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Abstract We study a recovery problem for an unknown boundary coefficient relating to one
material characteristic in an eddy current field. The field equations are represented in terms
of the potential field method (T − ψ method) and can be solved numerically by the nodal
finite element method. We introduce a measurement as an additional condition and prove the
existence and uniqueness of the weak solution. Further, we present an iteration algorithm for
the recovery problem and validate its efficiency by two numerical experiments.

Keywords Eddy current equations · Inverse problem · T −ψ method · Impedance boundary
condition
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1 Introduction

Owing to increasing requirements for high performance devices, it is indispensable to get an
accurate evaluation of material characteristics during designing of electromagnetic devices.
Usually, these material characteristics include the permeability μ, the conductivity σ and the
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intrinsic impedance η. η plays an important role when the penetration “skin” of the conductor
is narrow in comparisonwith its geometric dimensions. In this case, the electromagnetic fields
are closely concentrated near the conductor boundaries and decay very fast in directions
normal to these boundaries. To describe these speedy spatial variations accurately, people
come up with the idea of impedance boundary condition (cf. Fabrizio and Morro 2000). This
boundary condition is based on the local penetration of electromagnetic fields, i.e. at each
boundary point, tangential components of electric and magnetic fields (denoted by E and H ,
respectively) are related to each other, which can be expressed mathematically as follows:

n × E = −ηn × (n × H) , (1.1)

where n is the unit outer normal vector.
Our work in this contribution is to establish a mathematical model to evaluate intrinsic

impedance. Let us consider the following time dependent eddy current approximation of
Maxwell’s equations in a simple-connected bounded convex polyhedron � ⊂ R

3(cf. Monk
2003):

∇ × H (x, t) = σ E (x, t) , (x, t) ∈ � × [0, T ] , (1.2)

∇ × E (x, t) = −∂tμH (x, t) , (x, t) ∈ � × [0, T ] . (1.3)

We assume that μ and σ are positive constants. This assumption helps us to build our model
as simple as possible with aim to focus our attention on the evaluation.

Maxwell’s equations are usually transformed into the E or H equation and solved approx-
imately by edge finite element method. Besides, it can also be changed into potential
formulations by means of a decomposition of the field E or H (the so-called A − φ or
T − ψ method). Then, nodal finite elements are used to solve the equation numerically.

There are several advantages for the potential field method. For example, it can deal with
the possible discontinuity between different mediums very well and has good numerical
accuracy. The method avoids spurious solutions by adding a penalty function term in the
dominant equation. Moreover, it also has attractive features including natural coupling to
moment and boundary element methods, and global energy conservation. There are many
relative works (cf. Chew 2014; Chen et al. 2014; Chovan et al. 2017; Kang et al. 2015 and
references therein). Moreover, Mur (1994) gives some results of comparison between the
edge element and the nodal element. It claims that the linear nodal element is more accurate
than the Nédélec’s first-order edge element. With regard to the storage requirements, the
Nédélec’s first-order edge element is cheaper than the linear nodal element.

Solving electromagnetism problem defined in convex domain or C1,1 domain by nodal
elements is classical (cf. Kang and Kim 2009; Zeng et al. 2009). Recently, some methods
allowing nodal elements to apply in reentrant domain are found, such as weighted method
(cf. Costabel and Dauge 2002) and the L2 projection method (cf. Duan et al. 2009, 2012,
2013a, b, 2016). We only consider the convex domain in this contribution to simply our
analysis, and we will handle the reentrant one in the future work.

Now, we transform (1.2), (1.3) into T − ψ formulation. Taking divergence of both sides
of (1.2) yields

∇ · (σ E) = 0,

so there exists a vector potential T such that

E = 1

σ
∇ × T . (1.4)
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By substituting (1.4) into (1.2), we have

∇ × (H − T ) = 0,

and then a scalar potential ψ can be introduced satisfying

H = T + ∇ψ. (1.5)

Now, taking (1.4), (1.5) into (1.3), we get the following formulation:

∂tμ (T + ∇ψ) + ∇ ×
(
1

σ
∇ × T

)
= 0. (1.6)

The use of nodal elements comes from regularizing (1.6) by adding a penalty term
−∇ ( 1

σ
∇ · T)

(cf. Jin 2014). Take divergence of both sides of (1.6) to get that

∇ · ∂tμ (T + ∇ψ) = 0,

and then add the penalty term in (1.6),

∂tμ (T + ∇ψ) + ∇ ×
(
1

σ
∇ × T

)
− ∇

(
1

σ
∇ · T

)
= 0.

Now, we divide the time interval [0, T ] into N sub-intervals
[
ti−1, ti

]
for ti = iτ , i =

1, 2, 3, . . . , N , where τ = T
N , N = 1, 2, 3, . . .. Based on backward Euler’s method, we get

the following time discretization scheme:

μ (Ti + ∇ψi )

τ
+ ∇ ×

(
1

σ
∇ × Ti

)
+ ∇

(
1

σ
∇ · Ti

)
= μ (Ti−1 + ∇ψi−1)

τ
,

∇ · μ (Ti + ∇ψi )

τ
= ∇ · μ (Ti−1 + ∇ψi−1)

τ
,

We give a pair of nonzero initial value T0 and ψ0 to begin the computation. For convenience,
we eliminate the index i in this paper.

The direct problemof this type is usually accompanied by the following standard boundary
conditions:

n ×
(
1

σ
∇ × T

)
= 0,

n · T = 0,

ψ = 0.

Similar to Kang and Kim (2009), we can prove that the finite element approximate solution
of (1.5) converges on the magnetic field in the case of the potential field formulation with
this kind of boundary conditions.

Next, we denote the boundary of � as 	, and split 	 into two complementary, non-empty
and non-overlapping parts, 	 = 	Neu + 	loss. On 	loss, the impedance boundary condition
(1.1) is defined. Considering ψ is homogeneous on the whole boundary, we rewrite (1.1) as:

n ×
(
1

σ
∇ × T

)
= η (n × T ) × n.

Above all, considering that μ and σ are positive constants, the T − ψ formulation reads
as follows:
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• The dominant equations are given by

K (T + ∇ψ) + ∇ × (∇ × T ) − ∇ (∇ · T ) = f , in�; (1.7)

K∇ · (T + ∇ψ) = ∇ · f , in�, (1.8)

where K = μσ
τ
, f = μσ(Ti−1+∇ψi−1)

τ
.

• The boundary conditions are

n × (∇ × T ) = 0, on	Neu; (1.9)

n × (∇ × T ) = λ (n × T ) × n, on	loss; (1.10)

n · T = 0, on	; (1.11)

ψ = 0, on	, (1.12)

where λ = ησ .

Our object of interest is to determinate the boundary coefficient λ describing the intrinsic
impedance. The paper (Slodička and Van Keer 2000) discusses some relevant results on
boundary coefficient determination for linear elliptic boundary value problem. Zemanova
et al. (2010) provide a measurement function to identify the boundary coefficient in terms
of the magnetic field equation; The analysis is made in the space H(curl,�), and Whitney’s
edge elements are used in the numerical experiment. The aim of this paper is to introduce the
mathematical model in terms of the potential field method. We first prove the well-posedness
of the problem in a suitable space. Then, we use linear nodal elements to solve the boundary
value problem numerically.

The paper is organized as follows. In Sect. 2, we first give some notations and results.
Then, we present a recovery problem for an unknown coefficient in the impedance boundary
condition based on the T − ψ method. To guarantee the uniqueness of the solution, we
introduce ameasurement on the boundary as the additional condition. In Sect. 3, we introduce
a real function m(λ) in terms of the weak solution and study its behavior. Further, we prove
the well-posedness of the recovery problem. In Sect. 4, we give two numerical experiments
to validate the efficiency of the proposed scheme. Finally, some conclusions are given in the
last section.

2 Notation and problem setting

For convenienceof presentation, somenotations are suppliedfirst,whichwill be used through-
out this paper. Let Ls(�)(s > 1) denote the usual s-integrable function space equipped with
the norm ‖ · ‖Ls (�). Particularly, L2(�) is the Hilbert space of square integrable functions
equipped with the following inner product and norm:

(u, v)L2(�) :=
∫

�

u(x)v(x)dx and ‖u‖L2(�) := √
(u, u).

If m is a positive integer, define Hm(�) := {v ∈ L2(�) : Dξ v ∈ L2(�), 0 < |ξ | ≤ m}
equipped with the norm

‖u‖Hm (�) :=
⎛
⎝ ∑

|ξ |≤m

∥∥Dξu
∥∥2
L2(�)

⎞
⎠

1
2
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where ξ represents a non-negative triple index.Moreover, boldface notation expresses vector-
valued quantities, such as L2(�) := (L2(�))3.

Define the Hilbert space

H̃1
0 (�) := {v ∈ H1(�) : n · v = 0 on	}.

Further, we denote V := H̃1
0 (�) × H1

0 (�) endowed with the sum-norm

‖(Q, φ)‖2V := ‖Q‖2H1(�)
+ ‖∇φ‖2L2(�)

.

In addition, we show the following lemmas, which will be used in the consequent sections
(cf. Kang and Kim 2009). A direct application of these lemmas yields that the V -norm is

equivalent to the norm (‖Q + ∇φ‖2L2(�)
+ ‖∇ × Q‖2L2(�)

+ ‖∇ · Q‖2
L2(�)

)
1
2 .

Lemma 2.1 Let � be a bounded convex polyhedron. Then, there exists a constant C > 0
such that

‖Q + ∇φ‖2L2(�)
+ ‖∇ × Q‖2L2(�)

+ ‖∇ · Q‖2L2(�)
≥ C ‖(Q, φ)‖2V , ∀ (Q, φ) ∈ V .

Lemma 2.2 There exists a constant C > 0 such that

(P + ∇ϕ, Q + ∇φ)L2(�) + (∇ × P,∇ × Q)L2(�) + (∇ · P,∇ · Q)L2(�)

≤ C ‖(P, ϕ)‖V ‖(Q, φ)‖V , ∀ (P, ϕ) , (Q, φ) ∈ V .

Now, we can define the weak solution to (1.7)–(1.12) in suitable spaces. First, we assume
that

0 < Kmin ≤ K ≤ Kmax a.e. in�,

f ∈ L2(�). (2.1)

We take the scalar product of (1.7) with Q ∈ H̃1
0 (�) and the scalar product of (1.8) with

ψ ∈ H1
0 (�). Afterwards, we integrate the results over � and apply Green’s theorems. Then,

the resulting formulations are added together. The following variational formulation can be
stated.

Problem 1 Find (T , ψ) ∈ V , such that

K (T + ∇ψ, Q + ∇φ)L2(�) + (∇ × T ,∇ × Q)L2(�) + (∇ · T ,∇ · Q)L2(�)

+λ (n × T , n × Q)L2(	loss )
= ( f , Q + ∇φ)L2(�) , ∀ (Q, φ) ∈ V . (2.2)

According to the Lax–Milgram theorem, Problem 1 has an infinite number of solutions
depending on the free positive parameter λ at 	loss. From now on, we denote (Tλ, ψλ) to
show the relationship between λ and the solution to Problem 1. To guarantee the uniqueness
of (λ, (Tλ, ψλ)), we need an additional condition independent to (2.2).

In this contribution, the uniqueness is guaranteed by means of the following tangential
component measurement along 	loss:∫

	loss

|n × Hλ|2 =
∫

	loss

|n × Tλ|2 = M > 0. (2.3)

Remark 2.1 Note that ∇ψ should be included as the integrand in the measurement. We omit
this term since ψ is homogeneous on the whole boundary. In Sect. 4, we give the complete
T −ψ formulation of the measurement and verify its effect on the uniqueness of the solution
by two experiments.
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3 Well-posedness

In this section, we will prove some properties for the solution (λ, (Tλ, ψλ)) first.
The following lemma gives the uniform estimate of (Tλ, ψλ) in the V -norm and its trace

with respect to λ > 0.

Lemma 3.1 Let the assumption (2.1) be satisfied. Then, there exists a positive constant C
such that

‖(Tλ, ψλ)‖2V + λ ‖n × Tλ‖2L2(	loss )
≤ C

Proof Taking Q = Tλ, φ = ψλ in (2.2), using Cauchy inequality, Young inequality and
Lemma 2.2, we obtain

K ‖Tλ + ∇ψλ‖2L2(�)
+ ‖∇ × Tλ‖2L2(�)

+ ‖∇ · Tλ‖2L2(�)
+ λ ‖n × Tλ‖2L2(	loss)

≤ ‖ f ‖L2(�) ‖Tλ + ∇ψλ‖L2(�) ≤ C ‖ f ‖L2(�) ‖(Tλ, ψ)‖V
≤ Cε ‖ f ‖2L2(�)

+ ε ‖(Tλ, ψ)‖2V . (3.1)

On the other hand, considering Lemma 2.1, we get

K ‖Tλ + ∇ψλ‖2L2(�)
+ ‖∇ × Tλ‖2L2(�)

+ ‖∇ · Tλ‖2L2(�)
≥ C ‖(Tλ, ψλ)‖2V .

From the above two inequalities, we have

C ‖(Tλ, ψλ)‖2V + λ ‖n × Tλ‖2L2(	loss)
≤ Cε ‖ f ‖2L2(�)

+ ε ‖(Tλ, ψ)‖2V
Considering a suitable ε concludes the proof.

To make use of the measurement (2.3), we define a real value function m : [0,∞) →
[0,∞) given by

m (λ) = ‖n × Tλ‖2L2(	loss)
.

This function m (λ) is defined in terms of the weak solution to (2.2) depending on the free
positive parameter λ.

First, let us study the continuous behavior of the introduced function m (λ).

Lemma 3.2 (Continuity) Let (2.1) be satisfied. Then, the function m (λ) is continuous on
(0,∞).

Proof |m (λ) − m (λ + ε)| → 0 (ε → 0) needs to be shown according to the definition of
continuity. For any λ > 0, we choose a small parameter ε satisfying |ε| < λ. Subtracting
(2.2) from (2.2) for λ = λ + ε, we obtain

K ((Tλ+ε + ∇ψλ+ε) − (Tλ + ∇ψλ) , Q + ∇φ)L2(�) + (∇ × (Tλ+ε − Tλ) ,∇ × Q)L2(�)

+ (∇ · (Tλ+ε − Tλ) ,∇ · Q)L2(�) + λ (n × (Tλ+ε − Tλ) , n × Q)L2(	loss)

+ε (n × Tλ+ε, n × Q)L2(	loss)
= 0. (3.2)

This can be written equivalently as:

K ((Tλ+ε + ∇ψλ+ε) − (Tλ + ∇ψλ) , Q + ∇φ)L2(�) + (∇ × (Tλ+ε − Tλ) ,∇ × Q)L2(�)

+ (∇ · (Tλ+ε − Tλ) ,∇ · Q)L2(�) + (λ + ε) (n × (Tλ+ε − Tλ) , n × Q)L2(	loss)

+ε (n × Tλ, n × Q)L2(	loss)
= 0. (3.3)
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Summing up (3.2) and (3.3) and choosing Q = Tλ+ε − Tλ, φ = ψλ+ε − ψλ, we obtain

2K ‖(Tλ+ε + ∇ψλ+ε) − (Tλ + ∇ψλ)‖2L2(�)
+ 2 ‖∇ × (Tλ+ε − Tλ)‖2L2(�)

+2 ‖∇ · (Tλ+ε − Tλ)‖2L2(�)
+ (2λ + ε) ‖n × (Tλ+ε − Tλ)‖2L2(	loss)

+ε (n × (Tλ+ε + Tλ) , n × (Tλ+ε − Tλ))L2(	loss)
= 0 (3.4)

Using Lemma 3.1 for the last term on the left, we deduce∣∣ε (n × (Tλ+ε + Tλ) , n × (Tλ+ε − Tλ))L2(	loss)

∣∣
= |ε|

∣∣∣‖n × Tλ+ε‖2L2(	loss)
− ‖n × Tλ‖2L2(	loss)

∣∣∣ ≤ C |ε|
∣∣∣∣ 1

λ + ε
+ 1

λ

∣∣∣∣
≤ C

|ε|
λ

→ 0(ε → 0). (3.5)

Thus, the absolute value of the sum of the first four terms in (3.4) tends to 0 for ε → 0. From
the non-negativity of each of these terms, Lemmas 2.1 and 2.2, we have

‖(Tλ+ε − Tλ, ψλ+ε − ψλ)‖V → 0 and ‖n × (Tλ+ε − Tλ)‖L2(	loss)
→ 0 (ε → 0)

Recalling Cauchy inequality and Lemma 3.1, the following yields

|m(λ + ε) − m(λ)| = |‖n × Tλ+ε‖2L2(	loss)
− ‖n × Tλ‖2L2(	loss)

|
= |(n × (Tλ+ε + Tλ), n × (Tλ+ε − Tλ))L2(	loss)

|
≤ ‖n × (Tλ+ε + Tλ)‖L2(	loss)

‖n × (Tλ+ε − Tλ)‖L2(	loss)

≤ C

λ
‖n × (Tλ+ε − Tλ)‖L2(	loss)

→ 0(ε → 0),

which concludes the proof. ��
Next, the decreasing behavior of the function m (λ) is shown.

Lemma 3.3 (Decreasing nature). Let (2.1) be satisfied. Moreover suppose ε > 0 and λ > 0.
Then m (λ + ε) ≤ m (λ).

Proof The first four terms in (3.4) are non-negative and ε > 0, thus, from the last term we
obtain

m (λ + ε) = ‖n × Tλ+ε‖2L2(	loss)
≤ ‖n × Tλ‖2L2(	loss)

= m (λ) .

��
At last, the asymptotic character of the function m (λ) is given.

Lemma 3.4 (Asymptotic character) Let (2.1) be satisfied. Then it holds that m (λ) →
0 (λ → ∞).

Proof From Lemma 3.1, we have

λ ‖n × Tλ‖2L2(	loss)
≤ C, ∀λ > 0.

Thus, the proof is directly concluded by

m (λ) =
λ ‖n × Tλ‖2L2(	loss)

λ
→ 0 (λ → ∞) .

��
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Now, we give the main theorem in this contribution, which shows the well-posedness of
(2.2) and (2.3).

Theorem 3.5 Let (2.1) be satisfied and assume λ > 0. Then for any 0 < M <

limλ→0+ m(λ), there exists a unique weak solution to the inverse problem (2.2) and (2.3).

Proof The existence of a weak solution is directly guaranteed by Lemmas 3.1–3.4, so we
only need to show its uniqueness.

Suppose there exist two solutions. Then, one of the three following cases can occur:

1. Let (λ, (T , ψ)) and
(̃
λ, (T , ψ)

)
be two different solutions to (2.2) and (2.3). Subtracting

(2.2) for both solutions from each other and setting Q = T , φ = ψ , we get

(λ − λ̃) ‖n × T‖2L2(	loss)
= 0.

Hence, ‖n × T‖2L2(	loss)
= 0. It is a contradiction between this result and M > 0.

2. Now let (λ, (T , ψ)) and
(
λ,

(
T̃ , ψ̃

))
be two solutions to (2.2) and (2.3). Using the same

steps as in previous case, but setting Q = T − T̃ , φ = ψ − ψ̃ , we obtain

K
∥∥(T + ∇ψ) − (

T̃ + ∇ψ̃
)∥∥2

L2(�)
+ ∥∥∇ × (

T − T̃
)∥∥2

L2(�)

+ ∥∥∇ · (
T − T̃

)∥∥2
L2(�)

+ λ
∥∥n × (

T − T̃
)∥∥2

L2(	loss)
= 0.

Recalling (2.1), Lemma 2.1 and λ > 0, the last relations imply (T , ψ) = (
T̃ , ψ̃

)
.

3. Finally let (λ, (Tλ, ψλ)) and (λ + ε, (Tλ+ε, ψλ+ε)) with ε > 0 be different solutions to
(2.2) and (2.3). Resulting from (3.4) and considering that each solution satisfies (2.3)
yields

2K ‖(Tλ+ε + ∇ψλ+ε) − (Tλ + ∇ψλ)‖2L2(�)
+ 2 ‖∇ × (Tλ+ε − Tλ)‖2L2(�)

+2 ‖∇ · (Tλ+ε − Tλ)‖2L2(�)
+ (2λ + ε) ‖n × (Tλ+ε − Tλ)‖2L2(	loss)

= 0 (3.6)

This equation contradicts with (Tλ, ψλ) = (Tλ+ε, ψλ+ε).

The proof is done on the basis of these three cases. ��

4 Numerical experiments

This sectionwill provide a recovery algorithm, which is tested by two numerical experiments.
Let � be a unit cube in R

3. The boundary 	 is split into two pieces as follows: the loss
boundary condition is prescribed on the face z = 0 and z = 1, and other boundary conditions
are considered on the other faces, as shown in Fig. 1.

We design an algorithm based on our analysis to the following test problem. Note that we
change the condition on 	loss because ψλ is inhomogeneous.

Problem 2 Find (λ, (Tλ, ψλ)) satisfying

(Tλ + ∇ψλ) + ∇ × (∇ × Tλ) − ∇ (∇ · Tλ) = f , in�,

∇ · ((Tλ + ∇ψλ)) = ∇ · f , in�,

n × ∇ × Tλ = g1, on	Neu,

n × (∇ × Tλ) − λ (n × (Tλ + ∇ψλ)) × n = g2, on	loss,

n · Tλ = h1, on	,
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Fig. 1 Sketch of the domain and boundary conditions of the model. The red surfaces are the loss boundary

ψλ = h2, on	,∫
	loss

|n × (Tλ + ∇ψλ)|2 = M.

Correspondingly, we define the function m as:

m (λ) = ‖n × (Tλ + ∇ψλ)‖2L2(	loss)
.

The nodal finite element method is used to solve the boundary value problem for each
given λ, and the following iteration scheme is used to determine the coefficient λ,

λ
(n)
k = λk−1 −

(
1

2

)n−1 m (λk−1)

m′ (λk−1)
, n = 1, 2, 3, . . .

where

m′ (λ) = m (λ + h) − m (λ − h)

2h

with h = 0.005. We start with λ0 = 0.01, and λk = λ
(n)
k when m(λ

(n)
k ) > M . The iteration

ends if |m(λk) − M | < 10−6.

Experiment 4.1 The data functions f , g1, g2, h1, h2, and M = 5.333 are defined such that

Tλ =
⎛
⎝z − y
x − z
y − x

⎞
⎠ , ψλ = x + y + z, λ = 1.24

123
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Fig. 2 Exact solution in Experiment 4.1. a ‖Hλ‖. b Hλ

are the exact solutions (see Fig. 2), namely

Hλ = Tλ + ∇ψλ =
⎛
⎝z − y + 1
x − z + 1
y − x + 1

⎞
⎠ .

Figure 3 shows the behavior of the function, which is consistent with the theory. Its
three properties (continuity, monotonicity and asymptotic character) ensure the existence of
a unique solution for any amount of M on the boundary.

Figure 4 and Table 1 show the convergence of the iteration, which has stopped after five
iterations.

For the last approximations, the errors are∣∣λ − λapp
∣∣ = 1.9663 × 10−7,

∥∥Hλ − Hλapp
∥∥
L2(�)

= 1.7012 × 10−10.

Experiment 4.2 The data functions f , g1, g2, h1, h2, and M = 3.345 are defined such that

Tλ =
⎛
⎝sin x − x cos y
sin y − y cos z
sin z − z cos x

⎞
⎠ , ψλ = sin x + sin y + sin z, λ = 12.4

are the exact solutions (see Fig. 5), namely

Hλ = Tλ + ∇ψλ =
⎛
⎝sin x − x cos y + cos x
sin y − y cos z + cos y
sin z − z cos x + cos z

⎞
⎠

Figure 6 also shows the behavior of the function, and Fig. 7 and Table 2 show the conver-
gence of the iteration, which has stopped after seven iterations. The errors obtained for the
last approximations are∣∣λ − λapp

∣∣ = 3.773 × 10−4,
∥∥Hλ − Hλapp

∥∥
L2(�)

= 3.133 × 10−7.
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Fig. 3 Numerically obtained graph of the function m(λ) in Experiment 4.1

Fig. 4 The convergence of the iteration in Experiment 4.1

5 Conclusions

Westudy a recovery problem for an unknowncoefficient relating to onematerial characteristic
for an eddy current problem based on the T − ψ method. The coefficient is derived from
the impedance boundary condition. Moreover, a loss boundary condition is introduced as an

123



3992 R. Wang et al.

Table 1 Precision of the
iteration in Experiment 4.1

Iter. λ m (λ) Error in %

1 0.010 9.381 99.2

2 0.907 6.090 26.8

3 1.206 5.402 2.71

4 1.227 5.360 1.07

5 1.240 5.333 0.00
The situation from Fig. 4

Fig. 5 Exact solution in Experiment 4.2. a ‖Hλ‖. b Hλ

Fig. 6 Numerically obtained graph of the iron loss function m (λ) in Experiment 4.2
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Fig. 7 The convergence of the iteration in Experiment 4.2

Table 2 Precision of the
iteration in Experiment 4.2

Iter. λ m (λ) Error in %

1 0.010 71.53 99.9

2 1.590 32.03 87.2

3 4.005 14.39 67.7

4 7.724 6.492 37.7

5 10.62 4.183 14.3

6 11.55 3.707 6.82

7 12.40 3.345 0.00
The situation from Fig. 7

additional condition. Later, a real function m (λ) is defined in terms of the weak solution. Its
continuity, monotonicity and asymptotic characters ensure the existence of a unique solution
for any amount on the loss boundary condition. According to these characters, we prove that
the recovery problem is well posed. Finally, we design a numerical iteration algorithm and
validate its effectiveness for inhomogeneous problem by two numerical experiments.
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Chovan J, Geuzaine C, Slodička M (2017) A − φ formulation of a mathematical model for the induction
hardening processwith a nonlinear law for themagnetic field. ComputMethodsApplMechEng 321:294–
315

123

http://arxiv.org/abs/1406.4780


3994 R. Wang et al.

Costabel M, Dauge M (2002) Weighted regularization of maxwell equations in polyhedral domains. Numer
Math 93(2):239–277

DuanH-Y, Jia F, Lin P, Tan RCE (2009) The local L2 projectedC0 finite elementmethod formaxwell problem.
SIAM J Numer Anal 47(2):1274–1303

Duan H-Y, Lin P, Tan RCE (2012) C0 elements for generalized indefinite maxwell equations. Numer Math
122(1):61–99

Duan H-Y, Lin P, Tan RCE (2013) Analysis of a continuous finite element method for H (curl, div)-elliptic
interface problem. Numer Math 123(4):671–707

Duan H-Y, Lin P, Tan RCE (2013) Error estimates for a vectorial second-order elliptic eigenproblem by the
local L2 projected C0 finite element method. SIAM J Numer Anal 51(3):1678–1714

DuanH-Y, Lin P, Tan RCE (2016) A finite element method for a curlcurl-graddiv eigenvalue interface problem.
SIAM J Numer Anal 54(2):1193–1228

Fabrizio M, Morro A (2003) Electromagnetism of continuous media. Oxford University Press, Oxford
Jin J (2014) The finite element method in electromagnetics, 3rd edn. Wiley-IEEE Press, New York
Kang T, Chen T, Wang Y, Kim KI (2015) A T -ψ formulation with the penalty function term for the 3d eddy

current problem in laminated structures. Appl Math Comput 271:618–641
Kang T, Kim KI (2009) Fully discrete potential-based finite element methods for a transient eddy current

problem. Computing 85(4):339–362
Monk P (2003) Finite element methods for Maxwell’s equations. Clarendon Press, Oxford
Mur G (1994) Edge elements, their advantages and their disadvantages. IEEE Trans Magn 30(5):3552–3557
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