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Abstract In this article, a newmethod is introduced to handle fuzzymulti-attribute decision-
making problems. The method preserves fuzziness in the preference technique to avoid
the drawbacks of defuzzification. The study modifies the technique of order preference by
similarity to an ideal solution (TOPSIS) for interval-valued fuzzy numbers. The traditional
TOPSIS uses the relative degree of closeness to rank the alternatives. Instead, a similarity
measure based on map distance is used for preference. The degree of similarity between each
attribute of an alternative and the ideal solution is computed, and a similaritymatrix is formed.
Then, the total degree of similarity for all the attributes of an alternative is used for ranking.
The alternative corresponding to the one norm of the similarity matrix is the best alternative.
Thus, the comparison is doneon a fuzzybasis to avoid the loss of informationdue to converting
the elements of the weighted normalized decision matrix to crisp values by defuzzification.
An illustrative example is given to demonstrate the approach. A practical example in network
selection to optimize vertical hand offs is solved where both user preferences and network
parameters are treated as interval-valued fuzzy numbers.

Keywords Fuzzy multi-criteria decision-making · TOPSIS · Similarity measure · Network
selection

Mathematics Subject Classification 90B50 · 90C70 · 90C90

1 Introduction

The purpose ofmulti-attribute decision-making (MADM) is to choose the best candidate from
a set of alternatives using experts’ evaluations of the multiple attributes of the alternatives
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(Chen and Lee 2010). In the process of decision-making, ambiguity and uncertainty are often
confronted when evaluating the criteria weights and the alternatives of the problem. Some of
the evaluation criteria are subjective and qualitative in nature which hinders expressing the
preference using exact numerical values.

Until recently, MADM using type-1 fuzzy sets (T1FSs) attracted many researchers and
many studies were introduced. However, T1FSs have a crisp membership function value
in the interval [0,1]. Using a crisp membership function can decrease the flexibility and
precision of decision-making in an uncertain environment, as it is hard to estimate the exact
membership function of fuzzy sets in many situations (Ghorabaee 2016). Currently, MADM
methods use more sophisticated fuzzy sets, e.g., interval type-2 fuzzy sets (Chen and Kuo
2017; Qin 2017; Cheng et al. 2016; Mendel 2016; Chen and Hong 2014; Chen and Wang
2013) and intuitionistic fuzzy sets (Das et al. 2016; Garg 2016a, b; Garg and Ansha 2016c;
Garg 2017; Jiang et al. 2017; Singh and Garg 2017; Xu and Gou 2017). On the other hand,
Shadowed sets as a simplification of fuzzy sets gained a growing interest in recent years. A
shadowed set is a fuzzy set with a reduced number of membership degrees. An element with
membership degree close to one is approximated to one; an element with membership degree
close to zero is approximated to zero. Other elements are placed in a shadowed region (Cai
et al. 2017).

Zadeh (1975) introduced type-2 fuzzy sets (T2FSs) as an extension of T1FSswith the capa-
bility of representing two types of uncertainties interpersonal and intrapersonal uncertainties
(Bakar et al. 2015). They are used in situations where T1FSs fail to express uncertainties
(Najariyan et al. 2017). They are characterized by an interval membership function that can
provide more degrees of freedom in representing uncertainties in the real world problem
(Ghorabaee 2016). When T2FSs are utilized in decision-making, heavy computations are
confronted. Consequently, interval type-2 fuzzy sets (IT2FSs) were introduced according to
certain simplification assumptions. Interval-valued fuzzy sets (IVFSs) are a special case of
IT2FSs.

Extant MADM methods are often applied to data of the same type; they lack the ability
to deal adequately with heterogeneous data (Chatterjee and Kar 2017). Recently, granular
computing emerged as a promising research area inMADM. It is a structured problem-solving
method to deal with information in heterogeneous contexts for decision making. This allows
experts having different backgrounds and levels of knowledge (granules) to express their
decisions in a more flexible way in accordance with their domain of knowledge (Chatterjee
and Kar 2017). For more details on granular computing, the reader is referred to works by
Chatterjee and Kar (2017), Meng et al. (2017), Sanchez et al. (2017), Wang et al. (2017) and
Xu and Wang (2016). In addition, new techniques are introduced to solve MADM problems
in which the decision makers’ psychological behaviors are taken into consideration (Liu and
You 2017).

The technique of order preference by similarity to an ideal solution (TOPSIS) is a popular
approach for multi-attribute/multi-criteria decision-making introduced by Hwang and Yoon
(1981) to deal with real-valued data (Rashid et al. 2014). A solution from TOPSIS is defined
as the alternativewhich satisfies being the closest to the positive ideal solution and the farthest
from the negative ideal solution (Chu and Lin 2003). TOPSIS also assesses the alternatives
and the weighted coefficients which are represented by fuzzy numbers. First, the weighted
ratings are defuzzified into crisp values; then a closeness coefficient is defined to determine
the ranking order of the alternatives by calculating their distance from both the positive
and negative ideal solutions. The conversion of the weighted normalized decision matrix
to crisp values by defuzzification was proposed by Chu and Lin (2003) to change a fuzzy
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MADM problem into a crisp value (Ilieva 2016). TOPSIS is preferred due to its simplicity
and intuitiveness; it doesn’t require a lot of computations (Ilieva 2016).

In the previous decade, several modifications have been introduced to fuzzy TOPSIS.
Modifications can be either in the defuzzification or in the preference comparison technique.
Defuzzification is characterized by being simple and easy, meanwhile, a fuzzy pair-wise
comparison is complex and difficult. However, fuzzy pair-wise comparison preserves fuzzi-
ness in messages, while defuzzification loses uncertainty of messages (Ilieva 2016). Using
interval-valued set concepts, Ashtiani et al. (2009) introduced interval-valued fuzzy TOPSIS
to solve MCDM problems in which the weights of the criteria are unequal. Chen and Lee
(2010) presented an interval type-2 fuzzyTOPSISmethod for fuzzymultiple attributes group-
decision making problems based on IT2FS. Rashid et al. (2014) extended TOPSIS using
generalized interval-valued trapezoidal fuzzy numbers. Yet, they used an unjustified heuris-
tic expression to calculate the difference between interval-valued trapezoidal fuzzy numbers
(Dymova et al. 2015). Dymova et al. (2015) proposed an interval type-2 fuzzy extension of
the TOPSIS method using α-cuts representation to avoid the limitations and drawbacks of
the extant methods. Ilieva (2016) applied the graded mean integration to defuzzify IT2FS
into two crisp values and then compute their average value. Recently, TOPSISmethods using
interval-valued fuzzy data are the focus of substantial research (Ilieva 2016).

In this article, a new method to handle fuzzy multi-attribute decision making (MADM)
problems is proposed. The method preserves fuzziness in the preference technique to avoid
the disadvantages of defuzzification. The method is based on the TOPSIS for interval-valued
fuzzy numbers. Although recent research has been devoted to the fuzzy extension of the
TOPSIS method, only a few studies handled IT2FSs and the proposed extensions have some
limitations and drawbacks (Dymova et al. 2015). In traditional TOPSIS the relative degree of
closeness is used to rank the alternatives. Alternatively, a similarity measure based on map
distance is used for preference comparison. Keeping the positive and negative ideal solutions
fixed values, as the degree of similarity to the positive ideal solution increases, the degree of
similarity to the negative ideal solution decreases and vice versa. Therefore, the degree of
similarity between each attribute of an alternative and the ideal solution is computed. The
total degree of similarity of all the attributes for an alternative is used for preference. Thus, the
comparison is done on a fuzzy basis to avoid any loss of information due to the conversion of
the elements of the weighted normalized decision matrix to crisp values by defuzzification.

The article is organized as follows. Different types of fuzzy numbers, TOPSIS, and the
degree of similarity are presented in Sect. 2. The proposed method is introduced in Sect. 3.
A numerical example and a practical example in network selection are solved using the
proposed method in Sect. 4. Finally, the conclusion is given in Sect. 5.

2 Preliminaries

2.1 Interval-valued fuzzy numbers

Definition 2.1.1 (Rashid et al. 2014) A trapezoidal type-1 fuzzy set is denoted by Ã =
(a1, a2, a3, a4;w), where

f Ã (x) =

⎧
⎪⎪⎨

⎪⎪⎩

w − a2−x
a2−a1

when a1 < x ≤ a2,
w when a2 ≤ x ≤ a3,
w − x−a3

a4−a3
when a3 ≤ x < a4,

0 otherwise,
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Definition 2.1.2 (Dymova et al. 2015) A type-2 fuzzy set is defined as follows:

Ã =
∫

∀x∈X

∫

∀u∈Jx⊆[0,1]

μ Ã (x, u) / (x, u) ,

where
∫∫

denotes the union over all admissible x and u andμ Ã (x, u) is a type-2 membership
function.

Since T2FSs are three dimensional and require complex and immense computational
burdensome operations, IT2FSs were introduced as a special case of generalized type-2
fuzzy sets (Kahraman et al. 2014). IT2FS is defined to be a T2FS with secondary grades
equal to 1 (Dymova et al. 2015). It is represented as follows

Ã =
∫

∀x∈X

∫

∀u∈Jx⊆[0,1]
1/ (x, u) .

Definition 2.1.3 (Kahraman et al. 2014) The upper and lower membership functions of an
IT2FS are type-1 membership functions.

Definition 2.1.4 (Kahraman et al. 2014) Let ÃL and ÃU be two trapezoidal fuzzy num-
bers, and let wL

1 , wL
2 , wU

1 and wU
2 for ÃL and ÃU , respectively, denote the degrees

of confidence of the linguistic opinions. A trapezoidal IT2FS is represented as Ã =
[(aL1 , aL2 , aL3 , aL4 ;wL

1 , wL
2 ), (aU1 , aU2 , aU3 , aU4 ; wU

1 , wU
2 )], where

aL1 , aL2 , aL3 , aL4 , aU1 , aU2 , aU3 , and aU4 ∈ R.

Trapezoidal IVFS is a special case of trapezoidal IT2FS when wL
1 = wL

2 and wU
1 = wU

2 .
Thus, a trapezoidal IVFS is represented by:

Ã = [(aL1 , aL2 , aL3 , aL4 ;wL), (aU1 , aU2 , aU3 , aU4 ;wU )] (Rashid et al. 2014).

If wL = wU = 1, a trapezoidal IVFS is said to be perfectly normal. If wU = 1 and
wL < 1 a trapezoidal IVFS is said to be normal (Dymova et al. 2015). A triangular IVFS is
a special case of trapezoidal IVFSs when aL2 = aL3 and aU2 = aU3 . If ÃL = ÃU , an IVFS
reduces to a T1FS.

Definition 2.1.5 (Rashid et al. 2014) For two interval-valued fuzzy numbers

Ã = [(aL1 , aL2 , aL3 , aL4 ;wL
Ã
), (aU1 , aU2 , aU3 , aU4 ;wU

Ã
)] and

B̃ = [(bL1 , bL2 , bL3 , bL4 ;wU
B̃
), (bU1 , bU2 , bU3 , bU4 ;wU

B̃
)]

Ã ⊕ B̃ =
[(

aL1 + bL1 , aL2 + bL2 , aL3 + bL3 , aL4 + bL4 ;min
(
wL

Ã
, wL

B̃

))
,
(
aU1 + bU1 , aU2

+bU2 , aU3 + bU3 , aU4 + bU4 ; min
(
wU

Ã
, wU

B̃

))]
.

Definition 2.1.6 (Rashid et al. 2014) For two interval-valued fuzzy numbers

Ã = [(aL1 , aL2 , aL3 , aL4 ;wL
Ã
), (aU1 , aU2 , aU3 , aU4 ;wU

Ã
)] and

B̃ = [(bL1 , bL2 , bL3 , bL4 ;wL
B̃
), (bU1 , bU2 , bU3 , bU4 ;wU

B̃
)]

Ã ⊗ B̃ =
[(

aL1 b
L
1 , aL2 b

L
2 , aL3 b

L
3 , aL4 b

L
4 ;min

(
wL

Ã
, wL

B̃

))
,
(
aU1 bU1 , aU2

bU2 , aU3 bU3 , aU4 bU4 ; min
(
wU

Ã
, wU

B̃

))]
.
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Definition 2.1.7 (Rashid et al. 2014) For an interval-valued fuzzy numbers

Ã = [(aL1 , aL2 , aL3 , aL4 ;wL
Ã
), (aU1 , aU2 , aU3 , aU4 ;wU

Ã
)] and an arbitrary real number k

k. Ã = Ã.k

=
⎧
⎨

⎩

[(
k.aL1 , k.aL2 , k.aL3 , k.aL4 ;wL

Ã

)
,
(
k.aU1 , k.aU2 , k.aU3 , k.aU4 ;wU

Ã

)]
; if k ≥ 0,

[(
k.aL4 , k.aL3 , k.aL2 , k.aL1 ;wL

Ã

)
,
(
k.aU4 , k.aU3 , k.aU2 , k.aU1 ;wU

Ã

)]
; if k ≤ 0.

2.2 TOPSIS method

The classical TOPSIS is based on the idea of selecting the alternative with the shortest
distance from the positive ideal solution and the greatest distance from the negative ideal
solution. TOPSIS is a useful and practical tool to rank and select among alternatives (Rashid
et al. 2014). The method was presented by Hwang and Yoon (1981), later extended to the
fuzzy environment by Chen (2000) for T1FSs (Kumar and Garg 2016). Chen and Lee (2010)
modified the method for IT2FSs. Although recent research has been devoted to the fuzzy
extension of the TOPSIS method, only a few studies handled IT2FSs (Dymova et al. 2015).

Consider a MADM based on n alternatives X1, X2, . . . , Xn and a set of m attributes
f1, f2, . . . , fm in the presence of k decision makers D1, D2, . . . , Dk . The set ′′F ′′ of
attributes can be divided into two sets, Fb the set of benefits attribute and Fc the set of
cost attributes such that Fb ∩ Fc = ∅. The basics of TOPSIS method can be summarized in
the following steps (Chen and Lee 2010):

Step 1: (a) Construction of the decision matrix for the pth decision maker,

D̃p =

X1 X2 Xn

f1
f2
...

fm

⎡

⎢
⎢
⎢
⎣

f̃ p11 f̃ p12
f̃ p21 f̃ p22

· · · f̃ p1n
f̃ p2n

...
. . .

...

f̃ pm1 f̃ pm2 · · · f̃ pmn

⎤

⎥
⎥
⎥
⎦

.

(b) Construction of the average decision matrix.

¯̃D =
[
f̃ij
]

m×n
,

where f̃ij =
(

f̃ 1i j⊕ f̃ 2i j⊕···⊕ f̃ ki j
k

)

is an interval type-2 fuzzy set,

1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ p ≤ k.

Step 2: (a) Construction of the weighting matrix of the pth decision maker for the
attributes,

W̃p =
f1 f2 fm[ ]
w̃p
1 w̃p

2 . . . w̃p
m

(b) Construction of the average weighting matrix

¯̃Wp = [
w̃i
]

1×m ,
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where w̃i =
(
w̃1

i ⊕w̃2
i ⊕···⊕w̃p

i
k

)

is an interval type -2 fuzzy set,

1 ≤ i ≤ m and 1 ≤ p ≤ k.

Step 3: Construction of the weighted decision matrix

D̃w =

X1 X2 Xn

f1
f2
...

fm

⎡

⎢
⎢
⎢
⎣

ṽ11 ṽ12
ṽ21 ṽ22

· · · ṽ1n
ṽ2n

...
. . .

...

ṽm1 ṽm2 · · · ṽmn

⎤

⎥
⎥
⎥
⎦

,

where ṽi j = w̃i ⊗ f̃i j , 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Step 4: Calculation of the ranking value of the interval type-2 fuzzy set ṽi j ,

D̄
r
w = [

rank
(
ṽi j

)]

m×n.

The ranking value of the interval type-2 fuzzy number ṽ is defined as follows.

rank (ṽ) = M1

(
ṽU

)
+ M1

(
ṽL

)
+ M2

(
ṽU

)
+ M2

(
ṽL

)
+ M3

(
ṽU

)
+ M3

(
ṽL

)

−1

4

(
S1

(
ṽU

)
+ S1

(
ṽL

)
+ S2

(
ṽU

)
+ S2

(
ṽL

)
+ S3

(
ṽU

)
+ S3

(
ṽL

)

+S4
(
ṽU

)
+ S4

(
ṽL

))
+ wL

1 + wL
2 + wU

1 + wU
2 ,

where Mr
(
ṽh
) =

(
ahr + ah(r+1)

)
/2, 1 ≤ r ≤ 3, is the average value of ahr and ah(r+1),

Sr
(
ṽh
)

=
√

1

2

∑r+1

l=r

(

ahl − 1

2

∑r+1

l=r
ahl

)2

, 1 ≤ r ≤ 3, is the standard deviation of

ahr and a
h
r+1,

S4
(
ṽh
)

=
√

1

4

∑4

l=1

(

ahl − 1

4

∑4

l=1
ahl

)2

, is the standard deviation of the elements

ah1 , ah2 , ah3 and ah4 , and h ∈ {U, L} .

Step 5: Determination of the positive ideal solution Ã+ = {
v+
1 , v+

2 , . . . , v+
m

}
and the

negative ideal solution Ã+ = {
v−
1 , v−

2 , . . . , v−
m

}
where

v+
i =

⎧
⎨

⎩

max
1≤ j≤n

{
rank

(
ṽi j

)}
, if fi ∈ Fb

min
1≤ j≤n

{
rank

(
ṽi j

)}
, if fi ∈ Fc

,

and

v−
i =

⎧
⎨

⎩

min
1≤ j≤n

{
rank

(
ṽi j

)}
, if fi ∈ Fb

max
1≤ j≤n

{
rank

(
ṽi j

)}
, if fi ∈ Fc.

Step 6: (a) Calculation of the distance between each alternative and the positive ideal

solution, d+ (
X j

) =
√
∑m

i=1

(
rank

(
ṽi j

) − v+
i

)2
.
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(b)Calculation of the distance between each alternative and the negative ideal solution

d− (
X j

) =
√

m∑

i=1

(
rank

(
ṽi j

) − v−
i

)2
.

Step 7: Calculation of the relative degree of closeness for each alternative to the ideal

solution C
(
X j

) = d−(X j )
d+(X j )+d−(X j)

.

Step 8: Ranking the alternatives according to the degree of closeness. The greater the
value of C

(
X j

)
, the higher the alternative X j in preference.

The method of Chen and Lee (2010) depends on the defuzzification of the weighted
decision matrix to determine the ideal solutions, i.e., the ideal solutions are presented by
real values, this leads to the loss of important information and may provide wrong results
(Dymova et al. 2015). Therefore, several modifications have been introduced to TOPSIS.
Rashid et al. (2014) modified TOPSIS for trapezoidal IVFSs. In their work, they defined
a distance measure between two trapezoidal IVFSs and defined the positive and negative
ideal solutions as trapezoidal IVFSs, thus preserving fuzziness in information. Dymova et al.
(2015) used the α-cut representation of IT2FSs to avoid the restrictions on the shapes of
IT2FSs which in the real world applications may have more complicated shapes other than
triangular or trapezoidal ones.

2.3 Degree of similarity

Similarity measures have gained attention due to their wide applications in image processing,
pattern recognition and economics (Beg and Rashid 2017). In the past decade, several meth-
ods have been proposed to measure the degree of similarity between interval-valued fuzzy
numbers. Chen and Chen (2008) proposed a similarity measure based on the center of gravity
of the lower and the upper fuzzy numbers. Wei and Chen (2009) combined the concepts of
geometric distance, the perimeter, the height and the center of gravity points to measure the
degree of similarity. Chen and Chen (2009) introduced similarity measure which considers
the similarity of the gravities on the X -axis between upper fuzzy numbers, the difference
of the spreads between upper fuzzy numbers, the heights of the upper fuzzy numbers, the
degree of similarity on the X -axis between interval-valued fuzzy numbers, and the gravity
on the Y -axis between interval-valued fuzzy numbers. In an attempt to overcome similarity
measurement problems, Chen and Kao (2010) suggested a new similarity measure based on
the standard deviation operator; Chen (2011) also proposed a similarity measure based on
the quadratic mean operator.

Chen et al. (2013) introduced a similarity measure based on the map distance to overcome
the limitations of the extant similarity measure methods, e.g., they cannot give the correct
degree of similarity between two interval-valued fuzzy numbers in some cases. The results
indicated that their method outperforms the existing methods (Chen et al. 2013).

The degree of similarity between two interval-valued trapezoidal fuzzy numbers Ã and B̃
based on map distance can be computed as follows (Chen et al. 2013):

Step 1: Calculation of the distance values �ai and �bi .
For the interval-valued trapezoidal fuzzy numbers Ã and B̃, the distance values between
the lower and upper trapezoidal fuzzy numbers are calculated �ai = ∣

∣aUi − aLi
∣
∣ and

�bi = ∣
∣bUi − bLi

∣
∣, where i = 1, 2, 3, 4.

Step 2: Calculation of the degree of similarity S
(
Ã�, B̃�

)
between �ai and �bi .
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(a) Calculate the standard deviations �Sa and �Sb between the upper and lower fuzzy
numbers.

āU = (aU1 + aU2 + aU3 + aU3 )/4, āL = (aL1 + aL2 + aL3 + aL3 )/4,

SÃU =
√
∑4

i=1

(
aUi − āU

)2

3
, SÃL =

√
∑4

i=1

(
aLi − āL

)2

3
,

�Sa = ∣
∣SÃU − SÃL

∣
∣ .

Similarly, calculate b̄U , b̄L , SB̃U , SB̃L , and �Sb.
(a) Calculate the map distance between the upper and lower trapezoidal fuzzy numbers.

T� =
[(

2 − 1 + max {|�a2 − �a1| , |�b2 − �b1|}
1 + min {|�a2 − �a1| , |�b2 − �b1|}

)

+
(

2 − 1 + max {|�a4 − �a3| , |�b4 − �b3|}
1 + min {|�a4 − �a3| , |�b4 − �b3|}

)]

/2.

(b) Calculate the degree of similarity S
(
Ã�, B̃�

)
∈ [0, 1] .

S
(
Ã�, B̃�

)
=

⎡

⎣1 −
√
∑4

i=1 (�ai − �bi )2

2

⎤

⎦ ×
[

1 −
√ |�Sa − �Sb|

2

]

×
[

1 −
∣
∣w ǍL − wB̌L

∣
∣

∣
∣w ǍU + wB̌U

∣
∣

]

× T�.

Step 3: Calculation of the degree of similarity S
(
ÃU , B̃U

)
between ÃU and B̃U .

(a) Calculate the map distance between the upper trapezoidal fuzzy numbers.

TU =
[(

2 − 1 + max
{∣
∣au2 − au1

∣
∣ ,
∣
∣bu2 − bu1

∣
∣
}

1 + min
{∣
∣au2 − au1

∣
∣ ,
∣
∣bu2 − bu1

∣
∣
}

)

+
(

2 − 1 + max
{∣
∣au4 − au3

∣
∣ ,
∣
∣bu4 − bu3

∣
∣
}

1 + min
{∣
∣au4 − au3

∣
∣ ,
∣
∣bu4 − bu3

∣
∣
}

)]

/2.

(b) Calculate the degree of similarity S
(
ÃU , B̃U

)
∈ [0, 1] .

S
(
ÃU , B̃U

)
=

⎡

⎣1 −
√
∑4

i=1

(
aui − bui

)2

2

⎤

⎦ ×
⎡

⎣1 −
√∣
∣SÃU − SB̃U

∣
∣

2

⎤

⎦

×
[
min

(
w ǍU , wB̌U

)

max
(
w ǍU , wB̌U

)

]

× TU .

Step 4: Calculation of the degree of similarity S( Ã, B̃) between the trapezoidal fuzzy
numbers Ã and B̃.
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S
(
Ã, B̃

)
=

S
(
ÃU , B̃U

)
×
(
1 + S

(
Ã�, B̃�

))

2
.

The greater the value of S
(
Ã, B̃

)
the greater the similarity between Ã and B̃.

3 The proposed TOPSIS

In this section, the modification in TOPSIS using the similarity measure based on map
distance is given.

Step 1: Construct the fuzzy decision matrix and the average decision matrix,

¯̃D =
[
f̃ij
]

m×n
.

Step 2: Construct the weighting matrix and the average weighting matrix,

¯̃Wp = [
w̃i
]

1×m .

Step 3: Construct the normalized average decision matrix ¯̃N = [
ñij
]

m×n .

The normalization process preserves the property that the ranges of the interval fuzzy
numbers lie in the interval [0, 1] . The normalized performance ratings ñij can be
calculated as follows:

ñij =
[(

f L1i j
f +
4 j

,
f L2i j
f +
4 j

,
f L3i j
f +
4 j

,
f L4i j
f +
4 j

;wL

)

,

(
f U1i j
f +
4 j

,
f U2i j
f +
4 j

,
f U3i j
f +
4 j

,
f U4i j
f +
4 j

;wU

)]

,

where i = 1, . . . ,m, j ∈ Fb and f +
4 j = max

i
f U4i j .

ñij =
[(

f −
1 j

f L4i j
,
f −
1 j

f L3i j
,
f −
1 j

f L2i j
,
f −
1 j

f L1i j
;wL

)

,

(
f −
1 j

f U4 j
,
f −
1 j

f U3i j
,
f −
1 j

f U2i j
,
f −
1 j

f U1 j
;wU

)]

,

where i = 1, . . . , n, j ∈ Fc and f −
1 j = min

i
f U1i j

Step 4: Construct the weighted normalized decision matrix

D̃w =

X1 X2 Xn

f1
f2
...

fm

⎡

⎢
⎢
⎢
⎣

ṽ11 ṽ12
ṽ21 ṽ22

· · · ṽ1n
ṽ2n

...
. . .

...

ṽm1 ṽm2 · · · ṽmn

⎤

⎥
⎥
⎥
⎦

,

where ṽi j = w̃i ⊗ ñi j , 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Step 5: Define the fuzzy positive ideal solution ṽ+ and the fuzzy negative ideal solution
ṽ− where,

ṽ+ = [(1, 1, . . . , 1; 1) , (1, 1, . . . , 1; 1)] and ṽ− = [(0, 0, . . . , 0; 1) , (0, 0, . . . , 0; 1)]
Step 6: Find the similarity matrix S = [

Si j
]
.
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Compute the degree of similarity between ṽi j and the ideal solution using similarity
measure based on map distance.

S+
i j = S

(
ṽi j , ṽ

+) =
S
(
ṽUi j , ṽ

+U
)

×
(
1 + S

(
ṽ�
i j , ṽ

+�
))

2
, if fi ∈ Fb

S−
i j = S

(
ṽi j , ṽ

−) =
S
(
ṽUi j , ṽ

−U
)

×
(
1 + S

(
ṽ�
i j , ṽ

−�
))

2
, if fi ∈ Fc.

Step 7: Calculate the total degree of similarity of each alternative to the ideal solution.

S(X j ) =
m∑

i=1

si j , for j = 1, . . . , n

The larger the value of S
(
X j

)
, the higher the preference of the alternative X j . The

alternative corresponding to the similarity matrix one norm ‖S1‖ is the best choice,

where ‖S1‖ = max
1≤ j≤n

(
m∑

i=1

∣
∣si j

∣
∣

)

.

4 Examples

In this section two examples are solved; the first example demonstrates the proposed TOPSIS,
and a practical example in network selection to maximize end-users’ satisfaction.

4.1 Numerical example

This example is due to Chen and Lee (2010). Suppose a company intends to buy cars for high-
level managers from three alternatives X1, X2 and X3. The decision makers D1, D2, and D3

rate cars on four attributes: safety ( f1), price ( f2), appearance ( f3), and performance ( f4).
The benefit attributes are the safety, the appearance and the performance, while the cost
attribute is the price. Let X = {X1, X2, X3} be the set of alternatives, and let F =
{ f1, f2, f3, f4} be the set of attributes. The decisionmakers use the linguistic terms: very low
[(0,0,0,0.1;1), (0,0,0,0.05;0.9)], low [(0,0.1,0.1,0.3;1), (0.05,0.1,0.1,0.2;0.9)], medium low
[(0.1,0.3,0.3,0.5;1), (0.2,0.3,0.3,0.4;0.9)], medium [(0.3,0.5,0.5,0.7;1), (0.4,0.5,0.5,0.6;0.9)],
medium high [(0.5,0.7,0.7,0.9;1),(0.6,0.7,0.7,0.8;0.9)], high [(0.7,0.9,0.9,1;1),(0.8,0.9,0.9,
0.95;0.9)] and very high [(0.9,1,1,1;1),(0.95,1,1,1;0.9)]. For more details see Chen and Lee
(2010).

Step 1: (a) Construction of the decision matrices.

D̃1 =

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

f1 MH H VH
f2 H MH VH
f3 VH H M
f4 VH H H

, D̃2 =

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

f1 H MH H
f2 VH H VH
f3 H VH MH
f4 H VH VH

,
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D̃3 =

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

f1 MH H MH
f2 H VH H
f3 H VH MH
f4 H H VH

.

(b) Construction of the average decision matrix.

¯̃D =

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

f1 f̃11 f̃12 f̃13
f2 f̃21 f̃22 f̃23
f3 f̃31 f̃32 f̃33
f4 f̃41 f̃42 f̃43

,

where f̃11 = [(0.57, 0.77, 0.77, 0.93; 1) , (0.67, 0.77, 0.77, 0.85; 0.9)] ,
f̃12 = [(0.63, 0.83, 0.83, 0.97; 1) , (0.73, 0.83, 0.83, 0.9; 0.9)] ,
f̃13 = [(0.7, 0.87, 0.87, 0.97; 1) , (0.78, 0.87, 0.87, 0.92; 0.9)] ,
f̃21 = [(0.77, 0.93, 0.93, 1; 1) , (0.85, 0.93, 0.97, 0.9; 0.9)] ,
f̃22 = [(0.7, 0.87, 0.87, 0.97; 1) , (0.78, 0.87, 0.87, 0.92; 0.9)] ,
f̃23 = [(0.83, 0.97, 0.97, 1; 1) , (0.9, 0.97, 0.97, 0.98; 0.9)] ,
f̃31 = [(0.77, 0.93, 0.93, 1; 1) , (0.85, 0.93, 0.97, 0.9; 0.9)] ,
f̃32 = [(0.83, 0.97, 0.97, 1; 1) , (0.9, 0.97, 0.97, 0.98; 0.9)] ,
f̃33 = [(0.43, 0.63, 0.63, 0.83; 1) , (0.53, 0.63, 0.63, 0.73; 0.9)] ,
f̃41 = [(0.77, 0.93, 0.93, 1; 1) , (0.85, 0.93, 0.97, 0.9; 0.9)] ,
f̃42 = [(0.83, 0.97, 0.97, 1; 1) , (0.9, 0.97, 0.97, 0.98; 0.9)] ,
f̃43 = [(0.77, 0.93, 0.93, 1; 1) , (0.85, 0.93, 0.97, 0.9; 0.9)] ,

Step 2: (a) Construction of the weighting matrices.

W̃1 =
f1 f2 f3 f4[ ]
VH H M VH , W̃2 =

f1 f2 f3 f4[ ]
H VH MH H ,

W̃3 =
f1 f2 f3 f4[ ]
VH VH MH H .

(b) Construction of the average weighting matrix.

¯̃W =
f1 f2 f3 f4[ ]
w̃1 w̃2 w̃3 w̃4 ,

where

w̃1 = [(0.83, 0.97, 0.97, 1; 1) , (0.9, 0.97, 0.97, 0.98; 0.9)] ,
w̃2 = [(0.83, 0.97, 0.97, 1; 1) , (0.9, 0.97, 0.97, 0.98; 0.9)] ,
w̃3 = [(0.43, 0.63, 0.63, 0.83; 1) , (0.53, 0.63, 0.63, 0.73; 0.9)] ,
w̃4 = [(0.77, 0.93, 0.93, 1; 1) , (0.85, 0.93, 0.97, 0.9; 0.9)] .
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Step 3: No need to normalize since the numbers lie in the interval [0, 1].
Step 4: Construction of the weighted decision matrix.

D̃w =

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

f1 ṽ11 ṽ12 ṽ13
f2 ṽ21 ṽ22 ṽ23
f3 ṽ31 ṽ32 ṽ33
f4 ṽ41 ṽ42 ṽ43

,

where

ṽ11 = [(0.47, 0.74, 0.74, 0.93; 1) (0.6, 0.74, 0.74, 0.84; 0.9)] ,
ṽ12 = [(0.53, 0.81, 0.81, 0.97; 1) (0.66, 0.81, 0.81, 0.89; 0.9)] ,
ṽ13 = [(0.58, 0.84, 0.84, 0.97; 1) (0.71, 0.84, 0.84, 0.9; 0.9)] ,
ṽ21 = [(0.64, 0.9, 0.9, 1; 1) (0.77, 0.9, 0.9, 0.95; 0.9)] ,
ṽ22 = [(0.58, 0.84, 0.84, 0.97; 1) (0.71, 0.84, 0.84, 0.9; 0.9)] ,
ṽ23 = [(0.69, 0.93, 0.93, 1; 1) (0.81, 0.93, 0.93, 0.97; 0.9)] ,
ṽ31 = [(0.33, 0.59, 0.59, 0.83; 1) (0.45, 0.59, 0.59, 0.71; 0.9)] ,
ṽ32 = [(0.36, 0.61, 0.61, 0.83; 1) (0.48, 0.61, 0.61, 0.72; 0.9)] ,
ṽ33 = [(0.19, 0.4, 0.4, 0.69; 1) (0.28, 0.4, 0.4, 0.54; 0.9)] ,
ṽ41 = [(0.59, 0.87, 0.87, 0.93; 1) (0.72, 0.87, 0.87, 0.93; 0.9)] ,
ṽ42 = [(0.59, 0.87, 0.87, 0.93; 1) (0.72, 0.87, 0.87, 0.93; 0.9)] ,
ṽ43 = [(0.64, 0.9, 0.9, 1; 1) (0.77, 0.9, 0.9, 0.95; 0.9)] ,

Step 5: Define the fuzzy positive ideal solution ṽ+ = [(1, 1, 1, 1; 1) (1, 1, 1, 1; 1)] and
the fuzzy negative ideal solution ṽ− = [(0, 0, 0, 0; 1) , (0, 0, 0, 0; 1)].
Step 6: Construct the similarity matrix [Si j ] .

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

Safety S+
11 S+

12 S+
13

Price S−
21 S−

22 S−
23

Appearance S+
31 S+

32 S+
33

Performance S+
41 S+

42 S+
43

=

X1 X2 X3
⎡

⎢
⎣

⎤

⎥
⎦

Safety 0.2905 0.3216 0.3565
Price 0.0633 0.0844 0.0548
Appearence 0.2235 0.2411 0.1597
Performance 0.3547 0.3547 0.3934

.

Step 7: Calculate the total degree of similarity of each alternative to the ideal solution.

S(X1) = 0.932, S(X2) = 1.0018 and S(X3) = 0.9644.

From the results, S(X2) > S(X3) > S(X1), the ranking is X2 > X3 > X1. Then,
the best alternative is X2. The ranking of Chen and Lee (2010) is X2 > X1 > X3.
Despite the best alternative agrees with that of Chen and Lee (2010), the preference
differs regarding the first and third alternatives.

The formulas for the degree of similarity given in Sect. 2.3 are remarkably reduced due
to setting the positive and negative ideal solution to ṽ+ = [(1, 1, 1, 1; 1) (1, 1, 1, 1; 1)] and
ṽ− = [(0, 0, 0, 0; 1) , (0, 0, 0, 0; 1)]. For example, when calculating the degree of similar-
ity between the positive ideal solution and ṽ11 = [(0.47, 0.74, 0.74, 0.93; 1) (0.6, 0.74,
0.74, 0.84; 0.9)], the following results are obtained.
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1. �a1 = ∣
∣aU1 − aL1

∣
∣ = 0.13,�a2 = ∣

∣aU2 − aL2
∣
∣ = 0,�a3 = �a2 = 0 and �a4 =

∣
∣aU4 − aL4

∣
∣ = 0.09. �bi is always equal to zero.

2. The standard deviations �Sa between the upper and lower fuzzy numbers, āU =
0.72, āL = 0.73, SÃU =

√
∑4

i=1
(
aUi −āU

)2

3 = 0.1892, SÃL =
√

∑4
i=1

(
aLi −āL

)2

3 =
0.0987 and �Sa = ∣

∣SÃU − SÃL

∣
∣ = 0.0905. �Sb is always equal to zero.

Since |�b2 − �b1| = |�b4 − �b3| = 0, T� reduces to

T� = [(1 − |�a2 − �a1|) + (1 − |�a4 − �a3|)] /2 = 0.89.

Also, �bi = 0,�Sb = 0, wB̌L = 1 and wB̌U = 1. Then, S
(
Ã�, B̃�

)
reduces to

S
(
Ã�, B̃�

)
=

⎡

⎣1 −
√
∑4

i=1 (�ai )2

2

⎤

⎦ ×
[

1 −
√

�Sa
2

]

×
[

1 −
∣
∣1 − w ǍL

∣
∣

∣
∣1 + w ǍU

∣
∣

]

×T� = 0.6130.

3. Since
∣
∣bu2 − bu1

∣
∣ = ∣

∣bu4 − bu3
∣
∣ = 0, TU reduces to

TU = [(
1 − ∣

∣au2 − au1
∣
∣
) + (

1 − ∣
∣au4 − au3

∣
∣
)]

/2 = 0.77.

We also have SB̃U = 0 andwB̌U = 1. Then S
(
ÃU , B̃U

)
reduces to

S
(
ÃU , B̃U

)
=
⎡

⎣1 −
√
∑4

i=1

(
aui − bui

)2

2

⎤

⎦ ×
[

1 −
√

SÃU
2

]

× w ǍU × TU = 0.3602.

4. Finally, we get S
(
Ã, B̃

)
= S

(
ÃU ,B̃U

)
×
(
1+S

(
Ã�,B̃�

))

2 = 0.2905.

4.2 Practical example

The 4G mobile terminals roam freely across several wireless systems; as a result, they con-
tinuously undergo vertical handoffs (VHOs) (Chamodrakas and Martakos 2011). In a VHO
process, a mobile station diverts its current point of attachment to a different network due to
degradation or complete loss of signal and/or deterioration of the provided quality of service
(QoS) (Mehbodniya et al. 2013). Network selection is the backbone of the VHO process. The
selection of the network must consider both user preferences and various attributes including
QoS and monetary cost (Chamodrakas and Martakos 2011). QoS parameters include but
not restricted to: Received Signal Strength (RSS), bandwidth (BW), throughput, delay, jitter,
and security. The selected network must fulfill end-users service requests while keeping the
overall satisfaction at a high level. The wrong selection may lead to undesirable conditions,
e.g., weak QoS, network congestions, blocked calls, resulting in unsatisfied users (Mehbod-
niya et al. 2013). Therefore, the decision to select the best network from various networks to
optimize VHOs is crucial.

Awireless environment is dynamic in nature; it is characterized by its inherent uncertainty
and imprecise parameters and constraints. Due to this vagueness, a fuzzy approach for system
design seems to yield better resultswhen used in such environments (Mehbodniya et al. 2013).
The simultaneous optimization of all network criteria may be impossible due to the conflict
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Table 1 Linguistic terms of the
weights and their corresponding
IVFS

Linguistic terms Interval-valued fuzzy sets

Very low (VL) ((0, 0.1, 0.1, 0.3; 1), (0.05, 0.1, 0.1, 0.25; 0.9))

Low (L) ((0.1, 0.3, 0.3, 0.5; 1), (0.15, 0.3, 0.3, 0.45; 0.9))

Fair (F) ((0.3, 0.5, 0.5, 0.7; 1), (0.35, 0.5, 0.5, 0.65; 0.9))

High (H) ((0.5, 0.7, 0.7, 0.9; 1), (0.55, 0.7, 0.7, 0.85; 0.9))

Very high (VH) ((0.7, 0.9, 0.9, 1; 1), (0.75, 0.9, 0.9, 0.95; 0.9))

Table 2 Linguistic terms of the ratings and their corresponding IVFS

Linguistic terms Interval-valued fuzzy sets

Absolutely low (AL) ((0, 0.2, 0.2, 0.4; 1) , (0.05, 0.2, 0.2, 0.35; 0.9))
Medium low (ML) ((0.2, 0.4, 0.4, 0.6; 1) , (0.25, 0.4, 0.4, 0.55; 0.9))
Medium (M) ((0.4, 0.6, 0.6, 0.8; 1) , (0.45, 0.6, 0.6, 0.75; 0.9))
Medium high (MH) ((0.6, 0.8, 0.8, 1; 1) , (0.65, 0.8, 0.8, 0.95; 0.9))
Absolutely high (AH) ((0.8, 1, 1, 1; 1) , (0.85, 0.95, 0.95, 0.95; 0.9))

among them, e.g.BWand energy consumption (EC). Thus, fuzzyTOPSIS is used to aggregate
them in a consistent and theoretically robust technique (Chamodrakas and Martakos 2011).

The following example is adopted from Chamodrakas and Martakos (2011) and Mehbod-
niya et al. (2013)with somemodifications. Both the user provided preference and the network
parameters are treated as interval-valued fuzzy numbers which are more suitable for repre-
senting uncertainties.

A mobile terminal integrates three access network interfaces: Wireless Local Area Net-
work (WLAN) (X1), Worldwide Interoperability for Microwave Access (WiMAX) (X2) and
Universal Mobile Telecommunication System (UMTS) (X3). The best network selection is
based on three QoS attributes BW ( f1), delay ( f2), and energy consumption ( f3) for four
different QoS applications in the mobile context: voice (V), video conferencing (VC), video
streaming (VS) and web browsing (WB). The linguistic assessments of the user preferences
for the attributes per application and the linguistic ratings of the attributes are given directly in
the solution steps. The interval-valued fuzzy numbers corresponding to the linguistic assess-
ments are given in Table 1. The interval-valued fuzzy numbers corresponding to the linguistic
ratings are given in Table 2.

Step 1: Construction of the decision matrix
[
fi j
]
for each QoS application.

Ṽ =
X1 X2 X3

[ ]f1 AH AH AH
f2 AH MH AL
f3 AL ML MH

, ṼC =
X1 X2 X3

[ ]f1 AH M AL
f2 AH MH AL
f3 AL ML MH

,

ṼS =
X1 X2 X3

[ ]f1 AH AH AH
f2 AH AH AH
f3 AH MH AH

, ˜WB =
X1 X2 X3

[ ]f1 AH AH AH
f2 AH AH AH
f3 AH MH AH

.
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(b) Construction of the average decision matrix.

¯̃D =
X1 X2 X3⎡

⎣

⎤

⎦
f1 f̃11 f̃12 f̃13
f2 f̃21 f̃22 f̃23
f3 f̃31 f̃32 f̃33

,

where

f̃11 = [(0.8, 1, 1, 1; 1) , (0.85, 0.95, 0.95, 0.95; 0.9)] ,
f̃12 = [(0.75, 0.95, 0.95, 1; 1) , (0.8, 0.9125, 0.9125, 0.95; 0.9)] ,
f̃13 = [(0.6, 0.8, 0.8, 0.85; 1) , (0.65, 0.7625, 0.7625, 0.8; 0.9)] ,
f̃21 = [(0.8, 1, 1, 1; 1) , (0.85, 0.95, 0.95, 0.95; 0.9)] ,
f̃22 = [(0.7, 0.9, 0.9, 1; 1) , (0.75, 0.875, 0.875, 0.95; 0.9)] ,
f̃23 = [(0.4, 0.6, 0.6, 0.7; 1) , (0.45, 0.575, 0.575, 0.65; 0.9)] ,
f̃31 = [(0.4, 0.6, 0.6, 0.7; 1) , (0.45, 0.6, 0.6, 0.75; 0.9)] ,
f̃32 = [(0.4, 0.6, 0.6, 0.8; 1) , (0.45, 0.6, 0.6, 0.75; 0.9)] ,
f̃33 = [(0.7, 0.9, 0.9, 1; 1) , (0.75, 0.875, 0.875; 0.9)] .

Step 2: (a) Construction of the weighting matrices.

W̃v =
f1 f2 f3[ ]
L VH VH , W̃vc =

f1 f2 f3[ ]
H VH VH , W̃vs =

f1 f2 f3[ ]
H L VH ,

W̃wb =
f1 f2 f3[ ]
L L VH .

(b) Construction of the average weighting matrix.

¯̃W =
f1 f2 f3[ ]
w̃1 w̃2 w̃3 ,

where

w̃1 = [(0.3, 0.5, 0.5, 0.7; 1) , (0.35, 0.5, 0.5, 0.65; 0.9)] ,
w̃2 = [(0.4, 0.6, 0.6, 0.75; 1) , (0.45, 0.6, 0.6, 0.7; 0.9)] ,
w̃3 = [(0.7, 0.9, 0.9, 1; 1) , (0.75, 0.9, 0.9, 0.95; 0.9)] ,

Step 3: No need for normalization since the numbers lie in the interval [0, 1].
Step 4: Construction of the average-weighted decision matrix.

D̃w =
X1 X2 X3

[ ]f1 ṽ11 ṽ12 ṽ13
f2 ṽ21 ṽ22 ṽ23
f3 ṽ31 ṽ32 ṽ33

ṽ11 = [(0.24, 0.5, 0.5, 0.7; 1) (0.2975, 0.4750, 0.4750, 0.6175; 0.9)] ,
ṽ12 = [(0.2250, 0.4750, 0.4750, 0.7; 1) (0.28, 0.4562, 0.4562, 0.6175; 0.9)] ,
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ṽ13 = [(0.18, 0.4, 0.4, 0.5950; 1) (0.2275, 0.3812, 0.3812, 0.52; 0.9)] ,
ṽ21 = [(0.32, 0.6, 0.6, 0.75; 1) (0.3825, 0.57, 0.57, 0.665; 0.9)] ,
ṽ22 = [(0.28, 0.54, 0.54, 0.75; 1) (0.3375, 0.5250, 0.5250, 0.6650; 0.9)] ,
ṽ23 = [(0.16, 0.36, 0.36, 0.525; 1) (0.2025, 0.345, 0.345, 0.455; 0.9)] ,
ṽ31 = [(0.28, 0.54, 0.54, 0.7; 1) (0.3375, 0.5175, 0.5175, 0.6175; 0.9)] ,
ṽ32 = [(0.28, 0.54, 0.54, 0.8; 1) (0.3375, 0.54, 0.54, 0.7125; 0.9)] ,
ṽ33 = [(0.49, 0.81, 0.81, 1; 1) (0.5625, 0.7875, 0.7875, 0.9025; 0.9)] .

Step 4: Define the fuzzy positive ideal solution ṽ+ = [(1, 1, 1, 1; 1) , (1, 1, 1, 1; 1)] and
the fuzzy negative ideal solution ṽ− = [(0, 0, 0, 0; 1) , (0, 0, 0, 0; 1)].

The QoS attributes is divided into two main categories: downward attributes and
upward attributes (Chamodrakas andMartakos 2011). The utility of upward attributes
rises as their value gets higher, while the utility of downward attributes rises as their
value gets lower. Therefore, for upward attributes, the degree of similarity to the
positive ideal solution is measured, while the degree of similarity to the negative
ideal solution is measured for the downward attributes.

Step 6: Calculate the similarity matrix
[
Si j

]
.

WLAN WiMAX UMTS
[ ]BW S+

11 S+
12 S+

13
D S−

21 S−
22 S−

23
EC S−

31 S−
32 S−

33

=
WLAN WiMAX UMTS

[ ]BW 0.2101 0.1930 0.1627
D 0.1962 0.2017 0.3517
EC 0.2210 0.1813 0.0849

Step 7: Calculate the total degree of similarity of each alternative to the ideal solution.

S(X1) = 0.6242, S(X2) = 0.5814 and S(X3) = 0.5911.

The results reveal thatWLANis the best alternative followedbyUMTS thenWiMAX.
WLAN outperforms both WiMAX and UMTS in the bandwidth and in the energy
consumption, thoughbeing the least in the packet delay.Despite itsworst performance
in the bandwidth and the energy consumption, the high compensation of the packet
delay characteristics of UMTS gives it a higher rating than WiMAX.

5 Conclusion

In this article, a new TOPSISwas introduced to handle fuzzymulti-attribute decision-making
(MADM)problems. The proposed TOPSIS uses similarity measure based on map distance
to preserve fuzziness in the preference technique to avoid the drawbacks of defuzzification.
The conventional TOPSIS uses the relative degree of closeness to rank the alternatives.
Alternatively, the degree of similarity between each attribute of an alternative and the ideal
solution is computed and the similarity matrix is formed. The alternative corresponding to the
similarity matrix one-norm is the best alternative. Thus, the comparison is done on a fuzzy
basis to avoid the loss of information due to the conversion of the elements of the weighted
normalized decision matrix to crisp values by defuzzification. A numerical example was
given to clarify the method, and a practical example in network selection to optimize VHOs
was solved taking both user preferences and network parameters as interval-valued fuzzy
numbers.
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The future research will study the possibility of modifying TOPSIS for IT2FSs in a similar
manner by an appropriate degree of similarity.
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