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Abstract In this paper, the dynamical behaviors for a five-dimensional virus infection
model with diffusion and two delays which describes the interactions of antibody, cytotoxic
T-lymphocyte (CTL) immune responses and a general incidence function are investigated.
The reproduction numbers for virus infection, antibody immune response, CTL immune
response, CTL immune competition and antibody immune competition, respectively, are
calculated. By using the Lyapunov functionals and linearization methods, the threshold con-
ditions on the global stability of the equilibria for infection-free, immune-free, antibody
response, CTL response and antibody and CTL responses, respectively, are established if the
space is assumed as homogeneous.When the space is inhomogeneous, the effects of diffusion,
intracellular delay and production delay are obtained by the numerical simulations.

Keywords Virus infection model · Delay · Adaptive immune response · Diffusion · General
incidence function · Global stability

Mathematics Subject Classification 34D40 · 35Q92 · 92B05

1 Introduction

Mathematical models have been developed to explore mechanisms and dynamical behaviors
in host virus infection process, and these provide insights into our understanding of HIV

Communicated by Geraldo Diniz.

B Zhidong Teng
zhidong_teng@sina.com; zhidong@xju.edu.cn

Hui Miao
miaohui19870111@163.com

1 School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006,
People’s Republic of China

2 College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046,
People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-017-0543-9&domain=pdf


Global stability of a diffusive and delayed virus infection... 3781

and other viruses; for example, HBV, HCV, influenza, SARS and Ebola are formulated and
studied in many articles. Mathematical analysis for these models are necessary to obtain an
integrated view for the virus dynamics in vivo. Nowak and Bangham (1996) pointed out that
cytotoxic T-lymphocyte (CTL) immune responses play a critical part in antiviral defense by
attacking virus-infected cells in most virus infections. They proposed the basic mathematical
model describing immune responses against infected cells

du(t)

dt
= λ − du(t) − βu(t)v(t),

dw(t)

dt
= βu(t)v(t) − aw(t) − pw(t)z(t),

dv(t)

dt
= kw(t) − mv(t),

dz(t)

dt
= cw(t)z(t) − bz(t),

(1)

where the uninfected susceptible host cells u are produced at a rate λ, die at rate d , and
become infected at rate β. Infected host cells, w, die at rate a and are killed by the CTL
response at rate p. Free virus v are produced from infected cells at rate k and are removed at
ratem. The variable z denotes themagnitude of the CTL response, which expands in response
to viral antigen derived from infected cells at rate c, and decays in the absence of antigenic
stimulation at rate b.

Usually the rate of infection in most virus infection models is assumed to be bilinear in the
virus v and the uninfected cells u. However, the actual incidence rate is probably not linear
over the entire range of v and u. Thus, it is reasonable to assume that the infection rate is given
by the Beddington–DeAngelis functional response, βu(t)v(t)

1+a1u(t)+a2v(t) , where a1, a2 > 0 are

constants. The functional response βu(t)v(t)
1+a1u(t)+a2v(t) was introduced by Beddington (1975) and

DeAngelis et al. (1975). It is similar to the well-known Holling type II functional response
but has an extra term a2v in the denominator which models mutual interference between
virus. When a1 > 0; a2 = 0, the Beddington–DeAngelis functional response is simplified
to Holling type II functional response (Li and Ma 2007). And when a1 = 0 and a2 > 0, it
expresses a saturation response (Song and Neumann 2007). They obtained some criterion
for the local asymptotic stability of the positive equilibrium of model (1) and gave the global
stability of the positive equilibrium by constructing Lyapunov functions. Balasubramaniam
et al. (2015) and Pawelek et al. (2012) performed detailed qualitative and bifurcation analysis
such as the stability of equilibria and Hopf bifurcation.

Note that it is implicitly assumed that cells and viruses are well mixed, and the spatial
mobility of cells and viruses has been ignored in model (1). Model (1) has been traditionally
formulated in relation to the time evolution of uniform population distributions in a habitat
and areas such governed by ordinary differential equations. However, as discussed by Wu
(1996), in many biological systems, the species under consideration may disperse spatially
as well as evolving in time. The mobility of susceptible cells, infected cells and immune cells
is further neglected under normal conditions, but viruses move freely in body in McCluskey
andYang (2015), Gourley and So (2002), Xu andMa (2009), Hattaf and Yousfi (2013, 2015),
Wang et al. (2011, 2014) and Zhang and Xu (2014). They introduced the random mobility
for viruses into model (1) and assume that the motion of virus follows the Fickian diffusion.
Yang and Xu (2016) proposed the following virus infection model with spatial dependence

∂u(x, t)

∂t
= λ − du(x, t) − βu(x, t)v(x, t)

1 + a1u(x, t) + a2v(x, t)
,
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∂w(x, t)

∂t
= e−ατ βu(x, t − τ)v(x, t − τ)

1 + a1u(x, t − τ) + a2v(x, t − τ)

− aw(x, t) − pw(x, t)z(x, t),
∂v(x, t)

∂t
= D�v(x, t) + kw(x, t) − mv(x, t), (2)

∂z(x, t)

∂t
= cw(x, t)z(x, t) − bz(x, t),

where u(x, t), w(x, t), v(x, t) and z(x, t) represent the densities of uninfected cells,
infected cells, free virus and immune cells at location x and time t , respectively. TheLaplacian
operator and the diffusion coefficient are denoted by� and D, respectively. It is demonstrated
in model (2) that by constructing Lyapunov functionals and using LaSalle’s invariance prin-
ciple, the global stability of the model is established. More recently, the global dynamics of
diffusive virus dynamic models have been studied in McCluskey and Yang (2015), Gourley
and So (2002), Xu and Ma (2009), Hattaf and Yousfi (2013, 2015), Wang et al. (2011, 2014)
and Zhang and Xu (2014).

During viral infections, the immune system reacts against virus. The antibody and CTLs
play the crucial roles in preventing and modulating infections. The antibody response is
implemented by the functioning of immunocompetent B lymphocytes. TheCTL response has
the ability to suppress the virus replication in vivo.Hence, an effective vaccine to prevent virus
infection needs both strong neutralizing antibody andCTL responses (Balasubramaniamet al.
2015; Wodarz 2003; Yan and Wang 2012; Wang et al. 2014). Therefore, some of the typical
HIV infectionmodels are described by delay differential equations, considering the dynamics
of target cell, virus populations and immune response has been studied in recent years (Nelson
and Perelson 2000; Yan and Wang 2012; Zhu and Zou 2009; Shu et al. 2013; Yuan and Zou
2013; Balasubramaniam et al. 2015; Wang et al. 2012, 2014; Pawelek et al. 2012; Huang
et al. 2011; Ji 2015; Lu et al. 2015; Xiang et al. 2013). There are some models which include
intracellular delay (Nelson and Perelson 2000; Yan and Wang 2012; Zhu and Zou 2009; Shu
et al. 2013; Wang et al. 2012, 2014; Pawelek et al. 2012; Huang et al. 2011); some authors
believe that time delays cannot be ignored in models for production viruses (Shu et al. 2013;
Wang et al. 2014; Ji 2015; Xiang et al. 2013). Therefore, it is more realistic to investigate
delayed virus infection models with antibody and CTL responses and nonlinear incidences.
However, to our knowledge, there are few works on diffusive virus dynamics model with
time delay and adaptive immune response.

Motivated by the works of Yang and Xu (2016), Yan and Wang (2012), Wang et al.
(2014) and McCluskey and Yang (2015), we propose a delayed virus infection model with
generalized incidence rate and spatial diffusion

∂u

∂t
= λ − du(x, t) − f (u(x, t), w(x, t), v(x, t))v(x, t),

∂w

∂t
= e−a1τ1 f (u(x, t − τ1), w(x, t − τ1), v(x, t − τ1))v(x, t − τ1)

− aw(x, t) − pw(x, t)z(x, t),

∂v

∂t
= D�v(x, t) + ke−a2τ2w(x, t − τ2) − mv(x, t) − qv(x, t)y(x, t),

∂z

∂t
= cw(x, t)z(x, t) − bz(x, t),

∂y

∂t
= gv(x, t)y(x, t) − hy(x, t),

(3)
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for t > 0, x ∈ �, where y(x, t) represents the densities of antibody cells at location x and
time t, h represents the death rate of the antibody response, q is the antibody cells neutralize
rate, g is the birth rate of the antibody response. And the other parameters are the same
meaning as model (1).

In model (3), based on the epidemiological background, to incorporate the intracellular
phase of the virus life cycle, we assume that virus production occurs after the virus entry by
the intracellular delay τ1. The recruitment of virus-producing cells at time t is given by the
number of the uninfected cells that were newly infected at time t − τ1 and are still alive at
time t (Nelson and Perelson 2000; Yan and Wang 2012; Zhu and Zou 2009; Shu et al. 2013;
Wang et al. 2012, 2014; Pawelek et al. 2012; Huang et al. 2011). The constant a1 is assumed
to be the death rate for newly infected cells during time period [t − τ1, t]. e−a1τ1 denotes the
surviving rate of infected cells during the delay period. Virus replication delay τ2 represents
the time necessary for the newly produced viruses to become mature and then infectious, that
is, the maturation time of the newly produced viruses (Shu et al. 2013; Wang et al. 2014; Ji
2015; Xiang et al. 2013). The constant a2 is assumed to be the death rate for new virus during
time period [t − τ2, t]. e−a2τ2 denotes the surviving rate of virus during the delay period.

We assume that the contacts between target cells, infected cells and viruses are given by
an incidence function f (u, w, v), which is assumed to satisfy the following conditions:

(A1) Function f : R5+ → R+ is continuously differentiable; f (0, w, v) = 0 for allw ≥ 0

and v ≥ 0; ∂ f (u,w,v)
∂u > 0, ∂ f (u,w,v)

∂w
≤ 0 and ∂ f (u,w,v)

∂v
≤ 0 for all u ≥ 0, w ≥ 0 and v ≥ 0.

From assumption (A1), we easily obtain that there are no new infected cells (i.e.,
f (u, w, v) = 0) without healthy cells (u = 0) or virus (v = 0). If the total number of
virus is constant, the more the amount of cell is, then the more the average number of cells
which are infected by each virus in the unite time will be. If the total number of cells is
constant, the more the amount of infected cells or virus is, then the less the average number
of cells which are infected by each infected cell or virus in the unite time will be.

It is easy to check that class of functions f (u, w, v) satisfying (A1) include incidence
functions such as f (u, w, v) = βuv

1+bv
(Wang et al. 2013), f (u, w, v) = βuv

1+au+bv
(Huang et al.

2011) and f (u, w, v) = βuv
1+au+bv+cuv

(Zhou and Cui 2011), where constants β, a, b, c > 0.
We consider model (3) with initial conditions

u(x, θ) = φ1(x, θ) ≥ 0, w(x, θ) = φ2(x, θ) ≥ 0,

v(x, θ) = φ3(x, θ) ≥ 0, z(x, θ) = φ4(x, θ) ≥ 0, (4)

y(x, θ) = φ5(x, θ) ≥ 0, x ∈ �̄, θ ∈ [−τ, 0],
and homogeneous Neumann boundary conditions

∂v

∂ �n = 0, t > 0, x ∈ ∂�, (5)

where τ = max{τ1, τ2}, � is a connected, bounded domain in R
n with smooth boundary

∂�. ∂
∂ �n denotes the outward normal derivative on ∂�. φi (x, θ)(i = 1, 2, 3, 4, 5) is Hölder

continuous in �̄ × [−τ, 0]. The boundary conditions in (5) imply that the virus particles do
not move across the boundary ∂�. 
 is the Laplacian operator. D is the diffusion coefficient
of the virus particles.

In this paper, our purpose is to investigate the dynamical properties of model (3), expressly
the stability of equilibria. The reproduction numbers for viral infection, antibody immune
response, CTL immune response, CTL immune competition and antibody immune compe-
tition, respectively, are calculated. By using Lyapunov functionals and LaSalle’s invariance
principle, the threshold conditions for the global asymptotic stability of equilibria for
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infection-free E0, immune-free E1, antibody response E2, and infection only with CTL
response E3 and infection with both antibody and CTL responses E4 are established, respec-
tively. By using the linearization method, the instability of equilibria for E0, E1, E2 and E3,
respectively, also is established.

The organization of this paper is as follows. In the next section, the basic properties
of model (3) for the positivity and boundedness of solutions, the threshold values and the
existence of equilibria are discussed. In Section 3, under the additional assumptions (A1)–
(A2), the threshold conditions on the global stability and instability for E0, E1, E2, E3 and
E4 are stated and proved. In Sect. 4, the numerical simulations are given to further illustrate
the dynamical behavior of the model. In the last section, we will give a conclusion.

2 Positivity, boundedness and equilibrium

In this section, we show the existence, positivity and boundedness of solutions of model (3)–
(5) as they represent the densities of uninfected cells, infected cells, free virus, CTL immune
cells and antibody cells. Further, we discuss the existence of equilibria of model (3).

Let C = C([−τ, 0], X) be the Banach space of continuous functions from [−τ, 0] into X
with the norm ‖ φ ‖ = maxθ∈[−τ,0] ‖ φ(θ) ‖X . In our case, X is the Banach space C(�, R5)

and C(E, F) denotes the space of continuous functions from the topological space E into
the space F . For convenience, we identify an element φ ∈ C as a function from � × [−τ, 0]
into R5 defined by φ(x, s) = φ(s)(x).

For any continuous function ω(·) : [−τ, b) → X for b > 0, we define ωt ∈ C by
ωt (s) = ω(t + s), s ∈ [−τ, 0]. It is not hard to see that t → ωt is a continuous function
from [0, b) to C .

Theorem 2.1 For any given initial data φ ∈ C satisfying the condition (4), there exists a
unique solution of model (3)–(5) defined on [0,+∞) and this solution remains nonnegative
and bounded for all t ≥ 0.

Proof For any φ = (φ1, φ2, φ3, φ4, φ5)
T ∈ C and x ∈ �, we define F =

(F1, F2, F3, F4, F5) : C → X by

F1(φ)(x) = λ − dφ1(x, 0) − f (φ1(x, 0), φ2(x, 0), φ3(x, 0))φ3(x, 0),

F2(φ)(x) = e−a1τ1 f (φ1(x,−τ1), φ2(x,−τ1), φ3(x,−τ1))φ3(x,−τ1)

− aφ2(x, 0) − pφ2(x, 0)φ4(x, 0),

F3(φ)(x) = ke−a2τ2φ2(x,−τ2) − mφ3(x, 0) − qφ3(x, 0)φ5(x, 0),

F4(φ)(x) = cφ2(x, 0)φ4(x, 0) − bφ4(x, 0),

F5(φ)(x) = gφ3(x, 0)φ5(x, 0) − hφ5(x, 0).

Then, model (3)–(5) can be rewritten as the following abstract functional differential equa-
tion:

ω′(t) = Aω + F(ωt ), t > 0,

ω(0) = φ ∈ X, (6)

where ω = (u, w, v, z, y)T, φ = (φ1, φ2, φ3, φ4, φ5)
T and Aω = (0, 0, D�v, 0, 0)T. It is

clear that F is locally Lipschitz in X . From Wu (1996), we deduce that model (6) admits a
unique local solution on [0, Tmax), where Tmax is the maximal existence time for solution of
model (6).

123



Global stability of a diffusive and delayed virus infection... 3785

Therefore, we have u(x, t) ≥ 0, w(x, t) ≥ 0, v(x, t) ≥ 0, z(x, t) ≥ 0 and y(x, t) ≥ 0
because 0 is a sub-solution of each equation of model (3).

Next, we prove the boundedness of solutions. Denote

T1(x, t) = e−a1τ1u(x, t − τ1) + w(x, t) + p

c
z(x, t).

So we have

∂T1(x, t)

∂t
= λe−a1τ1 − −de−a1τ1u(x, t − τ1) − aw(x, t) − pb

c
z(x, t)

≤ λe−a1τ1 − l1T1(x, t),

where l1 = min{d, a, b}. Hence,

T1(x, t) ≤ max

(
λe−a1τ1

l1
,max

x∈�

{
e−a1τ1φ1(x, τ1) + φ2(x, 0) + p

c
φ4(x, 0)

})
.

This implies that u, w and z are bounded for large t .
From the boundedness of w and (3)–(5), we deduce that v satisfies the following system

∂v

∂t
− D�v(x, t) ≤ ke−a2τ2ξ − mv(x, t) − qv(x, t)y(x, t),

∂v

∂ �n = 0,

v(x, 0) = φ3(x, 0) ≥ 0,

where ξ = max( λe−a1τ1

l1
,maxx∈�{e−a1τ1φ1(x, τ1) + φ2(x, 0) + p

c φ4(x, 0)}).
Let v1(t) be a solution to the ordinary differential equation

dv1
dt

= ke−a2τ2ξ − mv − qvy,

v1(0) = max
x∈�

φ3(x, 0).

Denote

T2(x, t) = e−a1τ1v1(t) + q

g
y(x, t).

So we can get

∂T2(x, t)

∂t
= ke−a2τ2ξ − mv1 − qh

g
y

≤ ke−a2τ2ξ − l2T2(x, t),

where l2 = min{m, h}. Hence,

T2(x, t) ≤ max

(
ke−a2τ2ξ

l2
,max

x∈�

{
φ3(x, 0) + q

g
φ5(x, 0)

})
.

Then v1(t) ≤ max( ke−a2τ2 ξ
l2

,maxx∈�{φ3(x, 0) + q
g φ5(x, 0)}).

From the comparison principle Protter and Weinberger (1967), we get v(x, t) ≤ v1(t).
Hence,

v(x, t) ≤ max

(
ke−a2τ2ξ

l2
,max

x∈�

{
φ3(x, 0) + q

g
φ5(x, 0)

})
.
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From the above, we have proved that u(x, t), w(x, t), v(x, t), z(x, t) and y(x, t) are
bounded on � × [0, Tmax). Therefore, it follows from the standard theory for semilinear
parabolic systems (Henry 1993; Redlinger 1984) that Tmax = +∞. This completes the
proof. ��

Now, we discuss the existence of equilibria of model (3). It is easy to know that any
equilibrium E = (u, w, v, z, y) of model (3) satisfies

λ − du(x) − f (u(x), w(x), v(x))v(x) = 0,

e−a1τ1 f (u(x), w(x), v(x))v(x) − aw(x) − pw(x)z(x) = 0,

ke−a2τ2w(x) − mv(x) − qv(x)y(x) = 0,

cw(x)z(x) − bz(x) = 0,

gv(x)y(x) − hy(x) = 0.

(7)

It is clear from (7) that model (3) always has a unique infection-free equilibrium E0 =
(u0, 0, 0, 0, 0) with u0 = λ

d .

The basic reproductive number of viral infection for model (3) is

R0 = k f
(

λ
d , 0, 0

)
amea1τ1+a2τ2

. (8)

If z = 0 and y = 0, then we get the following equation

f

(
u,

λ − du

aea1τ1
,

k(λ − du)

amea1τ1+a2τ2

)
= amea1τ1+a2τ2

k
,

w = λ − du

aea1τ1
and v = k(λ − du)

amea1τ1+a2τ2
.

Since w ≥ 0, we have u ≤ λ
d . Denote

F1(u) = f

(
u,

λ − du

aea1τ1
,

k(λ − du)

amea1τ1+a2τ2

)
− amea1τ1+a2τ2

k
.

We have

F1(0) = −amea1τ1+a2τ2

k
< 0,

F1

(
λ

d

)
= amea1τ1+a2τ2

k
(R0 − 1)

and

F ′
1(u) = ∂ f

∂u
− d

aea1τ1
· ∂ f

∂w
− kd

amea1τ1+a2τ2
· ∂ f

∂v
> 0.

Because of (A1), we know that the function F1(u) is strictly monotonically increasing with
respect to u. When R0 > 1, there exists a unique u1 ∈ (0, λ

d ) such that F1(u1) = 0. Thus, we
obtain a unique immune-free equilibrium E1 = (u1, w1, v1, 0, 0) with u1 ∈ (0, λ

d ), w1 =
λ−du1
aea1τ1 and v1 = k(λ−du1)

amea1τ1+a2τ2
.

If y = 0 and z = 0, we have v = h
g . From the first and second equations of (7), we have

f

(
u,

λ − du

aea1τ1
,

h

g

)
= g

h
(λ − du).
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Since y = kg(λ−du)−amhea1τ1+a2τ2

aqhea1τ1+a2τ2
≥ 0, we get u ≤ λ

d − amhea1τ1+a2τ2

kgd . Denote

F2(u) = f

(
u,

λ − du

aea1τ1
,

h

g

)
− g

h
(λ − du).

We have F2(0) = − λg
h < 0 and F ′

2(u) = ∂ f
∂v

− d
aea1τ1 · ∂ f

∂w
+ dg

h > 0.
Now, we define the antibody immune reproductive number for model (3) given by

R1 = g

h
v1. (9)

Note that when R0 > 1 model (3) has a unique immune-free equilibrium E1 = (u1, w1, v1,

0, 0). This shows that virus infection is successful and the numbers of free viruses at equi-
librium E1 is v1. Furthermore, we have that 1

h is the average life span of antibody cells, g is
birth rate of the antibody response. Hence, R1 denotes the average number of the antibody
immune cells activated by virus when virus infection is successful and CTL responses have
not been established.

If R1 > 1, then v1 > h
g , u1 < λ

d − amhea1τ1+a2τ2

kdg and

F2

(
λ

d
− amhea1τ1+a2τ2

kdg

)
= f

(
λ

d
− amhea1τ1+a2τ2

kdg
,

mhea2τ2

kg
,

h

g

)

− amea1τ1+a2τ2

k

= F1

(
λ

d
− amhea1τ1+a2τ2

kdg

)
> F1(u1).

Thus, if R1 > 1, there exists a unique infection equilibrium with only antibody response
E2 = (u2, w2, v2, 0, y2) with u2 ∈ (0, λ

d − amhea1τ1+a2τ2

kgd ), w2 = λ−du2
aea1τ1 , v2 = h

g and

y2 = kg(λ−du2)−amhea1τ1+a2τ2

aqhea1τ1+a2τ2
.

If y = 0 and z = 0, we have w = b
c and v = kbe−a2τ2

cm . From the first equation of (7), we
obtain

f

(
u,

b

c
,

kbe−a2τ2

cm

)
= cm

kbe−a2τ2
(λ − du).

As z = c(λ−du)e−a1τ1−ab
pb ≥ 0 then u ≤ λ

d − abea1τ1

cd . Denote

F3(u) = f

(
u,

b

c
,

kbe−a2τ2

cm

)
− cm

kbe−a2τ2
(λ − du).

We have F3(0) = − λcm
kbe−a2τ2

< 0 and F ′
3(u) = ∂ f

∂u + cmd
kbe−a2τ2

> 0. Denote

R2 = c

b
w1, (10)

which R2 denotes the average number of the CTL immune cells activated by infected cells
when virus infection is successful and antibody immune responses have not been established.
Note that the number of infected cells at equilibrium E1 is w1,

1
b is the average life span of

CTL cells and c is the rate at which the CTL responses are produced.
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We see that R2 > 1 is equivalent to w1 > b
c , u1 < λ

d − ab
cde−a1τ1

and

F3

(
λ

d
− ab

cde−a1τ1

)
= f

(
λ

d
− ab

cde−a1τ1
,

b

c
,

kbe−a2τ2

cm

)
− amea1τ1+a2τ2

k

> f (u1, w1, v1) − amea1τ1+a2τ2

k
= 0.

Hence, R2 > 1, there exists a unique infection equilibrium with only CTL response
E3 = (u3, w3, v3, z3, 0) with u3 ∈ (0, λ

d − ab
cde−a1τ1

), w3 = b
c , v3 = kbe−a2τ2

cm and

z3 = c(λ−du)e−a1τ1−ab
pb .

If z = 0 and y = 0, we have w = b
c and v = h

g . From the first equation of (7), we have

f

(
u,

b

c
,

h

g

)
= g

h
(λ − du).

According to z = (λ−du)e−a1τ1−aw
pw

≥ 0, we deduce that u ≤ λ
d − abea1τ1

cd . Define

F4(u) = f

(
u,

b

c
,

h

g

)
− g

h
(λ − du).

We have F4(0) = − λg
h < 0 and F ′

4(u) = ∂ f
∂u + dg

h > 0.
The CTL immune competitive reproductive number for model (3) is

R3 = cw2

b
. (11)

In fact, when R1 > 1, model (3) has a unique infection equilibrium with only antibody
response E2 = (u2, w2, v2, 0, y2). This predicates that CTL immune responses have been
established, and the number of infected cells at equilibrium E2 is w2. Hence, R3 denotes the
average number of the CTL immune cells activated by infected cells under the condition that
antibody immune responses have been established.

If R3 > 1, then w2 > b
c , u2 < λ

d − abea1τ1

cd and

F4

(
λ

d
− abea1τ1

cd

)
= f

(
λ

d
− abea1τ1

cd
,

b

c
,

h

g

)
− abgea1τ1

ch

= F2

(
λ

d
− abea1τ1

cd

)
> F2(u2) = 0.

Thus, there exists a unique u4 ∈ (0, λ
d − abea1τ1

cd ) such that F4(u4) = 0. From the third
equation of (7),we obtain that y4 = m

q (R4−1),where R4 is the antibody immune competitive
reproductive number defined by

R4 = gv3

h
. (12)

In fact, when R2 > 1, model (3) has a unique infection equilibrium with only CTL response
E3 = (u3, w3, v3, z3, 0). This predicates that antibody immune responses have been estab-
lished, and the numbers of the viruses at equilibrium E3 is v3. Hence, R4 denotes the average
number of the antibody immune cells activated by viruses under the condition that CTL
immune responses have been established.

When R3 > 1 and R4 > 1, model (3) has a unique infection equilibrium with CTL and
antibody response E4 = (u4, w4, v4, z4, y4) with u4 ∈ (0, λ

d − abea1τ1

cd ), w4 = b
c , v4 =

h
g , z4 = (λ−du4)e−a1τ1−aw4

pw4
and y4 = m

q (R4 − 1).
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3 Stability analysis

In this section, we discuss global stability of equilibria for infection-free, immune-free,
antibody response, and infection only with CTL response and infection with both antibody
and CTL responses, respectively.

We further introduce the following assumption
(A2) (1 − f (u,w,v)

f (u,wi ,vi )
)(

f (u,wi ,vi )
f (u,w,v)

− v
vi

) ≤ 0 for all u, w, v > 0, where wi and vi are the
components of equilibrium Ei (i = 1, 2, 3, 4).

For convenience, for any solution (u(x, t), w(x, t), v(x, t), z(x, t), y(x, t)) of model (3)
we let

u(x, t) = u, u(x, t − τ2) = uτ2 , w(x, t) = w, w(x, t − τ2) = wτ2 ,

v(x, t) = v, v(x, t − τ2) = vτ2 , z(x, t) = z, z(x, t − τ2) = zτ2 ,

y(x, t) = y, y(x, t − τ2) = yτ2 , f (u(x, t − τ1), w(x, t − τ1),

v(x, t − τ1))v(x, t − τ1) = fτ1 .

3.1 Stability of equilibrium E0

Theorem 3.1 (a) If R0 ≤ 1, then the infection-free equilibrium E0 is globally asymptotically
stable.

(b) If R0 > 1, then the equilibrium E0 is unstable.

Proof Consider conclusion (a). Define a Lyapunov functional L1(t) = ∫
�
(V1(x, t) +

V2(x, t)) dx, where

V1(x, t) = u − u0 −
∫ u

u0

f (u0, 0, 0)

f (s, 0, 0)
ds + ea1τ1w + aea1τ1+a2τ2

k
v

+ pea1τ1

c
z + aqea1τ1+a2τ2

kg
y

and

V2(x, t) =
∫ τ1

0
f (uθ , wθ , vθ )vθ dθ

+ aea1τ1

∫ τ2

0
wθ dθ.

By calculation, we have

∂V1(x, t)

∂t
+ ∂V2(x, t)

∂t
=

(
1 − f (u0, 0, 0)

f (u, 0, 0)

)
(λ − du − f (u, w, v)v)

+ ea1τ1(e−a1τ1 fτ1 − aw − pwz)

+ aea1τ1+a2τ2

k
(D�v + ke−a2τ2wτ2 − mv − qvy)

+ pea1τ1

c
(cwz − bz) + aqea1τ1+a2τ2

kg
(gvy − hy)

+ f (u, w, v)v − fτ1 + aea1τ1w − aea1τ1wτ2

= du0

(
1 − u

u0

)(
1 − f (u0, 0, 0)

f (u, 0, 0)

)
− aqhea1τ1+a2τ2

kg
y
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+ v

(
f (u, w, v) · f (u0, 0, 0)

f (u, 0, 0)
− amea1τ1+a2τ2

k

)

− pbea1τ1

c
z + aDea1τ1+a2τ2�v

k

= du0

(
1 − u

u0

)(
1 − f (u0, 0, 0)

f (u, 0, 0)

)
− pbea1τ1

c
z

− aqhea1τ1+a2τ2

kg
y

+ amea1τ1+a2τ2

k
v

(
f (u, w, v)

f (u, 0, 0)
R0 − 1

)
+ aDea1τ1+a2τ2�v

k

≤ du0

(
1 − u

u0

)(
1 − f (u0, 0, 0)

f (u, 0, 0)

)
+ amea1τ1+a2τ2

k
v(R0 − 1)

− aqhea1τ1+a2τ2

kg
y − pbea1τ1

c
z + aDea1τ1+a2τ2�v

k
.

Calculating the time derivative of L1(t) along any positive solution of model (3) and noticing
that u0 = λ

d , we can obtain

dL1(t)

dt
≤

∫
�

du0

(
1 − u

u0

) (
1 − f (u0, 0, 0)

f (u, 0, 0)

)
dx

+
∫

�

amea1τ1+a2τ2

k
v(R0 − 1) dx

−
∫

�

aqhea1τ1+a2τ2

kg
y dx

−
∫

�

pbea1τ1

c
z dx +

∫
�

aDea1τ1+a2τ2�v

k
dx .

Using the divergence theorem and the homogeneous Neumann boundary conditions, we get∫
�

�v dx =
∫

∂�

∂v

∂ �n dx = 0.

Thus,

dL1(t)

dt
≤

∫
�

du0

(
1 − u

u0

) (
1 − f (u0, 0, 0)

f (u, 0, 0)

)
dx

+
∫

�

amea1τ1+a2τ2

k
v(R0 − 1) dx

−
∫

�

aqhea1τ1+a2τ2

kg
y dx

−
∫

�

pbea1τ1

c
z dx .

Obviously, if R0 ≤ 1, then dL1(t)
dt ≤ 0 for any (u, w, v, z, y). We have dL1(t)

dt = 0 if
and only if u = u0, v = 0, z = 0 and y = 0. Let M be the largest invariant set of
{(x, y, v, z, w) ∈ R5+ : dL1(t)

dt = 0}. From the third equation of model (3), we easily obtain
M = {E0}. It follows from LaSalle’s invariance principle Hale and Verduyn (1993) that the
equilibrium E0 of model (3) is globally asymptotically stable when R0 ≤ 1.
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Next, we consider conclusion (b). To do so, we determine the characteristic equation about
the equilibrium E0.

Let 0 = μ1 < μ2 < · · · < μn < · · · be the eigenvalues of the operator −
 on � with
the homogeneous Neumann boundary conditions, and E(μi ) be the eigenfunction space
corresponding to μi in C1(�). Let {ϕi j : j = 1, 2, . . . , dimE(μi )} be an orthonormal basis
of E(μi ),X = [C1(�)]5, and Xi j = {cϕi j : c ∈ R

5}. Then

X =
∞⊕

i=1

Xi and Xi =
dimE(μi )⊕

i=1

Xi j .

Let E∗(u∗, w∗, v∗, z∗, y∗) be an arbitrary equilibrium, and consider the following change

U (x, t) = u(x, t) − u∗,
W (x, t) = w(x, t) − w∗,
V (x, t) = v(x, t) − v∗,
Z(x, t) = z(x, t) − z∗,
Y (x, t) = y(x, t) − y∗.

By substitutingU (x, t), W (x, t), V (x, t), Z(x, t) and Y (x, t) into model (3) and linearizing,
we obtain the following system

∂U

∂t
= −

(
d + ∂ f

∂u
v∗

)
U (x, t) − ∂ f

∂w
v∗W (x, t)

−
(

∂ f

∂v
v∗ + f (u∗, w∗, v∗)

)
V (x, t),

∂W

∂t
= e−a1τ1 ∂ f

∂u
v∗U (x, t − τ1) + e−a1τ1 ∂ f

∂w
v∗W (x, t − τ1) − pw∗ Z(x, t)

+ e−a1τ1

(
∂ f

∂v
v∗ + f (u∗, w∗, v∗)

)
V (x, t − τ1) − (a + pz∗)W (x, t),

∂V

∂t
= D�v(x, t) + ke−a2τ2W (x, t − τ2)

− (m + qy∗)V (x, t) − qv∗Y (x, t),

∂ Z

∂t
= cz∗W (x, t) + (cw∗ − b)Z(x, t),

∂Y

∂t
= gy∗V (x, t) + (gv∗ − h)Y (x, t),

(13)

This system is equivalent to

∂Z

∂t
= D�Z + AZ(x, t) + BZ(x, t − τ1) + CZ(x, t − τ2),

where

A =

⎛
⎜⎜⎜⎜⎜⎝

−
(

d + ∂ f
∂u v∗

)
− ∂ f

∂w
v∗ −

(
∂ f
∂v

v∗ + f (u∗, w∗, v∗)
)

0 0

0 −(a + pz∗) 0 −pw∗ 0
0 0 −(m + qy∗) 0 −qv∗
0 cz∗ 0 cw∗ − b 0
0 0 gy∗ 0 gv∗ − h

⎞
⎟⎟⎟⎟⎟⎠

,
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B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
∂ f
∂u v∗e−a1τ1 ∂ f

∂w
v∗e−a1τ1

(
∂ f
∂v

v∗ + f (u∗, w∗, v∗)
)
e−a1τ1 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

C =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 ke−a2τ2 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , D = diag(0, 0, D, 0, 0).

We put LZ = D�Z + AZ(x, t) + BZ(x, t − τ1) + CZ(x, t − τ2). For each i ≥ 1,Xi is
invariant under the operator L, and s is an eigenvalue of L if and only if it is a root of the
characteristic equation det(s I − A − Be−a1τ1 − Ce−a2τ2 + μiD) = 0 for some i ≥ 1, in
which case, there is an eigenvector in Xi .

From (13), by computing, we obtain the characteristic equation of the corresponding
linearized system of model (3) at the equilibrium E0 as follows

(s + h)(s + b)(s + d) fi (s) = 0, (14)

where

fi (s) = s2 + (a + m + μi D)s + a(m + μi D)

−k f

(
λ

d
, 0, 0

)
e−(a1+s)τ1−(a2+s)τ2 . (15)

Obviously, s1 = −d, s2 = −b and s3 = −h are the roots of this equation. It is easy to prove
that Eq. (15) has a real positive root when R0 > 1.

When R0 > 1, we have f1(0) = am(1 − R0) < 0, as μ1 = 0 when i = 1. Since
lims→+∞ fi (s) = +∞, there is a s∗ > 0 such that fi (s∗) = 0. Therefore, when R0 > 1,
the equilibrium E0 is unstable. This completes the proof. ��

Biologically, Theorem 3.1 shows that the viruses are cleared and the infection dies out.

3.2 Stability of equilibrium E1

Theorem 3.2 Assume (A2) holds, if R0 > 1 (a) R1 ≤ 1 and R2 ≤ 1, then the immune-free
equilibrium E1 is globally asymptotically stable.

(b) If R1 > 1 or R2 > 1, then the equilibrium E1 is unstable.

Proof Define firstly function H(ξ) = ξ − 1 − ln ξ . We have that H(ξ) ≥ 0 for all ξ > 0
and H(ξ) = 0 if and only if ξ = 1. Consider conclusion (a). Define a Lyapunov functional

L2(t) =
∫

�

(V1(x, t) + V2(x, t)) dx,

where

V1(x, t) = u − u1 −
∫ u

u1

f (u1, w1, v1)

f (s, w1, v1)
ds + ea1τ1w1H

(
w

w1

)

+ aea1τ1+a2τ2

k
v1H

(
v

v1

)
+ pea1τ1

c
z + aqea1τ1+a2τ2

kg
y
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and

V2(x, t) = f (u1, w1, v1)v1

∫ τ1

0
H

(
f (uθ , wθ , vθ )vθ

f (u1, w1, v1)v1

)
dθ

+ aea1τ1w1

∫ τ2

0
H

(
wθ

w1

)
dθ.

It is obvious that L2(t) > 0 for all (u(t), w(t), v(t), z(t), y(t)) > 0 and (u(t), w(t), v(t),
z(t), y(t)) = (u1, w1, v1, 0, 0).

Calculating the time derivative of V1(x, t) and V2(x, t) along any positive solution of
model (3), we can obtain

∂V1(x, t)

∂t
=

(
1 − f (u1, w1, v1)

f (u, w1, v1)

)
(λ − du − f (u, w, v)v)

+ ea1τ1
(
1 − w1

w

)
(e−a1τ1 fτ1 − aw − pwz)

+ aea1τ1+a2τ2

k

(
1 − v1

v

)
(D�v + ke−a2τ2wτ2

− mv − qvy) + pea1τ1

c
(cwz − bz)

+ aqea1τ1+a2τ2

kg
(gvy − hy)

and

∂V2(x, t)

∂t
= f (u, w, v)v − fτ1 + f (u1, w1, v1)v1 ln

fτ1
f (u, w, v)v

+ aea1τ1w − aea1τ1wτ2 + aea1τ1w1 ln
wτ2

w
.

By using

f (u1, w1, v1)v1 = aea1τ1w1 = amea1τ1+a2τ2

k
v1.

Since ∫
�

�v dx = 0,
∫

�

�v

v
dx =

∫
�

‖ ∇v ‖2
v2

dx,

we have

dL2(t)

dt
=

∫
�

∂V1(x, t)

∂t
+ ∂V2(x, t)

∂t
dx

=
∫

�

du1

(
1 − u

u1

)(
1 − f (u1, w1, v1)

f (u, w1, v1)

)
dx

+ f (u1, w1, v1)v1

∫
�

[
4 − fτ1

f (u1, w1, v1)v1
· w1

w
− f (u1, w1, v1)

f (u, w1, v1)

−v1wτ2

vw1
− f (u, w1, v1)

f (u, w, v)

]
dx + aDea1τ1+a2τ2�v

k

(
1 − v1

v

)

+ f (u1, w1, v1)v1

∫
�

[
−1 + f (u, w1, v1)

f (u, w, v)
− v

v1
+ v f (u, w, v)

v1 f (u, w1, v1)

]
dx

123



3794 H. Miao et al.

+
∫

�

pea1τ1

(
w1 − b

c

)
z dx +

∫
�

aqea1τ1+a2τ2

k

(
v1 − h

g

)
y dx

+ f (u1, w1, v1)v1

∫
�

[
ln

fτ1
f (u1, w1, v1)v1

· wτ2

w

]
dx

=
∫

�

du1

(
1 − u

u1

)(
1 − f (u1, w1, v1)

f (u, w1, v1)

)
dx

− f (u1, w1, v1)v1

∫
�

[
H(

f (u1, w1, v1)

f (u, w1, v1)
) + H

(
fτ1

f (u1, w1, v1)v1
· w1

w

)

+H

(
v1wτ2

vw1

)
+ H

(
f (u, w1, v1)

f (u, w, v)

)]
dx + pea1τ1

(
w1 − b

c

) ∫
�

z dx

+aqea1τ1+a2τ2

k

(
v1 − h

g

) ∫
�

y dx − aDea1τ1+a2τ2v1

k

∫
�

‖ ∇v ‖2
v2

dx

+ f (u1, w1, v1)v1

∫
�

(
1 − f (u, w, v)

f (u1, w1, v1)

) (
f (u, w1, v1)

f (u, w, v)
− v

v1

)
dx .

Obviously, we always have dL2(t)
dt ≤ 0, and dL2(t)

dt = 0 if and only if u(t) = u1, w(t) =
w1, v(t) = v1, z(t) = 0 and y(t) = 0. From LaSalle’s invariance principle Hale and Ver-
duyn (1993), we finally have that the immune-free equilibrium E1 of model (3) is globally
asymptotically stable when R0 > 1, R1 ≤ 1 and R2 ≤ 1.

Next, we consider conclusion (b). From (13), by computing, we obtain the characteristic
equation of the corresponding linearized system ofmodel (3) at the equilibrium E1 as follows

(s + h − gv1)(s + b − cw1) f (s) = 0,

where

f (s) =

∣∣∣∣∣∣∣∣

s + d + ∂ f
∂u v1

∂ f
∂w

v1

(
∂ f
∂v

v1 + f (u1, w1, v1)
)

−e−(a1+s)τ1 ∂ f
∂u v1 s + a − ∂ f

∂w
v1e−(a1+s)τ1 −e−(a1+s)τ1

(
∂ f
∂v

v1 + f (u1, w1, v1)
)

0 −ke−(a2+s)τ2 s + m + μi D

∣∣∣∣∣∣∣∣
.

When R1 > 1, we have h − gv1 < 0. Hence, there is a positive root s1 = gv1 − h. When
R2 > 1, there is also a positive root s2 = cw1 − b. Therefore, when R1 > 1 or R2 > 1, the
equilibrium E1 is unstable. This completes the proof. ��

Biologically, Theorem 3.2 implies that when R0 > 1, R1 ≤ 1 and R2 ≤ 1 then the
establishments of both CTLs and antibody immune responses are unsuccessful.

3.3 Stability of equilibrium E2

Theorem 3.3 Assume (A2) holds, if R0 > 1 and R1 > 1 (a) If R3 ≤ 1, then the antibody
response equilibrium E2 is globally asymptotically stable.

(b) If R3 > 1, then the equilibrium E2 is unstable.

Proof Consider conclusion (a). Define a Lyapunov functional L3(t) as follows

L3(t) =
∫

�

(V1(x, t) + V2(x, t)) dx,

123



Global stability of a diffusive and delayed virus infection... 3795

where

V1(x, t) = u − u2 −
∫ u

u2

f (u2, w2, v2)

f (s, w2, v2)
ds + ea1τ1w2H

(
w

w2

)

+ aea1τ1+a2τ2

k
v2H

(
v

v2

)
+ pea1τ1

c
z + aqea1τ1+a2τ2

kg
y2H

(
y

y2

)

and

V2(x, t) = f (u2, w2, v2)v2

∫ τ1

0
H

(
f (uθ , wθ , vθ )vθ

f (u2, w2, v2)v2

)
dθ

+aea1τ1w2

∫ τ2

0
H

(
wθ

w2

)
dθ.

It is obvious that L3(t) > 0 for all (u(t), w(t), v(t), z(t), y(t)) > 0 and (u(t), w(t), v(t),
z(t), y(t)) = (u2, w2, v2, 0, y2), where u2, w2, v2 and y2 satisfy the following equations

f (u2, w2, v2)v2 = aea1τ1w2 = a(m + qy2)ea1τ1+a2τ2

k
v2.

Calculating the time derivative of L3(t) along any positive solution of model (3), we can
obtain

dL3(t)

dt
=

∫
�

du2

(
1 − u

u2

) (
1 − f (u2, w2, v2)

f (u, w2, v2)

)
dx

+ f (u2, w2, v2)v2

∫
�

[
4 − v2wτ2

vw2

− fτ1
f (u2, w2, v2)v2

· w2

w
− f (u2, w2, v2)

f (u, w2, v2)
− f (u, w2, v2)

f (u, w, v)

]
dx

+ f (u2, w2, v2)v2

∫
�

[
−1 + f (u, w2, v2)

f (u, w, v)
− v

v2
+ v f (u, w, v)

v2 f (u, w2, v2)

]
dx

+
∫

�

pea1τ1

(
w2 − b

c

)
z dx + aDea1τ1+a2τ2�v

k

(
1 − v2

v

)

+ f (u2, w2, v2)v2

∫
�

[
ln

fτ1
f (u2, w2, v2)v2

· wτ2

w

]
dx

=
∫

�

du2

(
1 − u

u2

) (
1 − f (u2, w2, v2)

f (u, w2, v2)

)
dx

− f (u2, w2, v2)v2

∫
�

[
H

(
v2wτ2

vw2

)

+H

(
f (u2, w2, v2)

f (u, w2, v2)

)
+ H

(
fτ1

f (u2, w2, v2)v2
· w2

w

)
+ H

(
f (u, w2, v2)

f (u, w, v)

)]
dx

+ pea1τ1

(
w2 − b

c

) ∫
�

z dx − aDea1τ1+a2τ2v2

k

∫
�

‖ ∇v ‖2
v2

dx

+ f (u2, w2, v2)v2

∫
�

(
1 − f (u, w, v)

f (u2, w2, v2)

) (
f (u, w2, v2)

f (u, w, v)
− v

v2

)
dx .

Obviously, we always have dL3(t)
dt ≤ 0, and dL3(t)

dt = 0 if and only if u(t) = u2, w(t) =
w2, v(t) = v2, z(t) = 0 and y(t) = y2. From LaSalle’s invariance principle (Hale and
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Verduyn 1993),wefinally have that the equilibrium E2 ofmodel (3) is globally asymptotically
stable when R0 > 1, R1 ≤ 1 and R2 ≤ 1.

Next, we consider conclusion (b). From (13), by computing, we obtain the characteristic
equation of the corresponding linearized system ofmodel (3) at the equilibrium E2 as follows

(s − cw2 + b) f (s) = 0,

where

f (s) =

∣∣∣∣∣∣∣∣

a11 a12 a13 0
a21 a22 a23 0
0 a32 a33 a34
0 0 a43 a44

∣∣∣∣∣∣∣∣
,

where

a11 = s + d + ∂ f

∂u
v2,

a12 = ∂ f

∂w
v2,

a13 = ∂ f

∂v
v2 + f (u2, w2, v2),

a21 = −e−(a1+s)τ1 ∂ f

∂u
v2,

a22 = s + a − ∂ f

∂w
v2e

−(a1+s)τ1 ,

a23 = −e−(a1+s)τ1

(
∂ f

∂v
v2 + f (u2, w2, v2)

)
,

a32 = −ke−(a2+s)τ2 ,

a33 = s + m + μi D + qy2, a34 = qv2, a43 = −gy2, a44 = s − gv2 + h.

When R3 > 1, we have s = cw2 − b > 0. Therefore, when R3 > 1 equilibrium E2 is
unstable. This completes the proof. ��

Biologically, Theorem 3.3 implies that when R0 > 1, R1 > 1 and R3 ≤ 1, the antibody
response can be established, but the infected cells are too weak so that it cannot stimulate
CTL immune response.

3.4 Stability of equilibrium E3

Theorem 3.4 Assume (A2) holds, if R0 > 1 and R2 > 1 (a) If R4 ≤ 1, then the infection
equilibrium E3 with only CTL response is globally asymptotically stable.

(b) If R4 > 1, then the equilibrium E3 is unstable.

Proof Consider conclusion (a). Define a Lyapunov functional L4(t) as follows

L4(t) =
∫

�

(V1(x, t) + V2(x, t)) dx,
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where

V1(x, t) = u − u3 −
∫ u

u3

f (u3, w3, v3)

f (s, w3, v3)
ds

+ ea1τ1w3H

(
w

w3

)
+ pea1τ1

c
z3H

(
z

z3

)

+ (a + pz3)ea1τ1+a2τ2

k
v3H

(
v

v3

)

+ (a + pz3)qea1τ1+a2τ2

kg
y

and

V2(x, t) = f (u3, w3, v3)v3

∫ τ1

0
H

(
f (uθ , wθ , vθ )vθ

f (u3, w3, v3)v3

)
dθ

+ (a + pz3)e
a1τ1w3

∫ τ2

0
H

(
wθ

w3

)
dθ.

We easily prove that L4(t) > 0 for all (u(t), w(t), v(t), z(t), y(t)) > 0 and (u(t), w(t), v(t),
z(t), y(t)) = (u3, w3, v3, z3, 0).

By using

f (u3, w3, v3)v3 = (a + pz3)e
a1τ1w3

= m(a + pz3)ea1τ1+a2τ2

k
v3.

Calculating the time derivative of L4(t) along any positive solution of model (3), we can
obtain

dL4(t)

dt
=

∫
�

du3

(
1 − u

u3

) (
1 − f (u3, w3, v3)

f (u, w3, v3)

)
dx

+ f (u3, w3, v3)v3

∫
�

[
4 − v3wτ2

vw3

− fτ1
f (u3, w3, v3)v3

· w2

w
− f (u3, w3, v3)

f (u, w3, v3)
− f (u, w3, v3)

f (u, w, v)

]
dx

+ f (u3, w3, v3)v3

∫
�

[
−1 + f (u, w3, v3)

f (u, w, v)
− v

v3
+ v f (u, w, v)

v3 f (u, w3, v3)

]
dx

+
∫

�

(a + pz3)

k
ea1τ1+a2τ2

(
y3− h

g

)
y dx+ (a + pz3)Dea1τ1+a2τ2�v

k

(
1 − v3

v

)

+ f (u3, w3, v3)v3

∫
�

[
ln

fτ1
f (u3, w3, v3)v3

· wτ2

w

]
dx

=
∫

�

du3

(
1− u

u3

)(
1− f (u3, w3, v3)

f (u, w3, v3)

)
dx− f (u3, w3, v3)v3

∫
�

[
H

(
v3wτ2

vw3

)

+H

(
f (u3, w3, v3)

f (u, w3, v3)

)
+H

(
fτ1

f (u3, w3, v3)v3
· w3

w

)
+H

(
f (u, w3, v3)

f (u, w, v)

)]
dx

+ f (u3, w3, v3)v3

∫
�

(
1 − f (u, w, v)

f (u3, w3, v3)

) (
f (u, w3, v3)

f (u, w, v)
− v

v3

)
dx
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− (a + pz3)Dea1τ1+a2τ2v3

k

∫
�

‖ ∇v ‖2
v2

dx

+ (a + pz3)

k
ea1τ1+a2τ2

(
y3 − h

g

) ∫
�

y dx .

Obviously, we always have dL4(t)
dt ≤ 0, and dL4(t)

dt = 0 if and only if u(t) = u3, w(t) =
w3, v(t) = v3, z(t) = z3 and y(t) = 0. From LaSalle’s invariance principle (Hale and
Verduyn 1993),wefinally have that the equilibrium E3 ofmodel (3) is globally asymptotically
stable when R0 > 1, R2 > 1 and R4 ≤ 1.

Next, we consider conclusion (b). From (13), by computing, we obtain the characteristic
equation of the linearization system of model (3) at the equilibrium E3 as follows

(s + h − gv3) f (s) = 0,

where

f (s) =

∣∣∣∣∣∣∣∣

a11 a12 a13 0
a21 a22 a23 a24
0 a32 a33 0
0 a42 0 a44

∣∣∣∣∣∣∣∣
,

where

a11 = s + d + ∂ f

∂u
v3,

a12 = ∂ f

∂w
v3, a13 = ∂ f

∂v
v3 + f (u3, w3, v3),

a21 = −e−(a1+s)τ1 ∂ f

∂u
v3, a22 = s + a − e−(a1+s)τ1 ∂ f

∂w
v3 + pz3,

a23 = −e−(a1+s)τ1

(
∂ f

∂v
v3 + f (u2, w2, v2)

)
, a24 = pw3, a32 = −ke−(a2+s)τ2 ,

a33 = s + m + μi D, a42 = −cz3, a44 = s − cw3 + b.

When R4 > 1, we have there is a positive root s1 = gv3 − h. Therefore, when R4 > 1
equilibrium E3 is unstable for any τ1 ≥ 0 and τ2 ≥ 0. This completes the proof. ��

Biologically, Theorem 3.4 implies that, when R0 > 1, R2 > 1 and R4 ≤ 1, the CTL
immune response can be determined, but the viral loads are so small that it cannot activate
the antibody responses.

3.5 Stability of equilibrium E4

Theorem 3.5 Assume (A2) holds, if R0 > 1, R1 > 1, R3 > 1 and R4 > 1, then the infection
equilibrium with CTL and antibody responses E4 is globally asymptotically stable.

Proof Define a Lyapunov functional L5(t) as follows

L5(t) =
∫

�

(V1(x, t) + V2(x, t)) dx,
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where

V1(x, t) = u − u4 −
∫ u

u4

f (u4, w4, v4)

f (s, w4, v4)
ds + ea1τ1w4H

(
w

w4

)
+ pea1τ1

c
z4H

(
z

z4

)

+ (a + pz4)ea1τ1+a2τ2

k
v4H

(
v

v4

)
+ (a + pz4)qea1τ1+a2τ2

kg
y4H

(
y

y4

)

and

V2(x, t) = f (u4, w4, v4)v4

∫ τ1

0
H

(
f (uθ , wθ , vθ )vθ

f (u4, w4, v4)v4

)
dθ

+ (a + pz4)e
a1τ1w4

∫ τ2

0
H

(
wθ

w4

)
dθ.

It is obvious that L5(t) > 0 for all (u(t), w(t), v(t), z(t), y(t)) > 0 and (u(t), w(t), v(t),
z(t), y(t)) = (u4, w4, v4, z4, y4).

Calculating the time derivative of L5(t) along any positive solution of model (3), we can
obtain

dL5(t)

dt
=

∫
�

du4

(
1 − u

u4

) (
1 − f (u4, w4, v4)

f (u, w4, v4)

)
dx

− f (u4, w4, v4)v4

∫
�

[
H

(
v4wτ2

vw4

)

+H

(
f (u4, w4, v4)

f (u, w4, v4)

)
+ H

(
fτ1

f (u4, w4, v4)v4
· w4

w

)

+H

(
f (u, w4, v4)

f (u, w, v)

)]
dx

+ f (u4, w4, v4)v4

∫
�

(
1 − f (u, w, v)

f (u4, w4, v4)

) (
f (u, w4, v4)

f (u, w, v)
− v

v4

)
dx

− (a + pz4)Dea1τ1+a2τ2v4

k

∫
�

‖ ∇v ‖2
v2

dx .

Obviously, we always have dL5(t)
dt ≤ 0, and dL5(t)

dt = 0 if and only if u = u4, w = w4, v =
v4. From the LaSalle’s invariance principle Hale and Verduyn (1993), we finally have that the
equilibrium E4 of model (3) is globally asymptotically stable when R0 > 1, R1 > 1, R3 > 1
and R4 > 1. This completes the proof. ��

Biologically, Theorem 3.5 implies that, if CTL immune response has not any delay, then
the susceptible cells, infected cells, free virus, CTL immune response and antibody immune
response can coexist in vivo.

4 Numerical simulations

In this section, we perform some numerical simulations to illustrate the results obtained in
Sect. 3. We consider model (3) under the homogeneous Neumann boundary conditions

∂v

∂ �n = 0, t > 0, x = 0, 1 (16)
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and initial conditions

u(x, θ) = φ1(x, θ) ≥ 0, w(x, θ) = φ2(x, θ) ≥ 0,

v(x, θ) = φ3(x, θ) ≥ 0, z(x, θ) = φ4(x, θ) ≥ 0,

y(x, θ) = φ5(x, θ) ≥ 0, x ∈ [0, 1], θ ∈ [−τ, 0].
(17)

In model (3), we choose a nonlinear incidence f (u, w, v) = βu
1+m1u+n1v+m1n1uv

. Further-
more, β, g, h, τ1, τ2, c and b are chosen as free parameters and all remaining parameters are
fixed as in Table 1.

InFigs. 1, 2, 3, 4 and5a–e are denoted time seriesfigures ofu(x, t), w(x, t), v(x, t), z(x, t)
and y(x, t).

5 Discussion

In this paper, we have discussed a delayed virus infection model (3) with diffusion, adaptive
immune responses and general incidence rate. During viral infection, CTL immune responses
which attack infected cells, and antibody responses which attack viruses. Hence, we assume
that the production of CTL immune response depends on the infected cells and CTL immune
responses. We see that similar assumption also is given in Nowak and Bangham (1996), Yan
and Wang (2012), Zhu and Zou (2009), Shu et al. (2013), Wang et al. (2013, 2014, 2012)
and Balasubramaniam et al. (2015). Similarly, the production of antibody response depends
on the virus and antibody (Yan and Wang 2012; Wang et al. 2013; Balasubramaniam et al.
2015; Wang et al. 2014). Assumptions (A1) and (A2) for nonlinear function f (u, w, v)v

are introduced and a combination of the basic reproduction number for viral infection R0,
for CTL response R1, for antibody immune response R2, for CTL immune competition R3

and for humoral immune competition R4 defined by (8)–(12), respectively, also are defined.
Under (A1) and (A2), the global stability and instability of the equilibria of model (3) by
utilizing the method of constructing suitable Lyapunov functionals which are motivated by
recent works of Pawelek et al. (2012), Zhu and Zou (2009), Shu et al. (2013), Yuan and Zou
(2013) and Huang et al. (2011) are completely determined by the basic reproduction numbers
R0, R1, R2, R3 and R4.

By the analysis, we have shown that when R0 ≤ 1, the infection-free equilibrium E0 is
globally asymptotically stable, which means that the viruses are cleared and the infection
dies out. When R0 > 1, R1 ≤ 1 and R2 ≤ 1 the immune-free equilibrium E1 is globally
asymptotically stable, which means that immune response would not be activated and viral
infection becomes vanished. When R0 > 1, R1 > 1 and R3 ≤ 1, the infection equilibrium
with only antibody cells response E2 is globally asymptotically stable. As respect to the
analysis of infection equilibrium E3 with only CTL response, when R0 > 1, R2 > 1
and R4 ≤ 1, E3 is globally asymptotically stable, which means that the antibody response
would not be activated and viral infection becomes vanished. About the stability of infection
equilibrium E4 with both CTL and antibody response we have obtained that when R3 > 1
and R4 > 1, E4 is globally asymptotically stable. We see that (A1) is basic for model (3).
Particularly, when f (u, w, v) = βu

1+m1u+n1v+m1n1uv
then (A1) naturally hold. But (A2) is a

mathematical assumption. It is only used in the proofs of theorems on the global stability of
equilibria E1, E2, E3 and E4 to obtain d Ln(t)

dt for the Lyapunov function Ln (see the proofs
of Theorems 3.2–3.5). Furthermore, the numerical simulations given in Sect. 4 show the
stability. Moreover, the effect of diffusion is considered as an important factor, which will
be closer to reality. Compared to the case without diffusion, the approach is to construct
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Fig. 1 Taking β = 0.01, c = 0.1, b = 0.15, g = 1.5, h = 0.1, τ1 = 10, τ2 = 5, we have
R0 = 0.2087 < 1, the infection-free equilibrium E0(1000, 0, 0, 0, 0) is asymptotically stable

Fig. 2 Taking β = 0.15, c = 0.01, b = 0.2, g = 0.5, h = 1.5, τ1 = 3, τ2 = 15, we
have R0 = 3.0373 > 1, R1 = 0.7098 < 1 and R2 = 0.9277 < 1, the immune-free equilibrium
E1(44.0253, 18.5544, 2.1293, 0, 0) is asymptotically stable

Lyapunov functionals for partial differential equations (PDEs) or delayed partial differential
equations (DPDEs) using Lyapunov functionals for ordinary differential equations (ODEs)
or delayed differential equations (DDEs). Research on diffusion will be more complicated.
Moreover, all the five state variables are influenced by multi-time delays and diffusion can
better impact the virus infection problems. Therefore, research in this paper can be seen as
an improvement and a supplementary of model (2), and it might be helpful to understand
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Fig. 3 Taking β = 0.25, c = 0.01, b = 0.18, g = 1.5, h = 1, τ1 = 10, τ2 = 5, we have R0 =
5.2164 > 1, R1 = 3.3682 > 1 and R3 = 0.8899 < 1, the infection equilibrium only with CTL immune
response E2(114.8758, 16.0179, 0.6667, 0, 6.1420) is asymptotically stable

Fig. 4 Taking β = 0.35, c = 0.1, b = 0.15, g = 1.5, h = 1, τ1 = 10, τ2 = 5, we have R0 =
7.3030 > 1, R2 = 11.8885 > 1 and R4 = 0.2854 < 1, the infection equilibrium only with antibody
response E3(455.1241, 1.5000, 0.1902, 2.7868, 0) is asymptotically stable

the virus infection model. Finally, under homogeneous Neumann boundary conditions, our
results imply that diffusion, the intracellular delay and virus replication delay have no effect
on the global behaviors of such virus dynamics model.

Observing all obtained results in this paper, we can directly put forward the following
open question which need to be further studied in the future.
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Fig. 5 Taking β = 0.45, c = 0.15, b = 0.15, g = 0.1, h = 0.01, τ1 = 2, τ2 = 5, we have
R0 = 10.1716 > 1, R3 = 7.5777 > 1 and R4 = 1.2683 > 1, the infection equilibrium with both antibody
and CTL immune responses E4(613.4595, 1.0000, 0.1000, 3.2889, 0.8049) is asymptotically stable

In this paper, we only discuss a five-dimensional diffusive virus infection model with
intracellular delay, virus replication delay and general incidence rate. Based on different
practical backgrounds, the immune response delay and mitotic proliferation terms for both
uninfected and infected target cells are considered in modeling the viral infection of disease.
Therefore, whether the results obtained in this paper also can be extended to five-dimensional
diffusive virus infection model with mitosis transmission and immune delay. In other words,
with immune delay as a bifurcation parameter, whether we also can obtain that the global
asymptotic stability of equilibria for infection-free, immune-free, antibody response, infec-
tion with CTL response and infection with both antibody and CTL response, respectively,
will also be a very estimable and significative subject.
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