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Abstract A vector-borne disease model with general incidence rates is proposed and inves-
tigated in this paper, where both vector and host are stratified by infection ages in the form of
a hyperbolic system of partial differential equations coupled with ordinary differential equa-
tions. The existence, uniqueness, nonnegativeness, and boundedness of solution of the model
are studied for biologically reasonable purpose. Furthermore, a global threshold dynamics of
the system is established by constructing suitable Lyapunov functionals, which is determined
by the basic reproduction number R0: the infection-free equilibrium is globally asymptoti-
cally stable when R0 < 1 while the endemic equilibrium is globally asymptotically stable
when R0 > 1.

Keywords Vector-borne disease model · Infection age · General incidence rate ·
Uniform persistence · Fluctuation lemma · Lyapunov functional
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1 Introduction

The infectious disease transmission between hosts and vectors is one of the dominant themes
in epidemic dynamics. Vector-borne infectious diseases are emerging or resurging as a result
of changes in public health policy (Brand et al. 2016). Vector-borne diseases are transmitted
by arthropod insects such as mosquitoes, ticks, flies, midges, and fleas. They account for
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about 17% of the estimated burden of all infectious diseases affecting humans, and they also
exert pressure on food security through their impacts on animal health and plants (Caminade
et al. 2016).

Among all the vector-borne diseases, mosquito-borne types such as malaria, dengue fever,
andWest Nile Virus are of recent particular interests due to their serious impact on the public
health in the world. For example, dengue virus infection is the most commonest mosquito
borne viral disease and is amajor public health problem (globally).More than 2.5 billion peo-
ple in over 112 countries of the world are at risk from dengue virus (Tahir 2017). One recent
estimate indicates 390 million dengue infections per year (95% credible interval 284–528
million), of which 96 million (67–136 million) manifest clinically (with some severity of the
disease) (Bhatt et al. 2013). West Nile virus was discovered in 1937 in the West Nile region
of Uganda. Since its first incursion into North America in 1999 (Nash et al. 2001), numerous
cases of WNV infection in humans have been recorded in the USA (see details in Bowman
et al. 2005; Centers for Disease Control and Prevention 2002). As one of the most important
parasitic diseases in theworld,Malaria is endemic in over 100 countries and it leads to 214mil-
lion cases and438,000deaths inWHO(2016).Up to now, there is no effective and safe vaccine
for malaria. It is well recognized that the successful control of vector-borne diseases depends
on our understanding of its transmission dynamics of them (Hollingsworth et al. 2015).

Mathematical models have been widely used to provide an explicit framework for under-
standing dynamics of vector-borne diseases in the last 20 years (see, for instance, Altizer
et al. 2006; Avila-Vales and Buonomo 2015; Bowman et al. 2005; Forouzannia and Gumel
2014; Hollingsworth et al. 2015; Mandal et al. 2011; McCallum et al. 2001; Ngwa and Shu
2000; Saul 1996). A fundamental issue of epidemic modeling is the incidence rate of disease
transmission, which is defined as the number of infection per unit time at which suscepti-
ble individuals contract the infection (Avila-Vales and Buonomo 2015; Maidana and Yang
2008; McCallum et al. 2001), and it plays an important role in the study of mathematical
epidemiology. Since host–vector models were first developed at the beginning of the 20th
century, the ‘mass action’ (if the density of susceptible hosts is represented as S, and that
of infected hosts as I , then the number of new infected hosts per unit area and per unit of
time is βSI (Anderson and May 1978; Anderson and May 1978, where β is the transmission
coefficient)) assumption has been commonly used. If susceptible and infected hosts were ran-
domlymixed, this would lead to the following frequency-dependent (or density-independent)
transmission βSI

N (Antonovics et al. 1995; Begon et al. 1999), where N is total host density.
In many works, the infection rate is assumed to proportional to the size of the infec-

tious compartment (Lutambi et al. 2013; Maidana and Yang 2008). However, Capasso et
al. (1977, 1978) have considered the importance of introducing a nonlinear incidence rate.
From then on, various forms of nonlinear incidence rates have been proposed (Feng et al.
2015; Georgescu and Hsieh 2006; Korobeinikov 2009, 2007; Novoseltsev et al. 2012; Park
2004; Roop-O et al. 2015; Vargas-De-León et al. 2014; Wang et al. 2017a). For example, an
asymptotic relationship between the contact rate and host density is proposed, which includes
βS p I q (0 < p < 1, 0 < q < 1) (Hochberg 1991; Knell et al. 1996), kS ln(1 + β I

k ) (neg-
ative binomial. Here, small k corresponds to highly aggregated infection. As k → ∞, the
expression reduces to the mass action) (Barlow 2000; Briggs and Godfray 1995), βSI

1+aS+bI
(a, b > 0 are constants) (Diekmann and Kretzschmar 1991; McCallum et al. 2001). In
general, Korobeinikov (2007, 2009) assumed the incidence rate to be a more general form
ϕ(S(t), I (t)).

The Ross–Macdonald model on vector-borne diseases was described by ordinary dif-
ferential equations (Macdonald 1952; Ross 1910, 1911). Macdonald (1952) established a
threshold condition on the invasion and persistence of infection, which is determined by the

123



Global dynamics of a vector-borne disease model with infection... 4057

basic reproduction number (defined as the average number of secondary cases produced by
an index case during its infectious period). Most of the existing vector-borne disease models,
especially those on malaria that investigate complications arising from host superinfection,
immunity, and other factors, are based on this fundamental model (Dietz et al. 1974; Feng and
Velasco-Hernández 1997; Hethcote 2000; Lashari and Zaman 2011; Qiu 2008; Ruan et al.
2008; Tumwiine et al. 2007; Vargas-De-León 2012). The obtained results greatly helped us
to understand the underlying mechanisms on disease spread and to make appropriate control
strategies.

Furthermore, infection age of a vector and/or host can affect the number of secondary
infections resulting from introducing an infected individual (Hollingsworth et al. 2015; Rock
et al. 2015), and hence infection-age structures of vector and hostmay change the transmission
dynamics. As a matter of fact, malaria burden differs due to infection age and gender in
humans. Therefore, infection age becomes an important inter-related factor for transmission
of malaria in a population. Many epidemiological studies (Browne and Pilyugin 2013; Chen
et al. 2016; Forouzannia and Gumel 2014; Iannelli 1995; Inaba and Sekine 2004; Kuniya
2014; Liu et al. 2006; Magal et al. 2010; Melnik and Korobeinikov 2013; Soufiane and
Touaoula 2016) have focused on this important aspect by including age structure of the
epidemic models and obtained results including threshold dynamics. Up to now, a general
vector–host infection model with nonlinear incidence rate and infection-age-dependence in
both vector and host is not common. As a result, it is necessary and meaningful for one to
construct novel models with infection ages in both vector and host and consider their effects
on the transmission dynamics.

Motivated by the above discussions, in this paperwewill introduce infection ages into both
host and vector in the vector–host models studied in Aron (1988), Bowman et al. (2005),
Brand et al. (2016), Lashari and Zaman (2011), Kuniya (2014), McCallum et al. (2001),
Melnik and Korobeinikov (2013), Qiu (2008), Ruan et al. (2008), and Tumwiine et al. (2007)
and we assume that the forces of infection are generally nonlinear (we refer to Feng et al.
2015; Georgescu and Hsieh 2006; Korobeinikov 2009; Korobeinikov 2007; Novoseltsev
et al. 2012; Park 2004; Vargas-De-León et al. 2014; Wang et al. 2017a for justifications). For
the modeling methods on infection-age-dependent incidence rate of age-structured epidemic
models, we refer to Chen et al. (2016), Wang et al. (2017a, b, c, d), Wang et al. (2015), and
Yang et al. (2017). Our model will be described by a system of ordinary differential equations
coupled with two partial differential equations, which is very challenging in analysis. The
main purpose of this paper is to consider the transmission dynamics of vectors that infect
hosts due to the infection-age-dependent incidence rate.

Many epidemicmodels including infection-age-dependent incidence rates have been stud-
ied (Chen et al. 2016; Kuniya and Oizumi 2015; Wang et al. 2017a, c, d, 2015; Yang et al.
2017). The results there implied that decreasing the initial transmission rate and drawing up
efficient preventionwaysplayed avery important role on controlling the spreadingof diseases.
In addition, humans can influence the outcome of a host-parasite interaction in multiple ways
(for example, environmental degradation). But, the relationship of the conditions for extinc-
tion or uniform persistence of the vector–host model with general infection-age-dependent
incidence rates still remains unclear. Analysis of such a model is not trivial. To the best of
our knowledge, our work is likely the first study on the effects of both infection ages and
general incidence rates on vector-borne disease models.

The rest of the paper is organized as follows. In the next section, we will formulate
the vector-borne disease model with both infection ages and general incidence rates. We
also present results on the existence, uniqueness, non-negativeness, and boundedness of
solutions of the model system. In Sect. 3, we study the existence of equilibria and their local
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stability.We establish the threshold dynamics (which is determined by the basic reproduction
number) in Sect. 4. The global stability of the disease-free equilibrium is obtained by applying
the fluctuation lemma while the global stability of the endemic equilibrium is obtained by
constructing an appropriate Lyapunov functional. The paper ends with a brief conclusion.

2 Model formulation

Motivated by the vector-borne compartmental models in Aron (1988) and Lashari and Zaman
(2011), we propose an age-structured vector–host model with permanent immunity for recov-
ered hosts and general nonlinear incidences between vectors and hosts. The model is based
on the following assumptions.

(A1) The host population size (Nh) is divided into three subclasses, the susceptible class
Sh , the infected class Ih , and the recovered class Rh (to be permanently immune and
hence there is no need to consider the evolution of Rh), while the vector population
size (Nv) is divided into two subclasses, the susceptible class Sv and the infected class
Iv . The infected vectors are assumed to never recover until their death and hence there
is no recovered class for the vector population.

(A2) There is a constant recruitment rate, λ, for the susceptible host. The natural death rate
of the host is μh . The susceptible hosts can be infected by infectious vectors with a
general nonlinear incidence ϕ(Sh(t),

∫∞
0 k(a)iv(t, a)da). Here, iv(t, a) is the density

of infected vectors of infection age a at time t and k(a) is the age-dependent biting
rate of a susceptible host by an infected vector. Note that Iv(t) = ∫∞

0 iv(t, a)da is the
total number of infected vectors at time t . We assume that the per capita recovery rate
of the infected host at infection age a is γ (a).

(A3) The vector population size Nv is assumed to be constant and hence the birth rate
and the natural death rate are the same, denoted by μv . The susceptible vectors
can be infected by biting an infected host and the transmission rate is taken as
ψ(Sv(t),

∫∞
0 β(a)ih(t, a)da), another general incidence. Here, ih(t, a) is the density

of the infected hosts of infection age a at time t and β(a) is the age-dependent biting
rate of an infected host by a susceptible vector. Notice that Ih(t) = ∫∞

0 ih(t, a)da is
the total number of infected hosts at time t .

The above assumptions lead to the following vector-borne disease model:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt = λ − μh Sh(t) − ϕ

(
Sh(t),

∫∞
0 k(a)iv(t, a)da

)
,

∂ih(t,a)
∂t + ∂ih(t,a)

∂a = −δ(a)ih(t, a),

ih(t, 0) = ϕ(Sh(t),
∫∞
0 k(a)iv(t, a)da),

∂iv(t,a)
∂t + ∂iv(t,a)

∂a = −μviv(t, a),

iv(t, 0) = ψ(Nv − ∫∞
0 iv(t, a)da,

∫∞
0 β(a)ih(t, a)da),

Sh(0) = Sh0 ∈ R+, ih(0, ·) = ih0 ∈ L1+(0,∞), iv(0, ·) = iv0 ∈ L1+(0,∞),

(2.1)

where δ(a) = μh+γ (a) and R+ = [0,∞). For (2.1), there should be an inherent relationship
between the initial values and the boundary values, that is, ih(0, 0) = ih0(0) and iv(0, 0) =
iv0(0). Therefore, in the sequel, we always assume that

ϕ(Sh0,
∫ ∞

0
k(a)iv0(a)da) = ih0(0)
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and

ψ(Nv −
∫ ∞

0
iv0(a)da,

∫ ∞

0
β(a)ih0(a)da) = iv0(0).

To study the dynamics of (2.1), we make the following hypotheses.

(H1) k and β are bounded and uniformly continuous functions from R+ to R+.
(H2) ϕ(u, v) and ψ(u, v) are differentiable such that ϕ1(u, v) > 0 and ψ1(u, v) > 0 for
u > 0 and v > 0, and ϕ2(u, v) > 0 and ψ2(u, v) > 0 for u > 0 and v ≥ 0. Moreover,
ϕ(u, 0) = ϕ(0, v) = ψ(u, 0) = ψ(0, v) = 0 for all u, v ∈ R+. Here, ϕ1(u, v) and
ϕ2(u, v) represent the first-order partial derivatives of ϕ(u, v) with respect to u and v,
respectively; while ψ1(u, v) and ψ2(u, v) represent the first-order partial derivatives of
ψ(u, v) with respect to u and v, respectively.
(H3) ϕ2(u, v) and ψ2(u, v) are continuous, respectively, at ( λ

μh
, 0) and (Nv, 0). Further-

more, ∂2ϕ(u,v)

∂v2
≤ 0 and ∂2ϕ(u,v)

∂v2
≤ 0 for u > 0 and v > 0.

(H4) ϕ(u, v) andψ(u, v) are locally Lipschitz continuous on R2+, namely for anyC > 0,
there exist Lu(C) > 0, Lv(C) > 0, Ku(C) > 0, and Kv(C) > 0 such that

|ϕ(u, v) − ϕ(̃u, v)| ≤ Lu |u − ũ|,
|ϕ(u, v) − ϕ(u, ṽ)| ≤ Lv|v − ṽ|,

|ψ(u, v) − ψ(̃u, v)| ≤ Ku |u − ũ|,
|ψ(u, v) − ψ(u, ṽ)| ≤ Kv|v − ṽ|

for all 0 ≤ u, ũ, v, ṽ ≤ C .

It is obvious that ϕ(u, v) and ψ(u, v) are always positive for u > 0 and v > 0, ϕ(u, ·) and
ψ(u, ·) are strictly increasing for u > 0, and ϕ(·, v) and ψ(·, v) are strictly increasing for
v > 0 by hypotheses (H2).

According to the methods of characteristic lines, the following two partial differential
equations

⎧
⎪⎪⎨

⎪⎪⎩

∂ih(t,a)
∂t + ∂ih(t,a)

∂a = −δ(a)ih(t, a),

ih(t, 0) = ϕ(Sh(t),
∫∞
0 k(a)iv(t, a)da),

ih(0, 0) = ih0,

and
⎧
⎪⎪⎨

⎪⎪⎩

∂iv(t,a)
∂t + ∂iv(t,a)

∂a = −μviv(t, a),

iv(t, 0) = ψ(Nv − ∫∞
0 iv(t, a)da,

∫∞
0 β(a)ih(t, a)da),

iv(0, 0) = iv0,

can be solved, respectively, as:

ih(t, a) =
{

σ(a)ϕ(Sh(t − a),
∫∞
0 k(a)iv(t − a, a)da), 0 ≤ a < t,

σ (a)
σ (a−t) ih0(a − t), a ≥ t > 0,

and

iv(t, a) =
{

π(a)ψ(Nv − ∫∞
0 iv(t − a, a)da,

∫∞
0 β(a)ih(t − a, a)da), 0 ≤ a < t,

π(a)
π(a−t) iv0(a − t), a ≥ t > 0,
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where σ(a) = exp(− ∫ a0 δ(s)ds) and π(a) = exp(− ∫ a0 μvds), which are, respectively, the
survival probabilities of an infected host and an infected vector to age a. Then, (2.1) can be
rewritten as the following equivalent integro-differential equation:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt = λ − μh Sh(t) − ϕ(Sh(t),

∫∞
0 k(a)iv(t, a)da),

ih(t, a) = σ(a)ϕ(Sh(t − a),
∫∞
0 k(a)iv(t − a, a)da)1t>a + σ(a)

σ (a−t) ih0(a − t)1a>t ,

iv(t, a) = π(a)ψ(Nv − ∫∞
0 iv(t − a, a)da,

∫∞
0 β(a)ih(t − a, a)da)1t>a

+ π(a)
π(a−t) iv0(a − t)1a>t ,

(2.2)
where

1t>a =
{
1 if t > a ≥ 0
0 if a ≥ t ≥ 0

and 1a>t =
{
0 if t > a ≥ 0,
1 if a ≥ t ≥ 0.

Let

X+ = R+ × L1+(0,∞) × L1+(0,∞),

which is a positive cone of the Banach space X = R × L1(0,∞) × L1(0,∞) with the
product norm ‖ · ‖. The following result on the existence and nonnegativeness of solutions
to (2.2) and hence to (2.1) can be proved with a modification of the proofs of Theorem 2.1
and Lemma 2.2 in Browne and Pilyugin (2013). Therefore, we omit the proof here.

Theorem 2.1 Suppose (H1), (H2), and (H4) hold. Then, for any initial value x ∈ X+, system
(2.1) has a unique solution on R+, which depends continuously on the initial value and time
t. Moreover, (Sh(t), ih(t, ·), iv(t, ·)) ∈ X+ for t ∈ R+ and they are bounded.

In fact, let

G(t) = Sh(t) +
∫ ∞

0
ih(t, a)da.

Then

dG(t)

dt

= λ − μh Sh(t) − ϕ(Sh(t),
∫ ∞

0
k(a)iv(t, a)da) +

∫ ∞

0

∂ih(t, a)

∂t
da

= λ − μh Sh(t) − ϕ(Sh(t),
∫ ∞

0
k(a)iv(t, a)da) −

∫ ∞

0

(
∂ih(t, a)

∂a
+ δ(a)ih(t, a)

)

da

= λ − μh Sh(t) − ϕ(Sh(t),
∫ ∞

0
k(a)iv(t, a)da) + ih(t, 0) − ih(t, a)

∣
∣
∣
a=∞

−
∫ ∞

0
δ(a)ih(t, a)da

≤ λ − μh Sh(t) − μh

∫ ∞

0
ih(t, a)da

= λ − μh(Sh(t) +
∫ ∞

0
ih(t, a)da).

It follows that

lim sup
t→∞

G(t) ≤ λ

μh
.
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Moreover,
∫ ∞

0
iv(t, a)da = Nv − Sv(t) ≤ Nv.

Then, one can easily see that� is a positively invariant and attracting subset for system (2.1),
where

� =
{

x = (x1, ρ1, ρ2) ∈ X+
∣
∣
∣x1 +

|ρ1‖1 ≤ λ

μh
, ‖ρ2‖1 ≤ Nv

}

.

In the sequel, for the purpose of global dynamics of (2.1), we always assume that the initial
values are in �. Moreover, Lu , Lv , Ku , and Kv are the constants in (H4) corresponding to

C = max
{

λ
μh

, ‖β‖∞ λ
μh

, ‖k‖∞Nv

}
.

3 Equilibria and their local stability

Obviously, system (2.1) always has the disease-free equilibrium E0 = (S0h , i
0
h , i

0
v ), where

S0h = λ
μh

, i0h = 0, i0v = 0. For convenience of notation, we introduce

ξ =
∫ ∞

0
k(a)π(a)da and η =

∫ ∞

0
β(a)σ (a)da.

Define the basic reproduction number R0 by

R0 = ψ2(Nv, 0)ϕ2(S
0
h , 0)ξη. (3.1)

In fact, ψ2(Nv, 0)η is the number of infected vector produced by introducing an infected
host in the system and ϕ2(S0h , 0)ξ is the number of infected host produced with one infected
vector in the system. Therefore, R0 is the number of infected host when an infected host
is introduced into the system, which agrees with the definition of the basic reproduction
number.

Now,we study the existence of other equilibria. If E∗ = (S∗
h , i

∗
h , i

∗
v ) ∈ � is an equilibrium,

then it must satisfy
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ − μh S∗
h − ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da) = 0,

di∗h (a)

da = −δ(a)i∗h (a),

di∗v (a)

da = −μvi∗v (a),

i∗h (0) = ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da),

i∗v (0) = ψ(Nv − ∫∞
0 i∗v (a)da,

∫∞
0 β(a)i∗h (a)da).

(3.2)

Solving the second and third equations of (3.2) gives us

i∗h (a) = i∗h (0)σ (a) and i∗v (a) = i∗v (0)π(a).

These, together with the first equation of (3.2), yield

λ − μh S
∗
h − ϕ(S∗

h , ξ i
∗
v (0)) = 0.
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By the property of ϕ and the implicit function theorem, there exists a function f : R → R
such that

S∗
h = f (i∗v (0))

with f (0) = S0h and f ′(i∗v (0)) = − ξϕ2( f (i∗v (0)),ξ i∗v (0))
μh+ϕ1( f (i∗v (0)),ξ i∗v (0)) . By the last two equations of (3.2),

we get

i∗h (0) = ϕ

(

S∗
h ,

∫ ∞

0
k(a)i∗v (a)da

)

= ϕ( f (i∗v (0)), ξ i∗v (0)),

i∗v (0) = ψ

(

Nv − 1

μv

i∗v (0), ηi∗h (0)
)

= ψ
(
Nv − 1

μv

i∗v (0), ϕ( f (i∗v (0)), ξ i∗v (0))η
)
.

Clearly, i∗h (0) = 0 if and only if i∗v (0) = 0. This tells us that an equilibrium is endemic if it is
not the disease-free equilibrium E0. From the above discussion, we see that an equilibrium
(S∗

h , i
∗
h , i

∗
v ) is an endemic equilibrium if and only if i∗v (0) is a positive zero of F , where

F(y) = y − ψ
(
Nv − 1

μv

y, ϕ( f (y), ξ y)η
)
. (3.3)

First, assume R0 ≤ 1. Then, for y > 0, by (H2) and (H3),

F(y) > y − ψ(Nv, ϕ(S0h , ξ y)η)

≥ y − ψ2(Nv, 0)ϕ(S0h , ξ y)η

≥ y − ψ2(Nv, 0)ϕ2(S
0
h , ξ y)ξηy

= (1 − R0)y ≥ 0.

This implies that there is no endemic equilibrium when R0 ≤ 1.
Next, suppose R0 > 1. Note that

F(0) = −ψ(Nv, 0) = 0 and F(μvNv) = μvNv > 0.

Moreover,

F ′(0) = 1 + 1

μv

ψ1(Nv, 0) − ψ2(Nv, 0)
(
ϕ1(S

0
h , 0) f

′(0) + ϕ2(S
0
h , 0)ξ

)
η

= 1 − ψ2(Nv, 0)ϕ2(S
0
h , 0)ξη

= 1 − R0 < 0.

Then, F(y) < 0 if y > 0 and is close enough to 0. By the Intermediate Value Theorem, F
has at least one positive zero and hence there is at least one endemic equilibrium. Now, we
prove that (2.1) has a unique endemic equilibrium. By way of contracdiction, we assume that
there exists another endemic equilibrium (Sh, i h, iv). Without loss of generality, we assume

iv > i∗v . Denote b = iv
i∗v

(> 1). Then by (H2) and concavity of ϕ in (H3), we get
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i∗h (0) = ϕ( f (i∗v (0)), i∗v (0)ξ)

= ϕ

(

f (i∗v (0)),
1

b
iv(0)ξ

)

> ϕ

(

f (iv(0)),
1

b
iv(0)ξ

)

≥ 1

b
ϕ(Sh, iv(0)ξ)

= 1

b
ih(0).

Then

i∗v (0) = ψ

(

Nv − 1

μv

i∗v (0), ηi∗h (0)
)

> ψ

(

Nv − 1

μv

iv
∗
(0),

1

b
ηi h(0)

)

≥ 1

b
ψ

(

Nv − 1

μv

iv
∗
(0), ηi h(0)

)

= 1

b
iv(0),

which is a contradiction.
To summarize, we have obtained the following results.

Theorem 3.1 (i) If R0 ≤ 1, then (2.1) only has the disease-free equilibrium E0.
(ii) IfR0 > 1, then besides E0, (2.1) also has a unique endemic equilibrium, denoted E∗ =

(S∗
h , i

∗
h , i

∗
v ), where S∗

h = f (i∗v (0)), i∗h (a) = ϕ(S∗
h , ξ i

∗
v (0))σ (a), i∗v (a) = i∗v (0)π(a) with

i∗v (0) being the unique positive zero of F defined by (3.3).

In the following, we study the local stability of the equilibria of (2.1) by the technique of
linearization. For the details on the theory, we refer to Iannelli (1995).

Theorem 3.2 (i) The disease-free equilibrium E0 of (2.1) is locally asymptotically stable
if R0 < 1 and it is unstable if R0 > 1.

(ii) The endemic equilibrium E∗ of (2.1) is locally asymptotically stable if R0 > 1.

Proof (i) Note that ϕ1(S0h , 0) = ψ1(Nv, 0) = 0. Then, the characteristic equation at the
disease-free equilibrium E0 is

∣
∣
∣
∣
∣
∣
∣
∣

τ + μh 0 ϕ2(S0h , 0)
∫∞
0 k(a)π(a)e−τada

0 −1 ϕ2(S0h , 0)
∫∞
0 k(a)π(a)e−τada

0 ψ2(Nv, 0)
∫∞
0 β(a)σ (a)e−τada −1

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Clearly, the stability of E0 is determined by the roots of the following equation:

g1(τ )
�= 1 − ϕ2(S

0
h , 0)

∫ ∞

0
k(a)π(a)e−τada · ψ2(Nv, 0)

∫ ∞

0
β(a)σ (a)e−τada = 0.

If R0 > 1, then g1(0) = 1 − R0 < 0. Noting that limτ→∞ g1(τ ) = 1 > 0, by the
Intermediate Value Theorem, we know that g1 has a positive zero and hence E0 is unstable.
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Now, suppose R0 < 1. It suffices to show that all zeros of g1 = 0 have negative real parts.
Otherwise, let τ0 be a zero of g1(τ ) with Re(τ0) ≥ 0. Then, we have

1 =
∣
∣
∣
∣ϕ2(S

0
h , 0)

∫ ∞

0
k(a)π(a)e−τ0ada · ψ2(Nv, 0)

∫ ∞

0
β(a)σ (a)e−τ0ada

∣
∣
∣
∣

≤ ϕ2(S
0
h , 0)ψ(Nv, 0)

∫ ∞

0
k(a)π(a)da

∫ ∞

0
β(a)σ (a)da

= R0 < 1,

which is a contradiction.
(ii) For E∗, the characteristic equation is

0 = (τ + μh + ϕ1(S∗
h ,
∫∞
0 k(a)i∗v (a)da)�2(τ )

−(τ + μh)(ϕ2(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

∫∞
0 k(a)π(a)e−τada)�1(τ ),

(3.4)

where

�1(τ ) = ψ2

(

Nv −
∫ ∞

0
i∗v (a)da,

∫ ∞

0
β(a)i∗h (a)da

)∫ ∞

0
β(a)σ (a)e−τada,

�2(τ ) = 1 + ψ1

(

Nv −
∫ ∞

0
i∗v (a)da,

∫ ∞

0
β(a)i∗h (a)da

)∫ ∞

0
π(a)e−τada.

We claim that (3.4) has no root with a nonnegative real part. Otherwise, suppose that it has
a root τ 0 with Re(τ 0) ≥ 0. Then

1 = |(τ 0 + μh)(ϕ2(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

∫∞
0 k(a)π(a)e−τ 0ada�1(τ

0)|
|(τ 0 + μh + ϕ1(S∗

h ,
∫∞
0 k(a)i∗v (a)da))�2(τ 0)|

.

It follows from (H3) that

ϕ2

(

S∗
h ,

∫ ∞

0
k(a)i∗v (a)da

)

≤ ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

∫∞
0 k(a)i∗v (a)da

,

ψ2

(

Nv −
∫ ∞

0
i∗v (a)da,

∫ ∞

0
β(a)i∗h (a)da

)

≤ ψ(Nv − ∫∞
0 i∗v (a)da,

∫∞
0 β(a)i∗h (a)da)

∫∞
0 β(a)i∗h (a)da

.

Thus
∫ ∞

0
k(a)i∗v (a)da

∫ ∞

0
β(a)i∗h (a)da

≤ |(τ 0 + μh )ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

∫∞
0 k(a)π(a)e−τ 0adaψ(Nv − ∫∞

0 i∗v (a)da,
∫∞
0 β(a)i∗h (a)da)

∫∞
0 β(a)σ (a)e−τ 0ada|

|(τ 0 + μh + ϕ1(S∗
h ,
∫∞
0 k(a)i∗v (a)da))(1 + ψ1(Nv − ∫∞

0 i∗v (a)da,
∫∞
0 β(a)i∗h (a)da)

∫∞
0 π(a)e−τ 0ada)|

<
|(τ 0 + μh )i∗v (0)

∫∞
0 k(a)π(a)da · i∗h (0)

∫∞
0 β(a)σ (a)da|

|τ 0 + μh |
=
∫ ∞

0
k(a)i∗v (a)da

∫ ∞

0
β(a)i∗h (a)da,

a contradiction. This completes the proof. 
�

4 The global dynamics

In this section, we first prove the global stability of the disease-free equilibrium E0 using the
Fluctuation Lemma.
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For any function f : R+ → R, we set

f∞ = lim inf
t→∞ f (t), f ∞ = lim sup

t→∞
f (t).

Lemma 4.1 (Fluctuation Lemma Hirsch et al. 1985) Let f : R+ → R be a bounded and
continuously differentiable function. Then, there exist two sequences {sn} and {tn} such that
sn → ∞, tn → ∞, f (sn) → f∞, f ′(sn) → 0, f (tn) → f ∞ and f ′(tn) → 0 as n → ∞.

The following estimate is useful in the coming discussion.

Lemma 4.2 (Iannelli 1995) Suppose k ∈ L1+(0,∞) and B : R+ → R is a bounded function.
Then

lim sup
t→∞

∫ t

0
k(θ)B(t − θ)dθ ≤ B∞‖k‖1.

Theorem 4.3 IfR0 < 1, then the disease-free equilibrium E0 of (2.1) is globally asymptot-
ically stable.

Proof By Theorem 3.2, we only need to show that E0 is globally attractive in�. To this end,
let (Sh(t), ih(t, ·), iv(t, ·)) be a solution of (2.1) with initial value (Sh0, ih0, iv0) ∈ �. Recall
that

ih(t, a) =
{

σ(a)Bϕ(t − a), 0 ≤ a < t

σ(a)
σ (a−t) ih0(a − t), a ≥ t > 0

(4.1)

and

iv(t, a) =
{

π(a)Bψ(t − a), 0 ≤ a < t,

π(a)
π(a−t) iv0(a − t), a ≥ t > 0,

(4.2)

where

Bϕ(t) = ih(t, 0) = ϕ

(

Sh(t),
∫ ∞

0
k(a)iv(t, a)da

)

,

Bψ(t) = iv(t, 0) = ψ

(

Nv −
∫ ∞

0
iv(t, a)da,

∫ ∞

0
β(a)ih(t, a)da

)

.

Obviously, Bϕ and Bψ are nonnegative, bounded, and differentiable.
Firstly, we show B∞

ϕ = B∞
ψ = 0. Note that
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Bϕ(t) ≤ ϕ

(

S0h ,

∫ ∞
0

k(a)iv(t, a)da

)

≤ ϕ2

(

S0h , 0

)∫ ∞
0

k(a)iv(t, a)da

= ϕ2

(

S0h , 0

)[∫ t

0
k(a)π(a)Bψ(t − a)da +

∫ ∞
t

k(a)
π(a)

π(a − t)
iv0(a − t)da

]

≤ ϕ2

(

S0h , 0

)[∫ t

0
k(a)π(a)ψ

(

Nv,

∫ ∞
0

β(s)ih(t − a, s)ds

)

+ e−μν t‖k‖∞‖iv0‖1
]

≤ ϕ2

(

S0h , 0

)[∫ t

0
k(a)π(a)

(

ψ2(Nv, 0)
∫ ∞
0

β(s)ih(t − a, s)ds

)

da + e−μν t‖k‖∞‖iv0‖1
]

= ϕ2

(

S0h , 0

)[

ψ2(Nv, 0)
∫ t

0
k(a)π(a)

[ ∫ t−a

0
β(s)σ (s)Bϕ(t − a − s)ds

+
∫ ∞
t−a

β(s)
σ (s)

σ (s − t + a)
ih0(s − t + a)ds

]

da + e−μν t‖k‖∞‖iv0‖1
]

≤ ϕ2

(

S0h , 0

)[

ψ2(Nv, 0)
∫ t

0
k(a)π(a)

[ ∫ t−a

0
β(s)σ (s)Bϕ(t − a − s)ds

+e−μh(t−a)‖β‖∞‖ih0‖1]da + e−μν t‖k‖∞‖iv0‖1
]

.

Applying Lemma 4.2 twice, we get

B∞
ϕ ≤ ϕ2(S

0
h , 0)ψ2(Nv, 0)ξ lim sup

t→∞

∫ t

0
β(s)σ (s)Bϕ(t − s)ds

≤ ϕ2(S
0
h , 0)ψ2(Nv, 0)ξηB∞

ϕ

= R0B
∞
ϕ ,

which implies that B∞
ϕ = 0 since R0 < 1. Similarly, one can show that B∞

ψ = 0.
Next, we show limt→∞ ‖ih(t, ·)‖1 = limt→∞ ‖iv(t, ·)‖1 = 0. In fact, using (4.1), we get

‖ih(t, ·)‖1 =
∫ t

0
Bϕ(t − a)σ (a)da +

∫ ∞

t
ih0(a − t)

σ (a)

σ (a − t)
da

≤
∫ t

0
Bϕ(t − a)σ (a)da + e−μh t‖ih0‖1.

By Lemma 4.2,

lim sup
t→∞

‖ih(t, ·)‖1 ≤ B∞
ϕ ‖σ‖1 = 0

and hence limt→∞ ‖ih(t, ·)‖1 = 0. Similarly, we have limt→∞ ‖iv(t, ·)‖1 = 0.
Finally, we show limt→∞ Sh(t) = S0h . It suffices to show (Sh)∞ ≥ S0h since (Sh)∞ ≤ S0h .

According to Lemma 4.1, there exists a sequence {tn} such that tn → ∞, Sh(tn) → (Sh)∞,
and dSh(tn)

dt → 0 as n → ∞. Note that

dSh(tn)

dt
= λ − μh Sh(tn) − ϕ

(

Sh(tn),
∫ ∞

0
k(a)iv(tn, a)da

)
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and limt→∞
∫∞
0 k(a)iv(t, a)da = 0 since k is bounded and limt→∞ ‖iv(t, ·)‖1 = 0. Then,

we get

0 = λ − μh(Sh)∞

and hence (Sh)∞ = S0h .
In summary, we have shown that limt→∞(Sh(t), ih(t, ·), iv(t, ·)) = E0. This completes

the proof. 
�

In the following, we establish the global stability of the endemic equilibrium E∗. We
start with the permanence of (2.1) using uniform persistence theory for infinite dimensional
system developed by Smith and Thieme (2011).

By Theorem 2.1, there is a continuous solution semiflow of (2.1), denoted by � : R+ ×
X+ → X+, where

�(t, (Sh0, ih0, iv0)) = (Sh(t), ih(t, ·), iv(t, ·)) for (t, (Sh0, ih0, iv0)) ∈ R+ × X+,

where (Sh(t), ih(t, ·), iv(t, ·)) is the solution of (2.1) with the initial value (Sh0, ih0, iv0). The
semiflow is also written as {�(t)}t∈R+ .

Define ρ : X+ → R+ by

ρ(Sh, ih, iv) =
∫ ∞

0
k(a)iv(a)da for (Sh, ih, iv) ∈ X+.

Let

�0 = {(Sh0, ih0, iv0) ∈ �| there exists t0 ∈ R+ such that ρ(�(t0, (Sh0, ih0, iv0))) > 0}.
If (Sh0, ih0, iv0) ∈ � \ �0, then limt→∞ Sh(t) = S0h and a little modification of the proof of
Theorem 4.3 will yield limt→∞ �(t, (Sh0, ih0, iv0)) = E0.

Definition 4.1 System (2.1) is uniformly weakly ρ-persistent (respectively, uniformly
strongly ρ-persistent) if there exists an r > 0, independent of the initial conditions, such
that

lim sup
t→∞

ρ(�(t, (Sh0, ih0, iv0))) > r (respectively, lim inf
t→∞ ρ(�(t, (Sh0, ih0, iv0))) > r)

for (Sh0, ih0, iv0) ∈ �0.

Proposition 4.4 If R0 > 1, then system (2.1) is uniformly weakly ρ-persistent.

Proof By way of contradiction, for any ε > 0, there exists an xε = (Sε
h0, i

ε
h0, i

ε
v0) ∈ �0 such

that

lim sup
t→∞

∫ ∞

0
k(a)iεv (t, a)da ≤ ε.

Since R0 > 1, we can choose ε0 > 0 such that

ε1 = λ − Lvε0

μh
− ε0 > 0,

1 < ϕ2(ε1, ε0)ψ2(Nv − ε3, ‖β‖∞ε2)

∫ ∞

0
k(a)π(a)e−ε0ada

∫ ∞

0
β(a)σ (a)e−ε0ada,
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where ε2 = (ϕ2(S0h , 0)‖σ‖1 + 1)ε0 and ε3 = ψ2(Nv,0)‖β‖∞ε2
μv

+ ε0. For
ε0
2 , there exists x

ε0
2 ,

for simplicity of notation denoted by x = (Sh0, ih0, iv0), such that

lim sup
t→∞

∫ ∞

0
k(a)iv(t, a)da ≤ ε0

2
.

In the following, we shall use Laplace transforms to get a contradiction.

On the one hand, there exists t0 ∈ R+ such that
∫ ∞

0
k(a)iv(t, a)da ≤ ε0 for t ≥ t0.

Without loss of generality, we can assume t0 = 0 since we can replace x with �(t0, x).
These, together with the first equation of (2.1), (H2), and (H4), give us

dSh(t)

dt
= λ − μh Sh(t) −

(

ϕ(Sh(t),
∫ ∞

0
k(a)iv(t, a)da) − ϕ(Sh(t), 0)

)

≥ λ − μh Sh(t) − Lv

∫ ∞

0
k(a)iv(t, a)da

≥ λ − Lvε0 − μh Sh(t),

which implies that lim inf t→∞ Sh(t) ≥ λ−Lvε0
μh

. Again, without loss of generality, we assume
Sh(t) ≥ ε1 for t ∈ R+. On the other hand, for t ∈ R+,

Bϕ(t) ≤ ϕ(S0h , ε0) ≤ ϕ2(S
0
h , 0)ε0. (4.3)

Then, from (4.3) and the arguments in the proof of Theorem 4.3, lim supt→∞ ‖ih(t, ·)‖1 ≤
ϕ2(S0h , 0)ε0‖σ‖1. Again, without loss of generality, we assume that ‖ih(t, ·)‖1 ≤ ε2 for
t ∈ R+. It follows that

iv(t, 0) ≤ ψ(Nv, ‖β‖∞‖ih(t, ·)‖1) ≤ ψ2(Nv, 0)‖β‖∞‖ih(t, ·)‖1 ≤ ψ2(Nv, 0)‖β‖∞ε2

for t ∈ R+. Similarly as before, we have lim supt→∞ ‖iv(t, ·)‖1 ≤ ψ2(Nv,0)‖β‖∞ε2
μv

. Again,
without loss of generality, we assume that ‖iv(t, ·)‖1 ≤ ε3 for t ∈ R+.

Now, under assumptions (H2) and (H3), with the help of (4.1) and (4.2), we get

Bϕ(t) ≥ ϕ

(

ε1,

∫ ∞
0

k(a)iv(t, a)

)

≥ ϕ2(ε1, ε0)

∫ ∞
0

k(a)iv(t, a)da

≥ ϕ2(ε1, ε0)

∫ t

0
k(a)iv(t, a)da

= ϕ2(ε1, ε0)

∫ t

0
k(a)π(a)

(

ψ(Nv −
∫ ∞
0

iv(t − a, s)ds,
∫ ∞
0

β(s)ih(t − a, s)ds

)

da

≥ ϕ2(ε1, ε0)

∫ t

0
k(a)π(a)

(

ψ(Nv − ε3,

∫ ∞
0

β(s)ih(t − a, s)ds

)

da

≥ ϕ2(ε1, ε0)ψ2(Nv − ε3, ‖β‖∞ε2)

∫ t

0
k(a)π(a)

(∫ ∞
0

β(s)ih(t − a, s)ds

)

da

≥ ϕ2(ε1, ε0)ψ2(Nv − ε3, ‖β‖∞ε2)

∫ t

0
k(a)π(a)

(∫ t−a

0
β(s)ih(t − a, s)ds

)

da

= ϕ2(ε1, ε0)ψ2(Nv − ε3, ‖β‖∞ε2)

∫ t

0
k(a)π(a)

(∫ t−a

0
β(s)σ (s)Bϕ(t − a − s)ds

)

da
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for t ∈ R+. Taking Laplace transforms of the both sides of the above inequality produces

B̂ϕ(θ) ≥ ϕ2(ε1, ε0)ψ2(Nv − ε3, ‖β‖∞ε2)B̂ϕ(θ)k̂π(θ)β̂σ (θ) for θ > 0,

where ·̂ denotes the Laplace transform of a function. As Bϕ(·) is not identically zero on R+,
we have B̂ϕ(θ) > 0 for θ > 0. Therefore, in particular,

ϕ2(ε1, ε0)ψ2(Nv − ε3, ‖β‖∞ε2)k̂π(ε0)β̂σ (ε0) ≤ 1,

a contradiction with the choice of ε0. 
�
Now, we consider the uniform strong ρ-persistence of (2.1). To this end, we only need

to show that � has a global compactor in �0. A global compact attractor A is a maximal
compact invariant set in �0 such that for any open set that contains A, all solutions of (2.1)
that start at zero from a bounded set, are contained in that open set, at least for sufficiently
large time. The existence of a global attractor is established by applying the following two
results.

Lemma 4.5 (Hale 1988) If �(t) : X → X, t ∈ R+ is asymptotically smooth, point
dissipative and orbits of bounded sets are bounded, then there exists a global attractor.

Definition 4.2 (Smith and Thieme 2011) A semiflow is asymptotically smooth if each for-
ward invariant bounded closed set is attracted by a non-empty compact set.

Lemma 4.6 (Hale 1988) For each t ∈ R+, suppose �(t) = �1(t) + �2(t) : X → X
has the property that �2(t) is complete continuous and there is a continuous function f̃ :
R+ × R+ → R+ such that f̃ (t, r̃) → 0 as t → ∞ and |�1(t)x | ≤ f̃ (t, r̃) if |x | < r̃ . Then,
�(t), t ∈ R+ is asymptotically smooth.

Lemma 4.7 For any ε > 0, there exists δ > 0 such that

|Bi (t + h) − Bi (t)| ≤ ε1 for t ∈ R+, h ∈ (0, δ), (Sh0, ih0, iv0) ∈ �0,

where i = ϕ, ψ .

Proof We only show the case where i = ϕ as the other can be dealt with similarity.

Obviously,

Bϕ(t) ≤ ϕ

(

S0h ,
∫ ∞

0
k(a)iv(t, a)da

)

≤ ϕ2(S
0
h , 0)

∫ ∞

0
k(a)iv(t, a)da

≤ ϕ2(S
0
h , 0)‖k‖∞Nv � Mϕ.

It follows that
∣
∣
∣
dSh(t)

dt

∣
∣
∣ ≤ λ + μh · S0h + Bϕ(t) ≤ 2λ + Mϕ � MS .

Moreover, Bψ(t) ≤ ψ(Nv, ‖β‖∞S0h ) � Mψ . Note that Mϕ , MS , and Mψ all are independent
of t and the initial values.
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Now, for t ∈ R+ and h > 0, we have

|Bϕ(t + h) − Bϕ(t)|
=
∣
∣
∣
∣ϕ

(

Sh(t + h),

∫ ∞

0
k(a)iv(t + h, a)da

)

− ϕ

(

Sh(t),
∫ ∞

0
k(a)iv(t, a)da

)∣∣
∣
∣

≤
∣
∣
∣
∣ϕ

(

Sh(t + h),

∫ ∞

0
k(a)iv(t + h, a)da

)

− ϕ

(

Sh(t),
∫ ∞

0
k(a)iv(t + h, a)da

)∣∣
∣
∣

+
∣
∣
∣
∣ϕ

(

Sh(t),
∫ ∞

0
k(a)iv(t + h, a)da

)

− ϕ

(

Sh(t),
∫ ∞

0
k(a)iv(t, a)da

)∣∣
∣
∣

≤ Lu |Sh(t + h) − Sh(t)| + Lv

∣
∣
∣

∫ ∞

0
k(a)iv(t + h, a)da −

∫ ∞

0
k(a)iv(t, a)da

∣
∣
∣

≤ LuMSh + Lv

∫ h

0
k(a)iv(t + h, a)da

+Lv

∣
∣
∣

∫ ∞

h
k(a)iv(t + h, a)da −

∫ ∞

0
k(a)iv(t, a)da

∣
∣
∣.

Note that

Lv

∫ h

0
k(a)iv(t + h, a)da = Lv

∫ h

0
k(a)π(a)Bψ(t + h − a)da ≤ Lv‖k‖∞Mψh

and
∣
∣
∣

∫ ∞

h
k(a)iv(t + h, a)da −

∫ ∞

0
k(a)iv(t, a)da

∣
∣
∣

=
∣
∣
∣

∫ ∞

0
k(a + h)iv(t + h, a + h)da −

∫ ∞

0
k(a)iv(t, a)da

∣
∣
∣.

It follows from (4.2) that iv(t + h, a + h) = π(a+h)
π(a)

iv(t, a). Therefore,

∣
∣
∣

∫ ∞

h
k(a)iv(t + h, a)da −

∫ ∞

0
k(a)iv(t, a)da

∣
∣
∣

=
∣
∣
∣

∫ ∞

0
k(a + h)

π(a + h)

π(a)
iv(t, a)da −

∫ ∞

0
k(a)iv(t, a)da

∣
∣
∣

≤
∣
∣
∣

∫ ∞

0
k(a + h)

(π(a + h)

π(a)
− 1
)
iv(t, a)da

∣
∣
∣+
∫ ∞

0
|k(a + h) − k(a)|iv(t, a)da

=
∣
∣
∣

∫ ∞

0
k(a + h)

(
e−μvh − 1

)
iv(t, a)da

∣
∣
∣+
∫ ∞

0
|k(a + h) − k(a)|iv(t, a)da

≤ μvh‖k‖∞Nv +
∫ ∞

0
|k(a + h) − k(a)|iv(t, a)da

since 0 ≤ 1 − e−μvh − 1 ≤ μvh. In summary,

|Bϕ(t + h) − Bϕ(t)| ≤ (LuMS + LvMψ‖k‖∞ + Lvμv‖k‖∞Nv)h

+Lv

∫ ∞

0
|k(a + h) − k(a)|iv(t, a)da.

It is easy to see that conclusion holds since k is uniformly continuous. 
�
Proposition 4.8 If R0 > 1, then there exists a global attractor A for the solution semiflow
� of (2.1) in �0.
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Proof By Lemma 4.5, we only need to show that the induced semiflow on �0 is asymptoti-
cally smooth. To apply Lemma 4.6, for any t ∈ R+ and x = (Sh0, ih0, iv0) ∈ �0, we denote
� = �1 + �2 with

�1(t, x) = (0, îh(t, ·), îv(t, ·)) and �2(t, x) = (Sh(t), ĩh(t, ·), ĩv(t, ·)),
where

îh(t, a) =
{
0, 0 ≤ a ≤ t,

σ (a)
σ (a−t) ih0(a − t), 0 < t < a,

îv(t, a) =
{
0, 0 ≤ a ≤ t,

π(a)
π(a−t) iv0(a − t), 0 < t < a,

and

ĩh(t, a) = ih(t, a) − îh(t, a) =
{

σ(a)Bϕ(t − a), 0 ≤ a ≤ t,
0, 0 < t < a,

ĩv(t, a) = iv(t, a) − îv(t, a) =
{

π(a)Bψ(t − a), 0 ≤ a ≤ t,
0, 0 < t < a.

It is obvious that îh, îv, ĩh and ĩv are nonnegative.

First,

‖�1(t, x)‖ = ‖̂ih(t, ·)‖1 + ‖̂iv(t, ·)‖1
=
∫ ∞

t
ih0(a − t)

σ (a)

σ (a − t)
da +

∫ ∞

t
iv0(a − t)

π(a)

π(a − t)
da

=
∫ ∞

0
ih0(a)

σ (a + t)

σ (a)
da +

∫ ∞

0
iv0(a)

π(a + t)

π(a)
da

≤ e−μh t‖ih0‖1 + e−μv t‖iv0‖1
≤ e−μ̃t‖x‖,

where μ̃ = min{μh, μv}. This means that �1 satisfies the condition of Lemma 4.6.
Next, we show that �2 is completely continuous, that is, for any fixed t ∈ R+ and any

bounded set �1 ⊆ �0, the set

�t �
{
�2(t, x) : x = (Sh0, ih0, iv0) ∈ �1

}

is precompact. It is enough to show that

�t (ih, iv) =
{
(̃ih(t, ·), ĩv(t, ·)) : (Sh(t), ĩh(t, ·), ĩv(t, ·)) ∈ �t

}

is precompact.
According to similar arguments in Chen et al. (2016), we only need to verify the second

condition of the Fréchet–Kolmogrov Theorem, that is, the translation operator �t (ih, iv) is
uniformly continuous or

lim
h→0+ ‖̃ih(t, ·) − ĩh(t, · + h)‖1 = lim

h→0+ ‖̃iv(t, ·) − ĩv(t, · + h)‖1 = 0 (4.4)

uniformly in �t (ih, iv).
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It is obvious that (4.4) holds when t = 0 since ĩh(0, ·) = 0 and ĩv(0, ·) = 0. Therefore,
we only need to consider the case when t > 0. Concerning with the limit as h → 0+, we
assume that h ∈ (0, t). Then

‖̃ih(t, ·) − ĩh(t, · + h)‖1
=
∫ ∞

0
|̃ih(t, a) − ĩh(t, a + h)|da

=
∫ t−h

0
|Bϕ(t − a − h)σ (a + h) − Bϕ(t − a)σ (a)|da +

∫ t

t−h
Bϕ(t − a)σ (a)da

≤
∫ t−h

0
Bϕ(t − a − h)|σ(a + h) − σ(a)|da

+
∫ t−h

0
|Bϕ(t − a − h) − Bϕ(t − a)|σ(a)da + hMϕ

≤ Mϕ t‖δ‖∞h +
∫ t−h

0
|Bϕ(t − a − h) − Bϕ(t − a)|σ(a)da + hMϕ

as Bϕ(t) ≤ Mϕ for t ∈ R+ and |σ(a+h)−σ(a)| ≤ h‖δ‖∞. This, combinedwith Lemma 4.7,
gives us

lim
h→0+ ‖̃ih(t, ·) − ĩh(t, · + h)‖1 = 0.

Similarly, we can show that limh→0+ ‖̃iv(t, ·) − ĩv(t, · + h)‖1 = 0. 
�
Now the uniform strong ρ-persistence follows from (Thieme 2000, Theorem 2.3) and

Propositions 4.4 and 4.8.

Theorem 4.9 Suppose R0 > 1. Then, (2.1) is uniformly strongly ρ-persistent.

We know that the global attractorA only can contain points with total trajectories through
them since it must be invariant. A total trajectory of � is a function x : R → X+ such
that �(s, x(t)) = x(s + t) for all t ∈ R and all s ∈ R+. For a total trajectory, ih(t, a) =
ih(t − a, 0)σ (a) and iv(t, a) = iv(t − a, 0)π(a) for all t ∈ R and a ∈ R+. The alpha limit
of a total trajectory x(t) passing through x(0) = x0 is

α(x0) =
⋂

t≤0

⋃

s≤t

{x(s)} ⊆ A
⋂

�0.

Theorem 4.10 SupposeR0 > 1. Then there exists ε0 > 0 such that Sh(t), ih(t, 0), iv(t, 0) ≥
ε0 for all t ∈ R, where (Sh(t), ih(t, ·), iv(t, ·)) is any total trajectory in A.

Proof Firstly, it follows from

dSh(t)

dt
≥ λ − (μh + Lu)Sh(t)

that lim inf t→∞ Sh(t) ≥ λ
μh+Lu

� εh . By invariance, Sh(t) ≥ εh for t ∈ R.

Secondly, by Theorem 4.9 and invariance, there exists ε1 > 0 such that
∫ ∞

0
k(a)iv(t, a)da ≥ ε1 for t ∈ R.

Then, ih(t, 0) = ϕ(Sh(t),
∫∞
0 k(a)iv(t, a)da ≥ ϕ(εh, ε1) � ε2 for t ∈ R.
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Thirdly,

d

dt

(

Nv −
∫ ∞

0
iv(t, a)da

)

= −
∫ ∞

0

∂iv(t, a)

∂t
da =

∫ ∞

0

(

μv + ∂iv(t, a)

∂a

)

da

= μv

∫ ∞

0
iv(t, a)da + iv(t, ∞) − iv(t, 0)

≥ μv

∫ ∞

0
iv(t, a)da − ψ

(

Nv −
∫ ∞

0
iv(t, a)da,

∫ ∞

0
β(a)ih(t, a)da

)

≥ μv

∫ ∞

0
iv(t, a)da − Ku

(

Nv −
∫ ∞

0
iv(t, a)da

)

= μvNv − (μv + Ku)

(

Nv −
∫ ∞

0
iv(t, a)da

)

,

which implies that lim inf t→∞(Nv − ∫∞
0 iv(t, a)da) ≥ μvNv

μv+Ku
� εv . By invariance, Nv −

∫∞
0 iv(t, a)da ≥ εv for t ∈ R. Then, for t ∈ R,

iv(t, 0) = ψ

(

Nv −
∫ ∞

0
iv(t, a)da,

∫ ∞

0
β(a)ih(t, a)da

)

≥ ψ

(

εv,

∫ ∞

0
β(a)ih(t − a, 0)σ (a)da

)

≥ ψ(εv, ε2η) � ε3.

Letting ε0 = min{εh, ε2, ε3} immediately completes the proof. 
�
Now, we are ready to establish the global stability of E∗ with the approach of Lyapunov

functionals.

Theorem 4.11 IfR0 > 1, then the endemic equilibrium E∗ of (2.1) is globally asymptotically
stable in �0.

Proof ByTheorem 3.2, it suffices to show thatA = {E∗}. To construct a Lypunov functional,
we introduce g : (0,∞) → R defined as g(u) = u − 1 − ln u for u ∈ (0,∞). It is easy to
see that g(u) ≥ 0 for u ∈ (0,∞) and g(u) = 0 if and only if u = 1.

Let x(t) = (Sh(t), ih(t, ·), iv(t, ·)) be a total trajectory in A. Note that all Sh(t), ih(t, 0),
and iv(t, 0) are bounded above. Furthermore, by Theorem 4.10, they are also bounded below
by a positive number. Therefore, there exists r0 > 0 such that 0 ≤ g(z) ≤ r0 with z = Sh(t)

S∗
h
,

ih(t,a)
i∗h (a)

, or iv(t,a)
i∗v (a)

for any t ∈ R and a ∈ R+ as ih (t,a)
i∗h (t,a)

= ih(t−a,0)
i∗h (0) and iv(t,a)

i∗v (a)
= iv(t−a,0)

i∗v (0) .

We now define a Lyapunov functional

W (t) = W (x(t)) = W1(t) + W2(t) + W3(t) + W4(t),

where

W1(t) =
∫∞
0 k(a)i∗v (a)da

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

(

Sh(t) − S∗
h −

∫ Sh(t)

S∗
h

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(θ,
∫∞
0 k(a)i∗v (a)da)

dθ

)

,

W2(t) =
∫∞
0 k(a)i∗v (a)da

ηϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

∫ ∞

0
η(a)i∗h (a)g

(
ih(t, a)

i∗h (a)

)

da,

W3(t) = ξ

(

Sv(t) − S∗
v −

∫ Sv(t)

S∗
v

ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(θ,
∫∞
0 β(a)i∗h (a)da)

dθ

)

,

W4(t) =
∫ ∞

0
ξ(a)i∗v (a)g

( iv(t, a)

i∗v (a)

)
da,
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and

Sv(t) = Nv −
∫ ∞

0
iv(t, a)da,

S∗
v = Nv −

∫ ∞

0
i∗v (a)da = Nv − i∗v (0)

μv

,

η(a) =
∫ ∞

a
β(θ)e− ∫ θ

a δ(s)dsdθ,

ξ(a) =
∫ ∞

a
k(θ)e− ∫ θ

a μvdsdθ.

Then, W (t) is bounded on the solution x(t) = (Sh(t), ih(t, ·), Sv(t), iv(t, ·)). Now we cal-
culate the time derivatives of W one by one as follows.

Firstly,

dW1(t)

dt
=

∫∞
0 k(a)i∗v (a)da

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)
dSh(t)

dt

=
∫∞
0 k(a)i∗v (a)da

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

×
(

λ − μh Sh(t) − ϕ(Sh(t),
∫ ∞

0
k(a)iv(t, a)da)

)

.

Since λ = μh S∗
h +ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da) and ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da) = i∗h (0), we obtain

dW1(t)

dt
= μh Sh(t)

∫∞
0 k(a)i∗v (a)da

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

(
S∗
h

Sh(t)
− 1

)(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

+
∫ ∞

0
k(a)i∗v (a)da

(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

−
∫∞
0 k(a)i∗v (a)daϕ(Sh(t),

∫∞
0 k(a)iv(t, a)da)

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

×
(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

= μh Sh(t)
ξ i∗v (0)

i∗h (0)

(
S∗
h

Sh(t)
− 1

)(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

−g

(
ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)∫ ∞

0
k(a)i∗v (a)da

−
∫ ∞

0
k(a)i∗v (a)da

[
ϕ(Sh(t),

∫∞
0 k(a)iv(t, a)da)

ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

−ϕ(Sh(t),
∫∞
0 k(a)iv(t, a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

+ ln
ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

]

.

123



Global dynamics of a vector-borne disease model with infection... 4075

Secondly,

dW2(t)

dt
=

∫∞
0 k(a)i∗v (a)da

ηϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

∫ ∞

0
η(a)

(

1 − i∗h (a)

ih(t, a)

)
∂ih(t, a)

∂t
da

= ξ i∗v (0)

ηi∗h (0)

∫ ∞

0
η(a)

(

1 − i∗h (a)

ih(t, a)

)(

− ∂ih(t, a)

∂a
− δ(a)ih(t, a)

)

da.

Note that

i∗h (a)
∂

∂a

(

g
( ih(t, a)

i∗h (a)

))

=
(

1 − i∗h (a)

ih(t, a)

)
∂ih(t, a)

∂a
+
(

1 − i∗h (a)

ih(t, a)

)

δ(a)ih(t, a).

Thus

dW2(t)

dt
= − ξ i∗v (0)

ηi∗h (0)

∫ ∞

0
η(a)i∗h (a)

∂

∂a

(

g

(
ih(t, a)

i∗h (a)

))

da

= − ξ i∗v (0)

ηi∗h (0)
η(a)i∗h (a)g

(
ih(t, a)

i∗h (a)

)∣∣
∣
∣

∞

a=0

+ ξ i∗v (0)

ηi∗h (0)

∫ ∞

0
g

(
ih(t, a)

i∗h (a)

)

(η′(a) − δ(a)η(a))i∗h (a)da

= ξ i∗v (0)g

(
ih(t, 0)

i∗h (0)

)

− ξ i∗v (0)

ηi∗h (0)

∫ ∞

0
β(a)i∗h (a)g

(
ih(t, a)

i∗h (a)

)

da.

Then

dW1(t)

dt
+ dW2(t)

dt
= μh Sh(t)ξ i∗v (0)

i∗h (0)

(
S∗
h

Sh(t)
− 1

)(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

−g

(
ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh,
∫∞
0 k(a)i∗v (a)da)

)∫ ∞

0
k(a)i∗v (a)da

+
∫ ∞

0
k(a)i∗v (a)da · g

(
ϕ(Sh(t),

∫∞
0 k(a)iv(t, a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

− ξ i∗v (0)

ηi∗h (0)

∫ ∞

0
β(a)i∗h (a)g

(
ih(t, a)

i∗h (a)

)

da.

Similarly, noting dSv(t)
dt = μvNv−μvSv(t)−ψ(Sv(t),

∫∞
0 β(a)ih(t, a)da), we can obtain

dW3(t)

dt
= ξμvSv(t)

(
S∗
v

Sv(t)
− 1

)(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

+ξψ(S∗
v ,

∫ ∞

0
β(a)i∗h (a)da)

(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

−ξψ(Sv(t),
∫ ∞

0
β(a)ih(t, a)da)

(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

= ξμvSv(t)

(
S∗
v

Sv(t)
− 1

)(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

−ξψ

(

S∗
v ,

∫ ∞

0
β(a)i∗h (a)da

)

g

(
ψ(S∗

v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)
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−ξψ(S∗
v ,

∫ ∞

0
β(a)i∗h (a)da)

[
ψ(Sv(t),

∫∞
0 β(a)ih(t, a)da)

ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

− ψ(Sv(t),
∫∞
0 β(a)ih(t, a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

+ ln
ψ(S∗

v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

]

and

dW4(t)

dt
= ξψ

(
S∗
v ,

∫ ∞

0
β(a)i∗h (a)da

)
g
(ψ(Sv(t),

∫∞
0 β(a)ih(t, a)da)

ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

)

−
∫ ∞

0
k(a)i∗v (a)g

( iv(t, a)

i∗v (a)

)
da.

It follows that

dW3(t)

dt
+ dW4(t)

dt
= ξμvSv(t)

(
S∗
v

Sv(t)
− 1

)(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

−ξψ

(

S∗
v ,

∫ ∞

0
β(a)i∗h (a)da

)

g

(
ψ(S∗

v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

+ξψ

(

S∗
v ,

∫ ∞

0
β(a)i∗h (a)da

)

g

(
ψ(Sv(t),

∫∞
0 β(a)ih(t, a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

−
∫ ∞

0
k(a)i∗v (a)g

(
iv(t, a)

i∗v (a)

)

da.

From the concavity and monotonicity of the functions ϕ(u, v) and ψ(u, v) on v, we have
the following inequalities:

⎧
⎨

⎩

v
v∗ ≤ ϕ(u,v)

ϕ(u,v∗) ,
ψ(u,v)
ψ(u,v∗) ≤ 1, 0 < v ≤ v∗,

1 ≤ ϕ(u,v)
ϕ(u,v∗) ,

ψ(u,v)
ψ(u,v∗) ≤ v

v∗ , v ≥ v∗ > 0.

Then, g
(

ϕ(u,v)
ϕ(u,v∗)

)
≤ g

(
v
v∗
)
and g

(
ψ(u,v)
ψ(u,v∗)

)
≤ g

(
v
v∗
)
for any u > 0, v > 0, and v∗ > 0.

This, combined with the Jensen’s Inequality, yields

∫ ∞

0
k(a)i∗v (a)da · g

(
ϕ(Sh(t),

∫∞
0 k(a)iv(t, a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

≤
∫ ∞

0
k(a)i∗v (a)da · g

(∫∞
0 k(a)iv(t, a)da
∫∞
0 k(a)i∗v (a)da

)

=
∫ ∞

0
k(a)i∗v (a)da · g

⎛

⎝

∫∞
0 k(a)i∗v (a) · iv(t,a)

i∗v (a)
da

∫∞
0 k(a)i∗v (a)da

⎞

⎠

≤
∫ ∞

0
k(a)i∗v (a)g

(
iv(t, a)

i∗v (a)

)

da

and similarly
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ξψ(S∗
v ,

∫ ∞

0
β(a)i∗h (a)da)g

(
ψ(Sv(t),

∫∞
0 β(a)ih(t, a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

≤ ξ i∗v (0)

ηi∗h (0)

∫ ∞

0
β(a)i∗h (a)g

(
ih(t, a)

i∗h (a)

)

da.

Moreover, by the monotonicity of ϕ(u, ν) and ψ(u, v) on u, we have
(

S∗
h

Sh(t)
− 1

)(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

≤ 0,

(
S∗
v

Sv(t)
− 1

)(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ϕ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

≤ 0,

and, using the equilibrium equations, one gets

ξψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

∫∞
0 β(a)i∗h (a)da

− ξ i∗v (0)

ηi∗h (0)
= 0.

Therefore,

dW (t)

dt
≤ μh Sh(t)

ξ i∗v (0)

i∗h (0)

(
S∗
h

Sh(t)
− 1

)(

1 − ϕ(S∗
h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

−
∫ ∞

0
k(a)i∗v (a)da · g

(
ϕ(S∗

h ,
∫∞
0 k(a)i∗v (a)da)

ϕ(Sh(t),
∫∞
0 k(a)i∗v (a)da)

)

+ξμvSv(t)

(
S∗
v

Sv(t)
− 1

)(

1 − ψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

−ξψ

(

S∗
v ,

∫ ∞

0
β(a)i∗h (a)da

)

g

(
ψ(S∗

v ,
∫∞
0 β(a)i∗h (a)da)

ψ(Sv(t),
∫∞
0 β(a)i∗h (a)da)

)

+
(

ξψ(S∗
v ,
∫∞
0 β(a)i∗h (a)da)

∫∞
0 β(a)i∗h (a)da

− ξ i∗v (0)

ηi∗h (0)

)∫ ∞

0
β(a)i∗h (a)g

(
ih(t, a)

i∗h (a)

)

da

≤ 0,

which implies that W is non-increasing. Since W is bounded on x(·), the alpha limit set
of x(·) must be contained in the largest invariant subset M in { dW (t)

dt = 0}. It is easy to
see that M = {E∗}. From the above discussion, we find that α(x0) = {E∗} and hence
W (x(t)) ≤ W (E∗) for all t ∈ R. This yields x(t) = E∗ and hence A = {E∗}, which
completes the proof. 
�

5 Conclusions

Infection age is a very important factor in malaria disease transmission. In this paper, we
incorporated infection ages into both infected hosts and infected vectors in our model (2.1).
The vector population size is assumed to be a constant. The incidence between susceptible
hosts and infectious vectors takes a general nonlinear form ϕ(Sh,

∫∞
0 k(a)iv(t, a)da), where

k(a) is the age-dependent biting rate of a susceptible host by an infected vector; while
that between susceptible vectors and infected hosts takes another general nonlinear form
ψ(Sv,

∫∞
0 β(a)ih(t, a)da), which is the probability of a susceptible vector becoming infected
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in a unit of time.Here,β(a) is the age-dependent biting rate of an infected host by a susceptible
vector. By employing some recently developed techniques on global analysis in Magal et al.
(2010) and Melnik and Korobeinikov (2013), we have successfully coped with the great
challenge brought by the introduction of infection ages and general nonlinear incidence
rates. With the applications of the fluctuation lemma and Lyapunov functionals, a global
threshold dynamics is established, which is completely determined by the basic reproduction
numberR0. Precisely, the disease-free equilibrium is globally asymptotically stable ifR0 < 1
(Theorem 4.3) while the endemic equilibrium is globally asymptotically stable if R0 > 1
(Theorem 4.11).

From the expression (3.1) for the basic reproduction numberR0, we see that the nonlinear
incidence rates ϕ and ψ as well as infection ages have combined effects onR0. This, in turn,
indicates that these factors introduced in this paper have profound impact on the dynamics of
vector-borne disease models. In this paper, we established rigorous results on the qualitative
dynamics of (2.1). However, how the nonlinear incidence rates aswell as infection age change
the quantitative behaviors of (2.1) remains open, which we leave as our future work.

Acknowledgements X. Wang is supported by NSFC (no. 11771374), the CSC (201508410281), the Nanhu
Scholar Program for Young Scholars of Xinyang Normal University, the Program for Science and Technol-
ogy Innovation Talents in Universities of Henan Province (17HASTIT011), the Universities Young Teachers
Program of Henan Province (2014GGJS-093). Y. Chen is supported by NSERC. S. Liu is supported by NSFC
(no. 11471089).

References

Altizer S, Dobson A, Hosseini P et al (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett
9(4):467–484

Anderson RM,May RM (1978) Regulation and stability of host-parasite population interactions: I. Regulatory
processes. J Anim Ecol 47:219–247

Antonovics J, Iwasa Y, Hassell MP (1995) A generalized model of parasitoid, venereal, and vector-based
transmission processes. Am Nat 145(5):661–675

Avila-Vales E, BuonomoB (2015)Analysis of amosquito-borne disease transmissionmodel with vector stages
and nonlinear forces of infection. Ricerche di Matematica. 64(2):377–390

Aron JL (1988) Mathematical modelling of immunity to malaria. Math Biosci 90(1):385–396
BarlowND(2000)Non-linear transmission and simplemodels for bovine tuberculosis. JAnimEcol 69(4):703–

713
BegonM, Hazel SM, Baxby D et al (1999) Transmission dynamics of a zoonotic pathogen within and between

wildlife host species. Proc R Soc Lond B Biol Sci 266(1432):1939–1945
Bhatt S, Gething PW, Brady OJ, Messina JP et al (2013) The global distribution and burden of dengue. Nature

496:504–507
BowmanC,GumelAB,Van denDriessche P et al (2005)Amathematical model for assessing control strategies

against West Nile virus. Bull Math Biol 67(5):1107–1133
Brand SPC, Rock KS, Keeling MJ (2016) The interaction between vector life history and short vector life in

vector-borne disease transmission and control. PLoS Comput Biol 12(4):e1004837
Briggs CJ, Godfray HCJ (1995) The dynamics of insect-pathogen interactions in stage-structured populations.

Am Nat 145(6):855–887
Browne CJ, Pilyugin SS (2013) Global analysis of age-structured within-host virus model. Discret Contin Dyn

Syst Ser B 18(8):1999–2017
Capasso V, Grosso E, Serio G (1977) I modelli matematici nella indagine epidemiologica. Applicazione

all’epidemia di colera verificatasi in Bari nel 1973 (italian). Annali Sclavo. 1977(19):193–208
Capasso V, Serio G (1978) A generalization of the Kermack-McKendrick deterministic epidemicmodel. Math

Biosci 42:41–61
Caminade C, McIntyre MK, Jones AE (2016) Climate change and vector-borne diseases: where are we next

heading? J Infect Dis 214(9):1300–1301

123



Global dynamics of a vector-borne disease model with infection... 4079

Centers for Disease Control and Prevention (2002) Provisional surveillance summary of the West Nile virus
epidemic-United States, January–November 2002. MMWR. Morbid Mortality Week Rep 51(50):1129–
1133

Chen Y, Zou S, Yang J (2016) Global analysis of an SIR epidemic model with infection age and saturated
incidence. Nonlinear Anal Real World Appl 30:16–31

Diekmann O, Kretzschmar M (1991) Patterns in the effects of infectious diseases on population growth. J
Math Biol 29(6):539–570

Dietz K, Molineaux, L, Thomas A (1974) A malaria model tested in the African savannah. Bull World Health
Org 50(3–4):347

Feng X, Ruan S, Teng Z, Wang K (2015) Stability and backward bifurcation in a malaria transmission model
with applications to the control of malaria in China. Math Biosci 266:52–64

Feng Z, Velasco-Hernández JX (1997) Competitive exclusion in a vector-host model for the dengue fever. J
Math Biol 35(5):523–544

Forouzannia F, Gumel AB (2014) Mathematical analysis of an age-structured model for malaria transmission
dynamics. Math Biosci 247(2):80–94

Georgescu P, Hsieh YH (2006) Global stability for a virus dynamics model with nonlinear incidence of
infection and removal. SIAM J Appl Math 67:337–353

Hale JK (1988) Asymptotic behavior of dissipative systems. Am. Math. Soc, Providence, RI
Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653
HirschWM,Hanisch H, Gabriel J-P (1985) Differential equationmodels of some parasitic infections: methods

for the study of asymptotic behavior. Commun Pure Appl Math 38:733–753
Hochberg ME (1991) Non-linear transmission rates and the dynamics of infectious disease. J Theoret Biol

153(3):301–321
Hollingsworth TD, Pulliam JRC, Funk S et al (2015) Seven challenges for modelling indirect transmission:

vector-borne diseases, macroparasites and neglected tropical diseases. Epidemics 10:16–20
Iannelli M (1995) Mathematical theory of age-structured population dynamics. In: Applied mathematics

monographs, vol 7, comitato Nazionale per le Scienze Matematiche, Consiglio Nazionale delle Ricerche
(C.N.R.), Giardini, Pisa

Inaba H, Sekine H (2004) A mathematical model for Chagas disease with infection-age-dependent infectivity.
Math Biosci 190(1):39–69

Knell RJ, Begon M, Thompson DJ (1996) Transmission dynamics of Bacillus thuringiensis infecting Plodia
interpunctella: a test of the mass action assumption with an insect pathogen. Proc R Soc Lond B Biol Sci
263(1366):75–81

Korobeinikov A (2009) Global asymptotic properties of virus dynamics models with dose-dependent parasite
reproduction and virulence and nonlinear incidence rate. Math Med Biol 26:225–239

Korobeinikov A (2007) Global properties of infectious disease models with nonlinear incidence. Bull Math
Biol 69:1871–1886

Kuniya T (2014) Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with
time periodic coefficients. Appl Math Lett 27:15–20

Kuniya T, Oizumi R (2015) Existence result for an age-structured SIS epidemic model with spatial diffusion.
Nonlinear Anal Real World Appl 23:196–208

Lutambi AM, Penny MA, Smith T, Chitnis N (2013) Mathematical modelling of mosquito dispersal in a
heterogeneous environment. Math Biosci 241:198–216

Lashari AA, Zaman G (2011) Global dynamics of vector-borne diseases with horizontal transmission in host
population. Comput Math Appl 61(4):745–754

Liu H, Yu J, Zhu G (2006) Analysis of a vector-host malaria model with impulsive effect and infection-age.
Adv Comp Syst 9(3):237–248

Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria-a review. Malaria J 10(1):202
Macdonald G (1952) The analysis of equilibrium in malaria. Trop Dis Bull 49(9):813–829
Maidana NA, Yang HM (2008) Describing the geographic spread of dengue disease by traveling waves. Math

Biosci 215(1):64–77
Magal P,McCluskeyCC,WebbGF (2010)Lyapunov functional andglobal asymptotic stability for an infection-

age model. Appl Anal 89(7):1109–1140
Anderson RM, May RM (1978) Regulation and stability of host-parasite population interactions: II. Destabi-

lizing processes. J Anim Ecol 47:249–267
McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol

16(6):295–300
Melnik AV, Korobeinikov A (2013) Lyapunov functions and global stability for SIR and SEIR models with

age-dependent susceptibility. Math Biosci Eng 10(2):369–378

123



4080 X. Wang et al.

Nash D, Mostashari F, Fine A et al (2001) The outbreak of West Nile virus infection in the New York City
area in 1999. N Engl J Med 344(24):1807–1814

Ngwa GA, Shu WS (2000) A mathematical model for endemic malaria with variable human and mosquito
populations. Math Comput Model 32:747–763

Novoseltsev VN, Michalski AI, Novoseltseva JA et al (2012) An age-structured extension to the vectorial
capacity model. PloS One 7(6):e39479

Park TR (2004) Age-dependence in epidemic models of vector-borne infections. The University of Alabama
in Huntsville, Thesis

Qiu Z (2008) Dynamical behavior of a vector-host epidemic model with demographic structure. Comput Math
Appl 56(12):3118–3129

Rock KS,Wood DA, KeelingMJ (2015) Age-and bite-structured models for vector-borne diseases. Epidemics
12:20–29

Roop-O P, Chinviriyasit W, Chinviriyasit S (2015) The effect of incidence function in backward bifurcation
for malaria model with temporary immunity. Math Biosci 265:47–64

Ross R (1910) The prevention of malaria. J. Murray, London
Ross R (1911) Some quantitative studies in epidemiology. Nature 87:466–467
Ruan S, Xiao D, Beier JC (2008) On the delayed Ross-Macdonald model for malaria transmission. Bull Math

Biol 70(4):1098–1114
SmithHL,ThiemeHR(2011)Dynamical systems andpopulation persistence.AmericanMathematical Society,

Providence, RI
TahirMT (2017) Incidence of dengue haemorrhagic fever in local population of Lahore. PakBiomed 25(2):93–

96
ThiemeHR (2000)Uniformpersistence and permanence for non-autonomous semiflows in population biology.

Math Biosci 166:173–201
Tumwiine J, Mugisha JYT, Luboobi LS (2007) A mathematical model for the dynamics of malaria in a human

host and mosquito vector with temporary immunity. Appl Math Comput 189(2):1953–1965
Saul A (1996) Transmission dynamics of Plasmodium falciparum. Parasitol Today 12:74–79
Soufiane B, Touaoula TM (2016) Global analysis of an infection age model with a class of nonlinear incidence

rates. J Math Anal Appl 434:1211–1239
Vargas-De-León C (2012) Global analysis of a delayed vector-bias model for malaria transmission with

incubation period in mosquitoes. Math Biosci Eng 9(1):165–174
Vargas-De-León C, Esteva L, Korobeinikov A (2014) Age-dependency in host-vector models: the global

analysis. Appl Math Comput 243:969–981
Wang X, Lou Y, Song X (2017a) Age-structured within-host hiv dynamics with multiple target cells. Stud

Appl Math 138(1):43–76
Wang X, Chen, Y, Liu S (2017b) Dynamics of an age-structured host-vector model for malaria transmission.

Math Methods Appl Sci. https://doi.org/10.1002/mma.4723
WangX, ChenY,MartchevaM, Rong L (2017c) Threshold dynamics of an age-structured vector-borne disease

model with general nonlinear incidence rates. Nonlinear Anal Real World Appl (Submitted)
Wang J, Guo M, Liu S (2017d) SVIR epidemic model with age structure in susceptibility, vaccination effects

and relapse. IMA J Appl Math 82(5):945–970
Wang J, Zhang R, Kuniya T (2015) The dynamics of an SVIR epidemiological model with infection age. IMA

J Appl Math 81(2):321–343
World Health Organization: (2016) Fact sheet: world malaria report 2016. http://www.who.int/malaria/media/

world-malaria-report-2016/en/. Accessed Dec 2016
Yang J, Chen Y, Kuniya T (2017) Threshold dynamics of an age-structured epidemic model with relapse and

nonlinear incidence. IMA J Appl Math 82(3):629–655

123

https://doi.org/10.1002/mma.4723
http://www.who.int/malaria/media/world-malaria-report-2016/en/
http://www.who.int/malaria/media/world-malaria-report-2016/en/

	Global dynamics of a vector-borne disease model  with infection ages and general incidence rates
	Abstract
	1 Introduction
	2 Model formulation
	3 Equilibria and their local stability
	4 The global dynamics
	5 Conclusions
	Acknowledgements
	References




