
η j

))]2

, (25)

Eθ
k = 1

l + 1

l∑
j=1

[
Nθ

(
k∑

i=1

fi
(
η j

) k∑
i=1

θi
(
η j

) k∑
i=1

φi
(
η j

))]2

, (26)

Eφ
k = 1

l + 1

l∑
j=1

[
Nφ

(
k∑

i=1

fi
(
η j

) k∑
i=1

θi
(
η j

) k∑
i=1

φi
(
η j

))]2

, (27)

where Nf , Nθ and Nφ are the nonlinear differential operators used to represent Eqs. (7)–(9), l
is number of discrete points of non-dimensional coordinate axis η, η j = jδη and δη = ηmax

l+1 .
As far as our problem is concerned, the value of ηmax is chosen ηmax = 6. And the total
discrete residual error

Et
k = E f

k + Eθ
k + Eφ

k . (28)

All the calculations are carried out using BVPh2.0Mathematica software package (BVPh2.0
software package 2017).

The total discrete residual error Et
k defined by Eq. (28) and the optimal convergence

control parameters hf , hθ and hφ along with the total computing time at different order of
approximation are given in Table 1. As it can be seen that the Et

k decreases very rapidly as
order of approximation is increased.

Table 1 Optimal convergence control parameters and total discrete residual error with total CPU time at
different approximation label

k hf hθ hφ Et
k Time (s)

2 −0.396015 0.342369 −0.599549 0.19500825 4.4638

4 −0.384118 − 0.0890939 −0.533413 0.00582262 39.3759

6 −0.386712 − 0.0979535 −0.523727 0.00032277 259.539

8 −0.365977 − 0.107494 −0.440576 0.00002489 1368.84
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3.2 Numerical approach: finite element method (FEM)

Apart from the analytic solution, numerical solution is also obtained using a well-known
Galerkin finite element method (Reddy and Gartling 2010). The essential steps involved in
a typical finite element analysis are summarized below:

1. Generation of finite element mesh: like any other numerical technique this method also
involves the process of discretization of entire physical domain into a finite set of sub-
domains in such a non-overlappingmanner that they entirely cover thewhole flowdomain
of the problem. Each such sub-domain is termed as an element.

2. Derivation of the element equations: over a typical element from the discretized domain
(i.e., finite elementmesh) the variational (weak) formulation of the differential equation is
constructed. An approximate solution of the unknowns, i.e., dependent variables assumed
in the formofU = ∑n

i=1Uiϕi is selected,whereϕi are the element interpolating function
or basis function and Ui are the unknowns to be computed at the nodal points of the
element. Substituting these approximate solutions into the variational formulation of the
differential equation, the element equations over the typical element are obtained.

3. Global finite element model: to constitute the global finite element model representing
whole physical domain, the element (algebraic) equations obtained in previous step are
assembled by imposing the inter-element continuity and balance conditions.

4. Solution of the finite element model: to get the solution of the global finite element model
any of the direct or iterative methods of solving a system of algebraic equations can be
used after employing the boundary conditions.

A detailed description of Galerkin finite element method for solving non-dimensional ordi-
nary differential equations governing the boundary layer flow problems are given in the
research article (Seth et al. 2017).

4 Validation of approximate solution

In order to validate our approximate solution, we have compared the numerical values of
skin friction and Nusselt number obtained via analytical (OHAM) and numerical (FEM)
approaches which are provided in Tables 5 and 6. Further, we have compared our computed
results with the results obtained by Ishfaq et al. (2016) in Table 2. For this purpose, we have
reduced our problem to that of Ishfaq et al. (2016) by taking n = 1, Sc = 10, Nb = 0.1
and nullifying the rest of the parameters. From these tables one can conclude that both the
approximate solutions indicate an excellent agreement, which validates the accuracy and
cogency of our computed results.

5 Results and discussion

This article deals with mixed convection flow of a nanofluid over a stretchable surface with
Navier’s slip condition and moving free stream. The revised Buongiorno’s nanofluid model
is used to investigate the flow characteristics. All the boundary layer solution, i.e., velocity,
temperature and nanoparticle volume fraction are obtained using the methods briefed in pre-
vious section. Effect of various active parameters on the flow field variables are presented
in graphical form for better understanding. Moreover, the physical quantities of engineering
interest, viz. local skin friction coefficient C fx Re

1/2
x and local Nusselt number Nux Re

−1/2
x
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Table 2 Comparison of local Nusselt number Nux Re
−1/2
x with the value of Table 3 of Ishfaq et al. (2016)

Nt Pr = 3.97 Pr = 6.2

Present result (OHAM) Ishfaq et al. (2016) Present result (OHAM) Ishfaq et al. (2016)

0.1 1.276382 1.2764 1.619690 1.6198

0.2 1.183603 1.1836 1.474910 1.4749

0.3 1.095562 1.0957 1.338007 1.3381

0.4 1.013103 1.0131 1.211241 1.2110

0.5 0.936735 0.9361 1.094713 1.0947

are provided in tabular form. The OHAM solutions are obtained by taking optimal conver-
gence control variables hf , hθ and hφ at 6th order of approximation from Table 1. In order to
carry out numerical and analytical simulation the default values of flow-controlling param-
eters were taken as n = 2.0, M = 2.0, λ = 10, Nr = 0.2, γ = 0.5, Pr = 6.2, Nb =
0.2, Nt = 0.2, Ec = 0.1, Sc = 3.0 and s = 0.1, until otherwise specified particularly. In
each of the figures except Fig. 2, there are two sets of curves: one with dash lines and the
other with solid lines. These two sets of curves are plotted for two different values of flow
parameters specified thereat.

5.1 Nanofluid velocity profile

The formation of momentum boundary layer and velocity behavior within the layer are
presented in Figs. 2, 3, 4 and 5. Figure 2 is included in the article to describe the behavior
of momentum boundary layer as well as the velocity variation corresponding to stagnation
parameter γ . As we know that γ is responsible for relative velocities of stretching sheet and
free stream. γ < 1 indicates that the surface stretching velocity is faster than the velocity
of free stream, γ = 1 indicates that both, surface stretching velocity and fluid in the free
stream are in unison and γ > 1 represents the case when nanofluid in the free stream is
moving faster than the stretching rate of surface. It is clear from the figure that the velocity
of nanofluids increases with increasing value of γ , but the boundary layer width is observed
to shrink for increasing value of γ . Another observation is worth pointing that in general
for γ = 1, i.e., when free stream and stretching velocities are same, there should be no
boundary layer, but for the current problem, formation of boundary layer can be seen which
is solely the contribution of buoyancy forces acting on the fluid. Figure 3 is plotted for
various values of mixed convection parameter λ corresponding to γ = 0.5 and γ = 1.5. The
velocity of nanofluid has an increasing nature towards mixed convection parameter, which
is theoretically correct as increase in λ means enhanced buoyancy forces which assist the
fluid motion. Effect of M on velocity field for both cases of stagnation parameters, i.e., for
γ < 1 and γ > 1 is shown in Fig. 4. In both situations f ′(η) tend to decrease throughout the
boundary layer. The applied magnetic field in a moving fluid generates an electromagnetic
body force whose tendency is to inhibit the fluid motion, thus reducing the fluid velocity and
boundary layer width in effect. This characteristic of the applied magnetic field is illustrated
in Fig. 4. The effect of Navier’s slip occurring at the solid–fluid interface with or without
buoyancy forces is presented in Fig. 5. In general the existence of slip between the fluid
and the surface causes a dampening in the motion of fluid which is also visible from dashed
lines of Fig. 4. But the solid lines which are plotted for different values of s when λ �= 0
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Fig. 2 Velocity profile for γ

suggest that the slip velocity acts as assisting parameter for nanofluid motion and enhances
the motion significantly.

5.2 Nanofluid temperature profile

The temperature variation in the thermal boundary layer with respect to some flow parameters
are depicted through plots (Figs. 6, 7, 8 and 9). Figure 6 explains the nature of slip velocity on
temperature with and without the buoyancy forces. The dashed line curves which represent
the temperature behavior towards s, in absence of buoyancy forces reveal that, temperature
rises as more and more fluid slips through the surface. Exactly opposite but slightly weaker
phenomena has been encountered when buoyancy forces were in action. Figure 7 is plotted
for a set of values of Ec under two different values of γ . The curves with dashed lines
are plotted for γ = 0.5, whereas curves with solid lines correspond to γ = 1.5. These
curves suggest that an enhancement in the stagnation parameter leads to decrements in the
temperature. The increasing value of Ec indicates the increasing effect of viscous and Joule
dissipation. It is a well-known fact that in a moving fluid, due to viscous forces acting
between two adjacent fluid layers a frictional heat is generated, similarly when an electrically
conducting fluid moves in presence of magnetic field it generates heat, which helps to raise
the temperature of the nanofluid throughout the boundary layer. In Fig. 8 there are two sets of
curves of temperature, one for Sc = 3 and the second one for Sc = 10 and each set contains
five curves corresponding to the thermophoresis parameter Nt = 0.1, 0.2, 0.3, 0.4, 0.5. The
term “thermophoresis” is particle analogous phenomenon to the well-known “Soret effect” in
liquidmixtures, which states that particles (species concentration) can diffuse due to presence
of temperature gradient. The increasing value of Nt corresponds to a stronger thermophoresis
phenomena, which leads nanoparticles to diffuse quickly from the hot sheet into the boundary
layer, these nanoparticles transport temperature with them throughout the boundary layer. It
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Fig. 3 Velocity profile for λ and γ

Fig. 4 Velocity profile for M and γ
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Fig. 5 Velocity profiles for λ and s

Fig. 6 Temperature profile for s and λ
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Fig. 7 Temperature profile for γ and Ec

Fig. 8 Temperature profile for Sc and Nt
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Fig. 9 Temperature profile for Pr and Nb

can be seen that an increase in the Sc is accompanied by a rising temperature. The effect of
Brownian diffusion parameter on temperature in the present scenario is almost insignificant as
compared to that of Khan and Pop (2010). But Fig. 9 suggests that in revised nanofluid model
the contribution of Brownian diffusion of nanoparticles possesses marginally an opposite
nature. The same result is also reported in the research article ofHalimet al. (2017). This figure
also includes the curves corresponding to two different values of Pr . Curves corresponding
to higher values of Pr are the lower ones. The results plotted are quite obvious, as the fluids
having higher Prandtl number have small thermal diffusivity.

5.3 Nanoparticle volume fraction profile

The analysis of nanoparticle volume fraction concentration in nanofluid as well as its bound-
ary layer formation is depicted through graphs for active flow parameters and presented in
Figs. 10, 11, 12 and 13. It is interesting to note that in these figures all the curves start with a
negative value and then obtain a positive peak value and then vanish as we move towards free
stream. The physical explanation to these characteristics is that the nanoparticle concentration
near the solid surface is lower than that in free stream and it is higherwithin its boundary layer.
These figures indicate that the higher concentration of nanoparticles is in the central region
of the boundary layer. The effect of velocity slip on nanoparticles distribution is reported in
Fig. 10 for two different conditions λ = 0.0 and λ = 10. Nanoparticles distribution displays
behavior similar to that observed in Fig. 6 as it moves towards free stream. Figure 11 analyzes
the effect of Eckert number Ec for γ = 0.5 and γ = 1.5. It is concluded from this figure
that Eckert number has the tendency to reduce the nanoparticle migration within the vicinity
of surface, but it flips the nature of φ(η) before attaining the ambient free stream boundary
condition. However, the effect of γ is to reduce the the concentration of nanoparticles in its
boundary layer before it changes its nature near the wall. Figure 12 tells the effects of Pr
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Fig. 10 Nanoparticle volume fraction profile for s and λ

Fig. 11 Nanoparticle volume fraction profile for Ec and γ
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Fig. 12 Nanoparticle volume fraction profile for Pr and Nb

Fig. 13 Nanoparticle volume fraction profiles for Sc and Nt
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and Nb. Both active parameters tend to enhance the nanoparticle concentration φ(η) near
the surface, but quickly change their nature and start to dilute nanoparticle concentration
φ(η) as η → ∞. In Fig. 13 it appears that as Nt increases, i.e., as thermophoresis phenom-
ena strengthens, the transport of nanoparticles weakens near the sheet before its nature gets
flipped to enhance transportation of nanoparticles in the boundary layer. The Schmidt num-
ber, however, plays an opposite role in nanoparticle distribution. As we know that Schmidt
number represents the relative strength of momentum diffusivity to nanoparticles diffusivity.
A higher Schmidt number corresponds to either a higher momentum diffusivity which leads
to lower nanofluid velocity, thus reducing the nanoparticle migration through convection or
a weaker molecular (nanoparticle) diffusivity which leads to a weaker penetration depth of
nanoparticles.

5.4 Quantities of physical interests

Numerical values of skin friction coefficient andNusselt number corresponding to active flow
parameters obtained by OHAM as well as FEM are listed in Tables 5 and 6. From Table 5 it
can be noted that the skin friction coefficient decreases for increasing values of n, s andM on
the other hand C fx Re

1/2
x tends to enhance with increasing values of λ. However, C fx Re

1/2
x

tends to decrease as stagnation parameter increases from 0 to 1, i.e., until the sheet velocity
is greater than the free stream velocity, but it starts increasing as the formation of momentum
boundary layer is reversed. Table 6 values suggest that the active control parameters, namely,
M, Nb, Nt and Ec play a dampening role in the heat transfer process. Although the impact
of Nb on Nusselt number is almost negligible contradictory to the result of Khan and Pop
(2010), on the other hand, γ, Pr and Sc enhances the rate of heat transfer at the surface.

5.5 Estimation of skin friction coefficient and Nusselt number: a quadratic
multiple regression model

A quadratic regression estimate of the skin friction coefficient and Nusselt number is pre-
sented in this section. The multiple quadratic regression model for skin friction coefficient
is given for a set of 100 values of s, n and γ generated randomly from the intervals
[0, 0.5], [0, 2] and [0, 2], respectively. On the other hand, the multiple quadratic regression
model for the Nusselt number is given for a set of 100 values of Nb, Nt and γ generated
randomly from the interval [0.1, 0.5], [0.1, 0.5] and [0, 2]. All the other parameters are kept
constant as specified.
The estimated quadratic regressionmodel forC f x Re

1/2
x and Nux Re

−1/2
x are given as follows

C fest = C f + b1s + b2n + b3γ + b4s
2 + b5n

2 + b6γ
2 + b7s n + b8sγ + b9nγ (29)

Nuest = Nu + c1Nb + c2Nt + c3γ + c4Nb2 + c5Nt2 + c6γ
2 + c7Nb Nt

+ c8Nbγ + c9Ntγ (30)

Table 3 contains the quadratic regression coefficients corresponding toC f x Re
1/2
x for different

values of λ and M and Table 4 contains the values of quadratic regression coefficients
corresponding to Nux Re

−1/2
x for different values of λ and Pr . The maximum relative error

bounds ε = |C fest − C f |/|C f | and ε1 = |Nuest − Nu|/|Nu| are also obtained. As one can
see from Table 3 that the coefficients of s and γ are large as compared to n which suggest
that a small variation in s and γ will result in a large perturbation in C f x Re

1/2
x . Similarly

Table 4 values suggest that the coefficients of Nt and γ are large. Thus, a small variation in
Nt and γ will result in maximum deflection in Nux Re

−1/2
x . From Table 4 it can be seen that
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Table 3 Quadratic regression coefficients and error bound for the estimated C f x Re
1/2
x with variations in λ

and M

λ M C f b1 b2 b3 b4 b5 b6 b7 b8 b9 ε

0 0.5 − 1.059 1.199 −0.048 0.737 0.375 −0.144 0.269 −0.293 −1.381 0.326 0.073

2.0 − 1.568 1.852 −0.011 1.337 0.234 −0.122 0.188 −0.248 −1.997 0.249 0.049

10 0.5 1.879 − 2.882 −0.435 0.216 3.825 −0.010 0.386 −0.288 −1.371 0.279 0.054

2.0 1.369 − 2.576 −0.309 0.541 4.035 −0.027 0.396 −0.240 −1.801 0.218 0.067

Table 4 Quadratic regression coefficients and error bound for the estimated Nux Re
−1/2
x with variations in

λ and Pr

λ Pr Nu c1 c2 c3 c4 c5 c6 c7 c8 c9 ε1

0 6.2 0.968 − 0.004 −0.665 1.579 0.015 −0.056 −0.554 0.053 − 0.006 − 0.013 0.022

10 1.199 − 0.019 −0.935 2.132 0.027 −0.113 −0.799 0.104 0.001 − 0.003 0.024

10 6.2 1.230 0.048 −1.251 1.413 − 0.078 −0.344 −0.542 0.624 − 0.038 0.317 0.028

10 1.492 0.045 −1.924 1.970 − 0.092 −0.695 −0.802 1.049 − 0.049 0.642 0.051

Table 5 Skin friction coefficient C fx Re
1/2
x

γ s n λ M Analytical (OHAM) Numerical (FEM)

0.0 0.1 2.0 10 2.0 1.40453437 1.40395844

0.5 – – – – 1.20419312 1.20049477

1.5 – – – – 2.55946300 2.54956005

0.5 0.2 – – – 1.01134336 1.01109484

– 0.3 – – – 0.87256833 0.87294883

– 0.1 0.5 – 1.26343708 1.26643208

– – 1.0 – – 1.14897770 1.14834401

– – 2.0 – – 1.04731645 1.04717234

– – – 5 – 0.21180641 0.21293347

– – – 10 – 1.20419312 1.20049477

– – – 15 – 2.38735816 2.38709933

– – – 10 0.5 1.39010649 1.39155044

– – – – 1 1.32776747 1.32699582

– – – – 2 1.20419312 1.20049477

the coefficient of Nb is very small as compared to the case in Khan and Pop (2010). A close
observation of Table 4 values suggest that the coefficient of Nb when λ = 0 is negative, but
in presence of buoyancy forces, i.e., when λ �= 0 the coefficient c1 possesses positive value.
Thus we can conclude that in the current analysis, due to presence of buoyancy forces, Nb
has a gradually increasing effect on Nusselt number, opposite to what reported by Kuznetsov
and Nield (2014). This observation of Nusselt number is also justified from 6.
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Table 6 Nusselt number Nux Re
−1/2
x

γ M Pr Nb Nt Ec Sc Analytical (OHAM) Numerical (FEM)

0.0 2.0 6.2 0.2 0.2 0.1 3 0.35580282 0.35610238

0.5 2.0 – – – – – − 1.24291654 − 1.24241744

1.5 2.0 – – – – – − 1.65940636 − 1.65473237

0.5 0.5 – – – – – − 1.57932362 − 1.57952632

0.5 1.0 – – – – – − 1.45721446 − 1.45832035

– 2.0 – – – – – − 1.24291654 − 1.24241744

– – 5.0 – – – – − 1.11983640 − 1.11969256

– – 6.2 – – – − 1.24291654 − 1.24241744

– – 10 – – – – − 1.56680447 − 1.56690274

– – 6.2 0.4 – – – − 1.25616720 − 1.25604837

– – – 0.6 – – – − 1.26021930 − 1.26003387

– – – 0.2 0.4 – – − 0.98695749 − 0.98305466

– – – – 0.6 – – − 0.67867348 − 0.67895034

– – – – 0.2 0.2 – − 1.24291654 − 1.24205837

– – – – – 0.3 – − 0.63866581 − 0.63865033

– – – – – 0.1 5 − 1.17451589 − 1.17450228

– – – – – – 10 − 1.06347141 − 1.06408833

6 Conclusion

Throughout the investigation our focus has been devoted to address the velocity slip effect on
mixed convection stagnation point flow towards a stretching surface. To analyze the effects of
various flow controlling parameters, the approximate solutions were obtained analytically as
well as numerically. The analytical solution has been obtained with the help of OHAM, while
numerical solution has been obtained using Galerkin finite element technique. The solutions
obtained via these two different approaches are in full agreement. The flow characteristics
were discussed using graphs and tables. A statistical analysis is carried out on the data of
skin friction and Nusselt number corresponding to some key flow-controlling parameters to
devise an expression for estimating the skin friction coefficient and Nusselt number. Some
important findings of the entire study worthy of attention are as follows:

• The velocity of the nanofluid increases with increasing value of stagnation parameter,
but the width of its boundary layer reduces significantly.

• The velocity slip tends to enhance the nanofluid velocity in presence of buoyancy forces,
while it has a negative impact on velocity when no buoyancy forces were present. Exactly
opposite effect was observed in temperature and nanoparticle distribution.

• In all the situations, the temperature as well as its boundary layer width decreases with
increasing value of stagnation parameter. TheBrownian diffusion exhibit negligible effect
on temperature field.

• The concentration of nanoparticle volume fraction is found to be higher in the middle of
its boundary layer. Stagnation parameter tends to dilute the nanoparticles concentration,
whereas Eckert number enhances the nanoparticles concentration.

• Asper the expression of skin friction coefficient, the impact of velocity slip and stagnation
parameter is very prominent on skin friction coefficient. The Nusselt number is highly
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sensitive for thermophoresis parameter and stagnation parameter for fixedvalue of Prandtl
number while the Brownian diffusion parameter has almost negligible impact.
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