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Abstract In this study, we propose a new set of fractional functions based on the Lagrange
polynomials to solve a class of fractional differential equations. Fractional differential equa-
tions are the best tools for modelling natural phenomenon that are elaborated by fractional
calculus. Therefore, we need an accurate and efficient technique for solving them. The main
purpose of this article is to generalize new functions based on Lagrange polynomials to the
fractional calculus. At first, we present a new representation of Lagrange polynomials and
in continue, we propose a new set of fractional-order functions which are called fractional-
order Lagrange polynomials (FLPs). Besides, a general formulation for operational matrices
of fractional integration and derivative of FLPs on arbitrary nodal points are extracted. These
matrices are obtained using Laplace transform. The initial value problems is reduced to
the system of algebraic equations using the operational matrix of fractional integration and
collocation method. Also, we find the upper bound of error vector for the fractional integra-
tion operational matrix and we indicate convergence of approximations of FLPs. Illustrative
examples are included to demonstrate the validity and applicability of the proposed technique.
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1 Introduction

FDEs are generalizations of ordinary differential equations to an arbitrary order. A his-
tory of the development of fractional differential operators is given in Oldham and Spanier
(1974) and Miller and Ross (1993). During the last few decades, fractional calculus has been
widely used to describe many phenomena, such as hydrologic (Benson et al. 2013), dynamic
viscoelasticity modeling (Larsson et al. 2015), economics (Baillie 1996), temperature and
motor control (Bohannan 2008), continuum and statistical mechanics (Mainardi 1997), solid
mechanics (Rossikhin and Shitikova 1997), bioengineering (Magin 2004), medicine (Hall
and Barrick 2008), earthquake (He 1988) and electromagnetism (Engheta 1996). Although,
exploring and studying on new analytical and numerical methods to solve various fractional
differential equations has become a valuable topic. Many authors investigated on the exis-
tence and uniqueness of solutions to the fractional differential equations, such as Mainardi
(1997) and Podlubny (1999).

In recent studies, several methods have been employed to solve fractional differential
equations, such as Laplace transforms (Daftardar-Gejji and Jafari 2007), Homotopy analysis
method (Dehghan et al. 2010), variational iteration method (Odibat andMomani 2006), finite
difference method (Meerschaert and Tadjeran 2006), Legendre wavelets method (Jafari et al.
2011), Haar wavelet (Rehman and Khan 2012), Bernoulli polynomials method (Keshavarz
et al. 2014), Fifth-kind orthonormal Chebyshev polynomial (Abd-Elhameed and Youssri
2017), and so on.

On the other hand, Lagrange interpolation is commendable for analytical tools. The
Lagrange approximate is in most cases the method of choice for dealing with polynomial
interpolation (Burden and Faires 2010). Lagrange interpolation is used to solve integral
equations (Rashed 2004; Mustafa and Ghanim 2014; Shahsavaran 2011). Also, Shamsi and
Razzaghi (2004), Foroozandeh and Shamsi (2012) solved a class of optimal control problems
using the interpolating scaling functions.

Recently, Kazem et al. (2013), proposed the new orthogonal functions based on the Leg-
endre polynomials to obtain a new method to solve FDEs. Bhrawy et al. (2014) defined the
fractional-order generalized Laguerre functions based on the generalized Laguerre polyno-
mials. Yuzbasi (2013) introduced fractional Bernstein polynomials for solving the fractional
Riccati type differential equations. Moreover, Rahimkhani et al. (2016) proposed the new
functions based on Bernoulli wavelet and Krishnasamy and Razzaghi (2016) solved Bagley–
Torvik equation with fractional Taylor basis.

In the present paper, our aim is to introduce the fractional-order Lagrange polynomials,
which are employed to produce operational matrices of fractional derivative and integration
generally, using Laplace transform to solve numerically linear and nonlinear FDEs with
initial conditions.

This paper is organized as follows. In the next section, we describe some necessary defi-
nitions and required mathematical preliminaries for our subsequent development. In Sect. 3,
we introduce a new representation of Lagrange polynomials and fractional-order Lagrange
polynomials. In Sect. 4, we achieve the FLPs operational matrices of fractional order inte-
gration and derivative using Laplace transform without considering point of interpolation.
Section 5 is devoted to the numerical method for solving a class of the initial value differential
equations of fractional order and a system of fractional differential equations. In Sect. 6, we
prove convergence of approximations of fractional-order Lagrange polynomials and we find
an upper bound for error of vector operational matrix of fractional integration. In Sect. 7,
we demonstrate the accuracy and effectiveness of the present method by considering some
numerical examples.
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2 Preliminaries

In this section, we recall some basic definitions and properties of fractional calculus theory.

Definition 1 Let f : [a, b] → R be a function, ν > 0 a real number and n = �ν�,
the Riemann–Liouville integral of fractional order is defined as (Mashayekhi and Razzaghi
2016)

I ν f (x) =
{ 1

Γ (ν)

∫ x
0 (x − t)ν−1 f (t)dt = 1

Γ (ν)
xν−1 ∗ f (x) ν > 0,

f (x) ν = 0,
(1)

where xν−1 ∗ f (x) is the convolution product of xν−1 and f (x) and �ν� denotes the smallest
integer greater than or equal to α.

Moreover, for the Riemann–Liouville fractional integrals, the following relationships are
established (Mashayekhi and Razzaghi 2016)

I νxn = Γ (n + 1)

Γ (n + 1 + ν)
xν+n, n > −1, (2)

and

(Dν I ν f )(x) = f (x), (3)

(I ν f )(x) = f (x) −
�ν�−1∑
i=0

f (i)(0)
xi

i ! . (4)

Definition 2 Fractional derivative of order ν in Caputo sense is defined as (Mashayekhi and
Razzaghi 2016)

Dν f (x) = 1

Γ (m − ν)

∫ x

0

f (m)(t)

(x − t)ν−m+1 dt, (5)

for m − 1 < ν ≤ m, m ∈ N , x > 0. For the Caputo derivative, we have (Rahimkhani et al.
2016):

Dνxk =
{
0, ν ∈ N0, k < ν,

k!
Γ (k−ν+1) x

k−ν, otherwise

Dνλ = 0, (6)

where λ is constant.
and

Dν f (x) + μDν y(x)

where λ and μ are constants.

Definition 3 (Generalized Taylors formula)Let Dkα f (x) ∈ C(0, 1] for k = 0, 1, . . . , n+1.
Then, we have (Odibat and Shawagfeh 2007)

f (x) =
n∑

k=0

xkα

Γ (kα + 1)
Dkα f (0+) + x (n+1)α

Γ ((n + 1)α + 1)
D(n+1)α f (ξ), (7)

with 0 < ξ ≤ x, ∀x ∈ (0, 1]. Moreover, one has (Kazem et al. 2013):

| f (x) −
n∑

k=0

xkα

Γ (kα + 1)
Dkα f (0+)| ≤ Mα

x (n+1)α

Γ ((n + 1)α + 1)
, (8)

where Mα ≥ supξ∈(0, 1] |D(n+1)α f (ξ)|.
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Definition 4 The Laplace transform of a function u(x, t), t ≥ 0, is defined by (Javidi and
Ahmad 2013)

L[u(x, t)] =
∫ ∞

0
e−τ t u(x, t) dt, (9)

where τ is the transformed parameter and is assumed to be real and positive.
Also, the Laplace transform of Dν f (t) can be found as follows:

L[Dν f (x)] = L[Im−ν f (m)(x)]
= L

[
1

Γ (m − ν)

∫ x

0
(x − t)m−ν−1 f (m)(t)dt

]

= 1

rm−ν
L[ f (m)(x)]

= 1

rm−ν
[rm L[ f (x)] − rm−1 f (0) − rm−2 f

′
(0)

−rm−3 f
′′
(0) − · · · − f (m−1)(0)]. (10)

3 Fractional-order Lagrange polynomials

In this section, first, we recall the definition of Lagrange polynomials and we present a new
representation of Lagrange polynomials. Then we propose the fractional-order Lagrange
polynomials and their properties.

3.1 Lagrange polynomials

Lagrange polynomial based on these points can be defined as follows (Stoer and Bulirsch
1996):

Li (x) :=
n∏

j = 0
j �= i

(x − x j )

(xi − x j )
. (11)

where, the set of nodes be given by xi ∈ [0, 1], i = 0, 1, . . . , n.
Also, Lagrange polynomials satisfy this condition

Li (xl) = δil =
{
1, i = l,
0, i �= l

(12)

3.1.1 A new representation of Lagrange polynomials

Lemma 1 Let Li (x), i = 0, 1, . . . , n are Lagrange polynomials on the set of nodes xi ∈
[0, 1]. Lagrange polynomials in these points are described by

Li (x) = 1∏n
i = 0
j �= i

(xi − x j )

⎛
⎜⎜⎝xn −

n∑
k1 = 0
i �= k1

xk1x
n−1 +

n∑
k2 = k1 + 1
i �= k1 �= k2

n−1∑
k1=0

xk1xk2 x
n−2 − · · ·

+ (−1)n
n∑

kn = kn−1 + 1
i �= kn �= kn−1 �= · · · �= k1

n−1∑
kn−1=kn−2+1

...

1∑
k1=0

n∏
r=1

xkr

⎞
⎟⎟⎠ (13)
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Remark 1 Using Eq. (13), we can rewrite each of Li (x) as follows

Li (x) =
n∑

s=0

αis x
n−s, i = 0, 1, . . . , n. (14)

where

αi0 = 1∏n
i = 0
j �= i

(xi − x j )
(15)

αis = (−1)s∏n
i = 0
j �= i

(xi − x j )

n∑
ks=ks−1+1

· · ·
n−s+1∑
k1=0

s∏
r=1

xkr , (16)

and s = 1, 2, . . . , n, i �= k1 �= · · · �= ks .

3.2 Fractional-order Lagrange polynomials

We define a new set of fractional functions called fractional-order Lagrange polynomials
(FLPs). These polynomials constructed by changing of variable x to xα , (0 < α ≤ 1), on
the Lagrange polynomials, which are denoted by Lα

i (x).
Using Eq. (14), the analytic form of Lα

i (x), given by:

Lα
i (x) =

n∑
s=0

αis x
α(n−s), i = 0, 1, 2, . . . , n. (17)

where

αi0 = 1∏n
i = 0
j �= i

(xi − x j )
(18)

αis = (−1)s∏n
i = 0
j �= i

(xi − x j )

n∑
ks=ks−1+1

· · ·
n−s+1∑
k1=0

s∏
r=1

xkr , (19)

and s = 1, 2, . . . , n, i �= k1 �= · · · �= ks .
These fractional functions on arbitrary nodal points are obtained. Then, we can have

different choices for Lagrange polynomials. For example, if we consider zeros of shifted
Legendre polynomials as these points, we have a set of orthogonal polynomials.

The fractional-order Lagrange functions for n = 2 and xi = i
n are as:

Lα
0 (x) = 1 − 3xα + 2x2α, Lα

1 (x) = 4xα − 4x2α, Lα
2 (x) = −xα + 2x2α.

Also, Fig. 1 represents the graphs of FLPs for n = 2 and various values of α.

3.3 Function approximation

A function f which is defined over [0, 1] can be expanded in terms of fractional-order
Lagrange polynomials as

f (x) 
n∑

i=0

ci L
α
i (x) = CT Lα(x), (20)
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(a)

(b)

(c)

Fig. 1 Graph of the FLPs with n = 2 and a α = 1, b α = 1
2 and c α = 1

4

where C and Lα(x) are (n + 1) × 1 vectors given by:

C = [c0, c1, . . . , cn]T , Lα(x) = [Lα
0 (x), Lα

1 (x), . . . , Lα
n (x)]T . (21)

and T indicates transposition. We suppose that

f j = 〈 f, Lα
j 〉 =

∫ 1

0
f (x)Lα

j (x)x
α−1dx, (22)
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where 〈, 〉 denotes inner product, so we have:

f j 
n∑

i=0

ci

∫ 1

0
Lα
i (x)Lα

j (x)x
α−1dx =

n∑
i=0

ci di j , j = 0, 1, . . . , n, (23)

that

di j =
∫ 1

0
Lα
i (x)Lα

j (x)x
α−1dx, i, j = 0, 1, . . . , n. (24)

Now, we suppose that

F = [ f0, f1, . . . , fn]T , D = [di j ],
we get

FT = CT D, (25)

then
C = D−1〈 f, Lα〉, (26)

where D is matrix of order (n + 1) × (n + 1) as follows

D = 〈α(x), Lα(x)〉 =
∫ 1

0
Lα(x)(Lα(x))T xα−1dx . (27)

4 Operational matrices of fractional integration and derivative

In this section, we derive operational matrix of fractional integration and fractional derivative
of FLPs. We achieve these matrices in general, without regarding to the nodes of xi , i =
0, 1, . . . , n.

4.1 Fractional integration operational matrix of FLPs

We assume Lα(x) be Lagrange polynomials vector defined in Eq. (21), then we have

I νLα(x)  F (ν, α)Lα(x), (28)

where F (ν, α) is (n + 1) × (n + 1) operational matrix of fractional integration of order ν.
Using Eq. (1), we achieve

I νLα
i (x) = 1

Γ (ν)
xν−1 ∗

(
n∑

s=0

αis x
α(n−s)

)
, i = 0, 1, . . . , n. (29)

To obtain I νLα(x), we take the Laplace transform from Eq. (29). Then, we have

L
[
I νLα

i (x)
] = L

[
1

Γ (ν)
xν−1

]
L

[
n∑

s=0

αis x
α(n−s)

]
=

n∑
s=0

Fi (s, r, α), i = 0, 1, . . . , n.

(30)
Taking the inverse Laplace transform of Eq. (30), yields

I νLα
i (x) =

n∑
s=0

F̃i (s, x, α). (31)
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Now, we can expand F̃i (s, x, α) in terms of FLPs as

F̃i (s, x, α) =
n∑
j=0

ci, j,s L
α
j (x), i = 0, 1, . . . , n, (32)

with
ci, j,s = D−1

〈
F̃i (s, x, α), Lα

j (x)
〉

(33)

Therefore, we have

F (ν,α) =

⎡
⎢⎢⎢⎣

∑n
s=0 c0,0,s

∑n
s=0 c0,1,s . . .

∑n
s=0 c0,n,s∑n

s=0 c1,0,s
∑n

s=0 c1,1,s . . .
∑n

s=0 c1,n,s
...

...
. . .

...∑n
s=0 cn,0,s

∑n
s=0 cn,1,s . . .

∑n
s=0 cn,n,s

⎤
⎥⎥⎥⎦ . (34)

For example, we consider the following two cases. In each case, we present the corresponding
fractional integration opertional matrix of FLPs.
Case 1 For n = 2, xi , (i = 0, 1, . . . , n) are zeros of shifted Legendre polynomials

F (0.5,0.5) =
⎡
⎣ 0.139599 0.123229 0.00577636

−0.0169154 0.474041 0.480693
0.00448695 −0.0330801 0.514739

⎤
⎦ .

Case 2 For n = 2, xi = i
2 , (i = 0, 1, . . . , n)

F (0.5,0.5) =
⎡
⎣ 0.0752253 0.0875826 −0.101021

−0.150451 0.510101 0.686347
0.0752253 −0.0334935 0.543053

⎤
⎦ .

4.2 The FLPs operational matrix of the fractional derivative

The derivative of the function vector Lα can be approximated as follows

DνLα(x)  D(ν,α)Lα(x), (35)

D(ν,α) is called the FLPs operational matrix of derivative in the Caputo sense.
Using Eq. (17), we achieve:

DνLα
i (x) = Dν

( n∑
s=0

αis x
α(n−s)

)
=

n∑
s=0

αis D
νxα(n−s) (36)

Taking the Laplace transform from Eq. (36), we get

L
[
DνLα

i (x)
] =

n∑
s=0

αis L
[
Dνxα(n−s)

]
=

n∑
s=0

αis Fi (r) (37)

where

Fi (r) = 1

rm−ν

[
rmL[Ωs(x)] − rm−1Ωs(0) − · · · − Ω(m−1)

s (0)
]
, Ωs(x) = xα(n−s).

(38)
Taking the inverse Laplace transform of Fi (r), yields

DνLα
i (x) =

n∑
s=0

F̃is(x), (39)
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where

F̃is(x) = L−1
[

αis

rm−ν

[
rm L[Ωs(x)] − rm−1Ωs(0) − · · · − Ω(m−1)

s (0)
] ]

. (40)

Now, we can expand F̃is(x) in terms of FLPs as

F̃is(x) =
n∑
j=0

ũi,s, j L
α
j (x), (41)

with
ũi,s, j = D−1

〈
F̃is(x), L

α
j (x)

〉
(42)

Then, we have

DνLα
i (x) 

n∑
j=0

n∑
s=0

ũi,s, j L
α
j (x), (43)

and

DνLα
i (x) 

[
n∑

s=0

ũi,s,0,
n∑

s=0

ũi,s,1, . . . ,
n∑

s=0

ũi,s,n

]
Lα(x), i = 0, 1, . . . , n. (44)

Hence, we have

D(ν,α) =

⎡
⎢⎢⎢⎢⎢⎣

∑n
s=0 ũ0,0,s

∑n
s=0 ũ0,1,s . . .

∑n
s=0 ũ0,n,s∑n

s=0 ũ1,0,s
∑n

s=0 ũ1,1,s . . .
∑n

s=0 ũ1,n,s
...

...
. . .

...∑n
s=0 ũn,0,s

∑n
s=0 ũn,1,s . . .

n∑
s=0

ũn,n,s

⎤
⎥⎥⎥⎥⎥⎦

. (45)

5 Numerical method

The matrices presented in the previous section are generally obtained. Then, we can have
different choices for Lagrange polynomials. In this paper, we choose the points of Lagrange
polynomials xi = i

n .
We consider the following problems:

(a) The multi-order fractional differential equation

G̃(x, u(x), Dν j u(x)) = 0, 0 ≤ x ≤ 1, (46)

subject to
u(k)(0) = u0k, k = 0, 1, . . . , l − 1, (47)

with l = �νr�, where ν j , (ν1 < ν2 < · · · < νr ) are positive real numbers and �νr�
denotes the ceiling function.

(b) System of fractional differential equations

Dν j u j (x) = G̃ j (x, u1(x), . . . , un(x)), 0 < ν j ≤ 1, j = 0, 1, . . . , n, 0 ≤ x ≤ 1,
(48)

with the initial conditions

u j (0) = u j0, j = 1, 2, . . . , n.
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For problem (a), we expand Dνr u(x) by FLPs as

Dνr u(x)  CT Lα(x),

so, we get

u(x)  CT F (νr ,α)Lα(x) +
l−1∑
k=0

xk

k! u0k  CT F (νr ,α)Lα(x) + ET Lα(x), (49)

where

E(x) =
l−1∑
k=0

xk

k! u0k . (50)

From Eqs. (48)–(50), we get

Dν j u(x)  CT F (νr−ν j )Lα(x) +
l−1∑
k=0

Dν j (xk)

k! u0k  CT F (νr−ν j ,α)Lα(x) + Ẽ j
T
Lα(x),

(51)
where

Ẽ j (x) =
l−1∑
k=0

Dν j (xk)

k! u0k, j = 1, . . . , r. (52)

Substituting above relations in Eq. (46), we achieve an algebraic equation. Moreover, we
collocate this equation at xi , i = 0, 1, 2, . . . , n. Therefore, we have a system of algebraic
equations, which can be solved for the unknown vector C using Newton’s iterative method.

Similar to problem (a), we expand Dν j u j (x), j = 0, 1, . . . , n, by FLPs as

Dν j u j (x)  CT
j L

α(x), j = 1, 2, . . . , n.

From Eq. (28), we have

u j (x)  CT
j F

(ν j ,α) + u j0, j = 1, 2, . . . , n.

Substituting above equations in Eq. (48), we derive a system of algebraic equations. Then,
we collocate this system at xi . This system can be solved using Newton’s iterative method.

6 Error analysis

A function f ∈ L2[0, 1] can be expanded as

f (x) 
n∑

i=0

ci L
α
i (x) = CT Lα(x) = fn(x).

We define error function Ê(x) as follows:

Ê(x) = | f (x) − fn(x)|, x ∈ [0, 1] (53)

Theorem 1 Let Dkα f ∈C(0, 1], k = 0, 1, . . . , n andY α
n = {Lα

0 (x), Lα
1 (x), . . . , Lα

n (x)}.
If fn(x) is the best approximation to f (x) out of Y α

n , then the error bound of the approximation
solution fn(x) using FLPs can be obtained as follows:

‖ f − fn‖2 ≤ Mα

Γ ((n + 1)α + 1)
√

(2n + 2)α + 1
. (54)
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where Mα = supx∈[0,1] |D(n+1)α f (x)|.
Proof We define

f̃ (x) =
n∑

i=0

xkα

Γ (kα + 1)
Dkα f (0+), (55)

from the generalized Taylors formula in Definition 3, we have

| f (x) − f̃ (x)| ≤ x (n+1)α

Γ ((n + 1)α + 1)
sup

x∈[0,1]
|D(n+1)α f (x)|. (56)

Utilizing the fact that f̃ (x) ∈ Y α
n is the best approximation of f out of Y α

n and using
Eq. (56), we get

‖ f − fn‖22 ≤ ‖ f − f̃ ‖22 =
∫ 1

0
| f (x) − f̃ (x)|2dx

≤
∫ 1

0

x (2n+2)α

Γ ((n + 1)α + 1)2
M2

α

= M2
α

Γ ((n + 1)α + 1)2

∫ 1

0
x (2n+2)αdx

= M2
α

Γ ((n + 1)α + 1)2((2n + 2)α + 1)
, (57)

The theorem is proved by taking the square roots.
Therefore, FLP’s approximations of f(x) are convergent. ��

6.1 Upper bound of error vector for the fractional integration operational matrix

Now, we look for an upper bound for the error vector of F (ν,α) and we show that this error
tends to zero, by increasing the number of FLPs.

Theorem 2 Let H is a Hilbert space and Y is a close subspace of H such that dimY < ∞
and y1, y2, . . . , yn, is any basis for Y . Let z be an arbitrary element in H and y∗ be the
unique best approximation to z out of Y . Then (Kreyszig 1978)

‖z − y∗‖22 = G(z, y1, y2, . . . , yn)

G(y1, y2, . . . , yn)
(58)

where

G(x, y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣

〈x, x〉 〈x, y1〉 · · · 〈x, yn〉
〈y1, x〉 〈y1, y1〉 · · · 〈y1, yn〉

...
...

...
...

〈yn, x〉 〈yn, y1〉 · · · 〈yn, yn〉

∣∣∣∣∣∣∣∣∣
. (59)

The error vector Ẽ (ν) of the operational matrix F (ν,α) is given by

Ẽ (ν) = I νLα(x) − F (ν,α)Lα(x), Ẽ (ν) =

⎡
⎢⎢⎢⎣
ẽ0
ẽ1
...

ẽn

⎤
⎥⎥⎥⎦ , (60)

123



Numerical approach based on fractional-order. . . 3857

We approximate F̃i (s, x, α) as follows

F̃i (s, x, α) 
n∑
j=0

b j L
α
j (x), (61)

from Theorem 2, we have:

∥∥∥F̃i (s, x, α) −
n∑
j=0

b j L
α
j (x)

∥∥∥
2

=
(
G(F̃i (s, x, α), Lα

0 , Lα
1 , . . . , Lα

n )

G(Lα
0 , Lα

1 , . . . , Lα
n )

) 1
2

. (62)

Then, using Eqs. (32) and (62), we get

‖ẽi‖2 =
∥∥∥I νLα

i (x) −
n∑
j=0

n∑
s=0

ci, j,s L
α
j (x)

∥∥∥

≤
∥∥∥

n∑
s=0

F̃i (s, x, α) −
n∑
j=0

n∑
s=0

ci, j,s L
α
j (t)

∥∥∥

≤
n∑

s=0

(
G
(
F̃i (s, x, α), Lα

0 , Lα
1 , . . . , Lα

n

)
G
(
Lα
0 , Lα

1 , . . . , Lα
n

)
) 1

2

. (63)

By considering the above discussion and Eq. (54), it can be concluded that by increasing
the number of the fractional-Lagrange polynomials, the error vector Ẽ (ν) tend to zero.

7 Illustrative test problems

In this section, we apply our method to solve the following examples.

Example 1 Consider the following fractional differential equation (Lakestani et al. 2012):

D0.5u(x) + u(x) = √
x +

√
π

2
, (64)

subject to

u(0) = 0,

The exact solution of this problem is u(x) = √
x .

Applying the present method for n = 1 and α = ν = 1
2 , the problem reduces to:

CT Lα(x) + CT F (0.5,α)Lα(x) = ET Lα(x), (65)

where
√
x +

√
π

2  ET Lα(x).
Using Eqs. (26), (32), for ν = α = 1

2 , we have

F

(
1
2 , 12

)
=
[ √

π

12
2√
π

− 5
√

π

12
−√

π

12
5
√

π

12

]
, E =

[√
π

2
, 1 +

√
π

2

]T
.

C =
[√

π

2
,

√
π

2

]T
, (66)
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Table 1 L∞ and L2 errors for
u(x) using B-spline functions in
Example 1

L∞ error L2 error

J = 4 7.8 × 10−3 3.9 × 10−3

J = 5 2.5 × 10−3 1.2 × 10−3

J = 6 7.7 × 10−4 4.0 × 10−4

J = 7 2.5 × 10−4 1.2 × 10−4

J = 8 7.8 × 10−5 4.2 × 10−5

by substituting these matrices in Eq. (65) and using collocation method in xi , the exact
solution is obtained, while error of method based on B-spline functions (Lakestani et al.
2012) is presented in Table 1.

Example 2 Consider the following linear initial value problem (Bhrawy et al. 2014; Hashim
et al. 2009; Saadatmandi and Dehghan 2010; Diethelm et al. 2002)

Dνu(x) + u(x) = 0, 0 < ν < 2, (67)

subject to

u(0) = 1, u
′
(0) = 0.

The second initial condition is for ν > 1 only. The exact solution of this problem is as follows
(Stoer and Bulirsch 1996):

u(x) =
∞∑
k=0

(−xν)k

Γ (kν + 1)
. (68)

For ν = 1, the exact solution is u(x) = e−x and the exact solution for ν = 2, is
u(x) = cos(x).

The numerical results for u(x) in n = 4, α = 1 and ν = 0.65, 0.75, 0.85, 0.95 and 1 are
plotted in Fig. 2 a. Also, we present the results for ν > 1. Fig. 2b shows the approximate
solutions obtained for n = 4, α = 1 and ν = 1.65, 1.75, 1.85, 1.95, and 2.

In these figures, we see that our approximate solutions converge to the exact solutions.
In addition, we solve this problem for ν = 2, α = 1 with n = 4 and the absolute error

which is obtained between the approximation solution and the exact solution for this case is
plotted in Fig. 3.

For more investigation, we apply our method for α = ν = 0.85. In Table 2, the absolute
error obtained between our numerical results and the exact solution for various of x and
compared with the results of method in Yuzbasi (2013). Figure 2 and Table 2 demonstrate
the validity and effectiveness of our method for this problem.

Example 3 Consider the following system of fractional differential equations (Rahimkhani
et al. 2016) {

Dν1u1(x) = u1(x) + u2(x), 0 < ν1 ≤ 1, 0 ≤ x ≤ 1,
Dν2u2(x) = −u1(x) + u2(x), 0 < ν2 ≤ 1,

(69)

subject to

u1(0) = 0, u2(0) = 1.
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Fig. 2 Curves of exact and numerical values of u(x) for various of ν, in Example 2

The exact solution of this system when, α = ν1 = ν2 = 1, is u1(x) = ex sin(x), u2(x) =
excos(x). We apply the proposed method to solve this system. Then this system reduces as

CT
i Lα(x) − CT

1 F (ν1,α)Lα(x) − CT
2 F (ν2,α)Lα(x) − ET Lα(x) = 0,

CT
2 Lα(x) + CT

1 F (ν1,α)Lα(x) − CT
2 F (ν,α)Lα(x) − ET Lα(x) = 0,

where 1  ET Lα(x).
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Fig. 3 Absolute error between the exact and approximation solution, for α = 1, ν = 2, in Example 2

Table 2 Comparison of the
absolute error with (Saadatmandi
and Dehghan 2010), for
α = ν = 0.85, n = 8 in
Example 2

x Our method Method in (Saadatmandi
and Dehghan 2010)

0.1 4.27 × 10−7 8.0 × 10−4

0.2 1.34 × 10−6 1.2 × 10−3

0.3 1.14 × 10−6 6.6 × 10−4

0.4 9.67 × 10−8 8.0 × 10−4

0.5 6.12 × 10−7 7.5 × 10−4

0.6 1.36 × 10−6 5.9 × 10−4

0.7 1.25 × 10−7 7.6 × 10−4

0.8 2.37 × 10−6 1.8 × 10−4

0.9 7.89 × 10−8 6.2 × 10−4

Figure 4 shows the numerical solutions of this system, using our method with n = 8.
Also, Fig. 5 displays the absolute error obtained between the approximate solutions and the
exact solution at α = ν1 = ν2 = 1 and n = 8 for u1(x) and u2(x).

Moreover, since the exact solutions for ν1 �= 1, ν2 �= 1 are not exist, then, we measured
the reliability using defining the norm of error (‖RN (x)‖2).

R1N (x) = CT
i Lα(x) − CT

1 F (ν1,α)Lα(x) − CT
2 F (ν2,α)Lα(x) − ET Lα(x),

R2N = CT
2 Lα(x) + CT

1 F (ν1,α)Lα(x) − CT
2 F (ν,α)Lα(x) − ET Lα(x),

‖R1N‖2 =
∫ 1

0
R2
1N (x)dx, ‖R2N‖2 =

∫ 1

0
R2
2N (x)dx,

‖RN‖2 = max(‖R1N‖2, ‖R2N‖2),
Table 3 shows ‖RN‖2 for α = ν1 = ν2 and n = 8. This table demonstrates that the FLPs are
more effective in solving systems of fractional differential equations.

Example 4 We consider the following nonlinear system of fractional differential equations
(Rahimkhani et al. 2016)

123



Numerical approach based on fractional-order. . . 3861

Fig. 4 Plots of system in Example 3, when α = ν1 = ν2 = 1

(a)

(b)

Fig. 5 Absolute error obtained between the approximate solutions and the exact solution with n = 8 and
α = γ1 = γ2 = 1 for (a) u1(x) and (b) u2(x) in Example 3

{
Dν1u1(x) = 1

2u1(x), 0 < ν1 ≤ 1, 0 ≤ x ≤ 1,
Dν2u2(x) = u2(x) + u21(x), 0 < ν2 ≤ 1,

(70)
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Table 3 The ‖ResN ‖2 with n = 8 and various values of ν1 = ν2 = α for Example 3

α = 0.5 α = 0.7 α = 0.9

‖ResN ‖2 3.76201 × 10−18 6.84255 × 10−20 1.02668 × 10−19

subject to the initial conditions

u1(0) = 1, u2(0) = 0.

The exact solution of this system, in ν1 = ν2 = α = 1, is u1(x) = e
x
2 , u2(x) = xex .

We solve this system using present method for n = 8. Figure 6 shows the approximate
solutions for α = ν1 = ν2 with various values of α, and the exact solution. Also, Fig. 7
displays the absolute error obtained between the approximate solutions and the exact solution
in α = ν1 = ν2 = 1 and n = 8 for this problem.

Example 5 In this example, we consider the following nonlinear initial value problem
(Kazem et al. 2013)

D3u(x) + D
5
2 u(x) + u2(x) = x4,

u(0) = 0, u
′
(0) = 0, u

′′
(0) = 2. (71)

The exact solution of this problem is u(x) = x2. Applying the technique described in Sect. 5,
we obtain exact solution with n = 4 and α = 1.

Example 6 Consider the following fractional Riccati equation (Jafari et al. 2011; Keshavarz
et al. 2014)

Dνu(x) = −u2(x) + 1, 0 < ν ≤ 1, (72)

subject to initial condition

u(0) = 0.

The exact solution, when ν = 1, is

u(x) = e2x − 1

e2x + 1
. (73)

By applying the technique described in Sect. 5, the problem became as

CT Lα(x) = −(CT F (ν,α)Lα(x))(CT F (ν,α)Lα(x))T + ET Lα(x), (74)

where

1  ET Lα(x).

We apply the FLP approach to solve this problem with n = 5 and various values of ν, α.
The approximation solution for this problem by Legendre wavelet method in k = 1, M =
25, ν = 1 is plotted in Jafari et al. (2011) and absolute difference between exact and
approximation solutions obtained by Bernoulli wavelet method for k = 1, M = 5, ν = 1
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Fig. 6 The comparison of approximate solutions for n = 8, α = ν1 = ν2 and the exact solution for Example 4

is plotted in Keshavarz et al. (2014). From these figures and Fig. 8a, we see that we can
achieve a reasonable approximation with the exact solution. Moreover, Fig. 8b shows the
approximation solutions obtained for α = 1, n = 5 and different values of ν using the FLP
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(a)

(b)

Fig. 7 Absolute error obtained between the approximate solutions and the exact solution with n = 8 and
α = ν1 = ν2 = 1 for (a) u1(x) and (b) u2(x) in Example 4

scheme. From these results, it is seen that the approximation solutions converge to the exact
solution.

The exact solutions for the values of ν �= 1 do not exist. Therefore, to demonstrate an
efficiency of the proposed method for this problem, we define the norm of residual error as
follows

Resn(x) = CT Lα(x) + (CT F (ν,α)Lα(x))(CT F (ν,α)Lα(x))T − ET Lα(x),

‖Resn‖2 =
∫ 1

0
Res2n(x)dx . (75)

Table 4 displays ‖Resn‖2 with some n and various values of ν = α. Table 4 and figures show
the advantage of the present technique for solving this nonlinear problem.

Example 7 Consider the following fractional Riccati equation (Jafari et al. 2011)

Dνu(x) = 2u(x) − u2(x) + 1, 0 < ν ≤ 1 (76)
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Fig. 8 Absolute error between the exact and approximation solutions and comparison of u(x) with various
values of ν and the exact solution, with n = 5 and α = 1 for Example 6

Table 4 The ‖Resn‖2 with n = 5 and various values of ν = α for Example 6

ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8

‖Res5‖2 1.40616 × 10−6 7.92879 × 10−6 8.42321 × 10−7 8.79342 × 10−8

subject to initial condition u(0) = 0. The exact solution, when ν = 1, is

u(x) = 1 + √
2 tan h

(√
2x + 1

2
Log

(√2 − 1√
2 + 1

))
.

By setting n = 5 and α = 1, we obtain fractional-Lagrange polynomial solution for various
ν. In Fig. 9c, we show the FLP solutions for α = 1 and various values of ν. Fig. 5 shows
that the FLP solution converges to the exact solution. Also, the approximate solution for this
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(a)

(b)

Fig. 9 a Comparing the exact and approximate solutions, b comparison of u(x) with various values of ν and
the exact solution, with n = 5 and α = 1 for Example 7

problem by Legendre wavelet method in k = 1, M = 25 is plotted in (Jafari et al. 2011).
From Fig. 9, it is obvious that we can achieve a good approximation with the exact solution
using a small number of bases.

The exact solutions for the values of ν �= 1 do not exist. Therefore, to show efficiency of
the present method for this problem, we define the norm of residual error as follows

Resn(x) = CT Lα(x) − 2(CT F (ν,α)Lα(x)) + (CT F (ν,α)Lα(x))(CT F (ν,α)Lα(x))T

−ET Lα(x),

‖Resn‖2 =
∫ 1

0
Res2n(x)dx .

Table 5 displays ‖Res4‖2 with various values of ν = α. From Table 5 and Fig. 9, we can see
the advantage of the proposed method for this example.
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Table 5 The ‖Res4‖2 with various values of ν = α for Example 7

ν = 0.5 ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9

‖Res4‖2 1.49106 × 10−3 1.3251 × 10−3 5.86622 × 10−4 1.98272 × 10−4 5.83018 × 10−5

8 Conclusion

In this paper, new functions named fractional-order Lagrange polynomials (FLPs) based on
Lagrange polynomials has been constructed to solve the fractional differential equations.
In addition, we have used the application of the fractional-order Lagrange polynomials for
solving systems of FDEs.

First, we presented a new representation of Lagrange polynomials. Next, we introduce
a new set of functions called fractional Lagrange polynomials (FLPs). Also, we obtain
operational matrices of the Caputo fractional derivative and Riemann–Liouville fractional
integration generally, without considering the nodes of Lagrange polynomials. These matri-
ces are obtained using Laplace transform. The operational matrix of fractional integration
together with collocation method have been used to approximate the numerical solution of
the FDEs. Our numerical results in comparison with exact solutions and with the solutions
obtained by some other numerical methods shows that this method is more accurate.
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