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Abstract In this paper, the authors consider a four-compartmental HIV epidemiological
model, which describes the interaction between HIV virus and two target cells, CD4 T cells
and macrophages in vivo. It is proved that the bilinear incidence can cause the backward
bifurcation, where a locally asymptotically stable disease-free equilibrium co-exists with
a locally asymptotically stable endemic equilibrium when the basic reproduction number
(R0) is less than unity. It is shown that a sequence of Hopf bifurcations occur at the endemic
equilibriumby choosing one parameter of themodel as the bifurcation parameter.Meanwhile,
the global asymptotic stabilities of the equilibria are established by constructing suitable
Lyapunov functions under some conditions. Furthermore, the authors develop an extended
model by incorporating with the intracellular delays and derive global asymptotic stability
of the delayed model by constructing Lyapunov functions. Some numerical simulations for
justifying the theoretical analysis results are also given.
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1 Introduction

Human immunodeficiency virus (HIV), which mainly infects CD4 T cells and other target
cells, threatens global human health and society development seriously (Perelson and Nelson
1999; Wodarz and Lloyd 1999). HIV, the cause of acquired immunodeficiency syndrome
(AIDS), develops rapidly during the course of infection and the virus can evolve toward faster
replication rates during late stages (Perelson and Nelson 1999; Regoes et al. 1998). There are
approximately 6000 mm−3 white blood cells in a healthy body. It is estimated that between 1
and 6% of these are macrophages and approximately 10% are CD4 T cells Kirschner (1999).
Clinical studies show that most viruses come from the infected macrophages during the late
stages of the disease.Macrophages play an important role as a viral source and are considered
as the second target cell of HIV (Perelson and Essunger 1997; Kirschner 1999). Moreover,
macrophages are also the crucial immune responses and can clear certain HIV virus (Adams
and Banks 2005; Kirschner 1999).

Mathematical models have made great contributions to getting insights into HIV infection
dynamics in vivo. Great efforts were made to describe the interaction between HIV and CD4
T cells (Leenheer and Smith 2003; Hossein et al. 2014; Wang and Wang 2012; Hu and Liu
2010). Some other HIV models consider the interaction process of HIV not only with CD4
T cells but also with macrophages (Elaiw 2010; Adams and Banks 2005; Wodarz and Lloyd
1999; Shu et al. 2013). Generally speaking, the models with two target cells are more suitable
than the models with only CD4 T cells (Elaiw 2010; Perelson and Nelson 1999; Kirschner
1999). Particularly, Elaiw proposed one model with two target cells and obtained the global
asymptotical stabilities of the equilibria of the model by means of Lyapunov functions in
Elaiw (2010). However, we should consider some other features including the proliferation
of CD4 T cells stimulated by HIV virus and the loss term of the virus killed by macrophages
(Ouattara 2005; Xia 2007). Based on above works, we introduce a four-dimensional model
which is formulated by the following system of non-linear differential equations:

dT

dt
= λ1 − δ1T − β1T v + β12T v, (1)

dTm
dt

= λ2 − δ2Tm − β2Tmv + β22Tmv, (2)

dT ∗

dt
= β1T v + β2Tmv − aT ∗, (3)

dv

dt
= bT ∗ − cv − β3Tmv. (4)

We briefly summarize the interpretation of different parameters in the model. T, Tm, T ∗,
and v represent the uninfected CD4 T cells population, the uninfected macrophages popula-
tion, the infected cells population, and the virus particles population in the blood, respectively.
The terms λ1 and λ2 are the constant sources of new CD4 T cells and macrophages, respec-
tively. δ1, δ2, a, and c denote the death rates of uninfectedCD4T cells, macrophages, infected
cells, and virus particles, respectively. β1T v represents the infection rate of uninfected CD4T
cells by virus. Because the number of CD4 T cells is large, it is reasonable to use the bilinear
incidence rate (Elaiw 2010; Wang et al. 2014). β12T v is a proliferation term due to CD4 T
cells immune response. β2Tmv and β22Tmv could be explained in the same manner. bT ∗ is
the source of HIV virus population and the constant b is the production rate of HIV virus by
the infected CD4 T cells and infectedmacrophages. β3Tmv is the loss term of HIV virus since
macrophages can kill virus particles. c is the loss rate of HIV virus because of nature death
or other immune response. Suppose all the parameters are nonnegative. Simultaneously, we
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give some brief definitions and reference values of the model parameters in Table 1. Denote
β ′
1 = β1 − β12 > 0 and β ′

2 = β2 − β22 > 0. System (1–4) becomes the following system:

dT

dt
= λ1 − δ1T − β ′

1T v, (5)

dTm
dt

= λ2 − δ2Tm − β ′
2Tmv, (6)

dT ∗

dt
= β1T v + β2Tmv − aT ∗, (7)

dv

dt
= bT ∗ − cv − β3Tmv. (8)

In this paper, we first discuss the positively invariant set, the equilibria and the backward
bifurcation. By analyzing the characteristic equations, the local asymptotic stability of an
endemic equilibrium of the model is established. Letting β3 be the bifurcation parameter, we
show that system (5–8) can undergo Hopf bifurcation, that is, a family of periodic solutions
bifurcates from the infected equilibrium when β3 passes through a critical value. To prove
the global asymptotical stabilities of the equilibria, we construct Lyapunov functions, which
are similar to those in Korobeinikov (2004), Elaiw (2010), Li et al. (2011), Tsuyoshi et al.
(2015), Hossein et al. (2014), Roy and Roy (2016).

The intracellular delays, from entry into CD4 T cells or macrophages to the production
of new viruses, have been incorporated into biological models in many papers (Wang et al.
2014; Regoes et al. 1998; Culshaw and Ruan 2000; Wang and Zhou 2009; Yuan et al. 2012).
In this paper, we establish a delayed model based on system (5–8) to study the influence
of the intracellular delays on the infection transmission. We construct Lyapunov functions
to prove the global asymptotical stabilities for the delayed model (McCluskey 2010; Huang
et al. 2010). It is theoretically shown that time delay has no effect on the asymptotic stability
of the equilibria under some conditions.

The paper is ordered as follows: Equilibria and backward bifurcation are studied in Sect. 2.
Hopf bifurcation of the model is discussed in Sect. 3. The global asymptotic stabilities of the
two equilibria are considered in Sect. 4. Section 5 deals with the extended model with the
intracellular delays. Finally, Sect. 6 presents the conclusions of the work.

2 Equilibria and backward bifurcation

In the absence of virus, it is easy to show that the number of CD4 T cells approaches T0 = λ1
δ1

and the number of macrophages approaches Tm0 = λ2
δ2
. It is straightforward to prove the

positive invariance of the nonnegative orthant R4+ because of biological sense by system
(5–8). Furthermore, from (5) and (6), we obtain:

dT

dt
≤ λ1 − δ1T,

dTm
dt

≤ λ2 − δ2Tm .

Therefore, we apply comparison lemma in Sharomi and Podder (2007) and obtain:

0 ≤ T ≤ λ1

δ1
+

(
T (0) − λ1

δ1

)
e−δ1t , 0 ≤ Tm ≤ λ2

δ2
+

(
Tm(0) − λ2

δ2

)
e−δ2t ,
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where T (0), Tm(0) are the initial conditions. It can be seen that the uninfected CD4 T cells
and macrophages are always bounded. For simplicity, we may take

x = β1

β ′
1
T + β2

β ′
2
Tm + T ∗, δ = min

{
β1δ1

β ′
1

,
β2δ2

β ′
2

, a

}
, and � = β1β

′
2λ1 + β ′

1β2λ2

β ′
1β

′
2

.

From system (5-8), we have,

dx

dt
≤ � − δx .

Therefore, T ∗ is bounded. From (8), we know that v is upper bounded too, say by M = b�
cδ .

Define the region,

P = {(T, Tm, T ∗, v) ∈ R4+ : 0 ≤ T ≤ T0, 0 ≤ Tm ≤ Tm0, x ≤ �

δ
, v ≤ M}.

Then P is positively invariant with respect to system (5–8). Any solution of system (5–8)
with initial point in P will stay in P . Furthermore, if T > T0 and Tm > Tm0, either the
solution of system (5-8) enters P in finite time, or T approaches T0 and Tm approaches Tm0

asymptotically. Thus, P attracts all solutions in nonnegative orthant R4+. This leads to the
following result:

Proposition 1 The region P is positively invariant and attracting in nonnegative orthant
R4+ for system (5–8).

Next, we focus the dynamics behavior of system (5–8) in P . There always exists a disease-
free equilibrium E0(T0, Tm0, 0, 0), which represents the state with the absence of virus. The
Jacobian matrix of system (5–8) at E0 is given as

J (E0) =

⎛
⎜⎜⎜⎝

−δ1 0 0 −β ′
1

λ1
δ1

0 −δ2 0 −β ′
2

λ2
δ2

0 0 −a β1
λ1
δ1

+ β2
λ2
δ2

0 0 b −c − β3
λ2
δ2

⎞
⎟⎟⎟⎠

with the characteristic equation

(λ + δ1)(λ + δ2)

[
λ2 +

(
a + c + β3

λ2

δ2

)
λ

+acδ1δ2 + λ2δ1aβ3

δ1δ2

(
1 − λ1bβ1δ2 + λ2δ1bβ2

acδ1δ2 + λ2δ1aβ3

)]
= 0.

According to the fact |J (E0)| = 0, it follows that λ1bβ1δ2+λ2δ1bβ2 = acδ1δ2+λ2δ1aβ3.
So, we define the basic reproduction number as

R0 = λ1bβ1δ2 + λ2δ1bβ2

acδ1δ2 + λ2δ1aβ3
,

which represents the average number of secondary cases that one infected case can generate.
It can be easily verified that, E0 is locally asymptotically stable when R0 < 1 and is unstable
when R0 > 1 from the characteristic equation.

When aβ3 = bβ2, system (5–8) has no endemic equilibrium if R0 ≤ 1 and has only one
endemic equilibrium Ē1(T̄1, T̄m1, T̄ ∗

1, v̄1) if R0 > 1, where

T̄1 = ac

bβ1
, T̄m1 = λ2

δ2 + β ′
2v̄1

, T̄ ∗
1 = acv̄1

b
+ β3T̄m1v̄1, and v̄1 = λ1bβ1 − acδ1

β ′
1ac

.
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When aβ3 �= bβ2, it can be computed that v �= 0 satisfies

bβ1λ1

δ1 + β ′
1v

+ λ2(bβ2 − aβ3)

δ2 + β ′
2v

= ac,

which is equivalent to the quadratic equation

pv2 + qv + r = 0, (9)

where

p = acβ ′
1β

′
2, q = (acδ1β

′
2 + acδ2β

′
1 + λ2aβ

′
1β3 − λ2bβ

′
1β2 − λ1bβ1β

′
2),

r = (acδ1δ2 + λ2δ1aβ3)(1 − R0).

Therefore, we obtain the following result:

Proposition 2 When aβ3 �= bβ2, system (5–8) has:

(1) a unique endemic equilibrium if R0 > 1;
(2) a unique endemic equilibrium if q < 0, and R0 = 1 or q2 − 4pr = 0;
(3) two endemic equilibria if R0 < 1, q < 0 and q2 − 4pr > 0;
(4) no endemic equilibrium otherwise.

Item (3) in Proposition 2 indicates the possibility of backward bifurcation when R0 < 1
(Sharomi and Podder 2007; Zhang and Liu 2008; Feng and Castillo-Chavez 2000). To verify
the existence of backward bifurcation, we let the discriminant q2 − 4pr be 0 and solve the
equation in term of R0. We obtain

Rc
0 = 1 − q2

4acβ ′
1β

′
2(acδ1δ2 + λ2δ1aβ3)

.

It can be shown that backward bifurcation occurs for the values of R0 if Rc
0 < R0 < 1.

We explore this phenomenon via numerical simulations and use the following parameter
values: λ1 = 8; λ2 = 3; δ1 = 0.008; δ2 = 0.002;β ′

1 = 0.000012;β ′
2 = 0.0000211;β1 =

0.0002;β2 = 0.00025; a = 0.48; b = 50; c = 4.3;β3 = 0.05 (Kirschner 1999; Lu and
Huang 2014; Xia 2007). Then, we obtain Rc

0 = 0.2321, R0 = 0.7553 and Rc
0 < R0 < 1. It is

clear that system (5–8) has a disease-free equilibrium E0(1000, 1500, 0, 0) and two endemic
equilibria, Ê1(278.5310, 78.0510, 283.2904, 1.7268 × 103) and Ě1(801.4765, 547.0186,
104.5313, 165.1315). The simulations depicted in Fig. 1 show that E0 and Ê1 are locally
asymptotically stable and Ě1 is unstable. As a result, a stable endemic equilibrium co-exists
with a stable disease-free equilibrium for system (5–8) if R0 < 1. A bifurcation diagram is
shown in Fig. 2. The above discussion is summarized below.

Theorem 1 System (5–8) exhibits backward bifurcation when q < 0, q2 − 4pr > 0, and
Rc
0 < R0 < 1.

It should be noted that the termβ3Tmv plays an important role on the backward bifurcation.
The phenomenon of backward bifurcation has been established in many papers (Sharomi and
Podder 2007; Qesmi and Wu 2010; Feng and Castillo-Chavez 2000). It is worth stating that
bilinear incidence in ourmodel also can exhibit backward bifurcation (Hadeler andDriessche
1997; Wang and Wang 2012). This phenomenon has an important influence to control the
disease. The existence ofmultiple endemic equilibria indicates that the asymptotical behavior
of system (5–8) should depend on initial conditions. It is not enough for the eradication of the
disease if R0 < 1. Therefore, it is equally important to identify possible backward bifurcation.
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Fig. 1 Simulations of system (5–8). We choose several different initial conditions
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Fig. 2 Backward bifurcation of the endemic equilibria. The solid line and dashed line stand for stable equi-
librium and unstable equilibrium, respectively

3 Existence of Hopf bifurcation at the endemic equilibrium

When R0 > 1 and aβ3 �= bβ2, it is easy to derive that system (5–8) has a unique endemic
equilibrium Ẽ1(T̃1, T̃m1, T̃ ∗

1 , ṽ1), where

T̃1 = λ1

δ1 + β ′
1ṽ1

, T̃m1 = λ2

δ2 + β ′
2ṽ1

, T̃ ∗
1 = β1T̃1ṽ1 + β2T̃m1ṽ1

a
, ṽ1 = −q + √

q2 − 4pr

2p
.

Therefore when R0 > 1, we always have one endemic equilibrium E1(T1, Tm1, T ∗
1 , v1),

where E1 = Ē1 if the condition aβ3 = bβ2 is satisfied and E1 = Ẽ1 if the condition
aβ3 �= bβ2 is satisfied. The characteristic equation corresponding to E1 is given by

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (10)
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where

a1 = a1(β3) = δ1 + β ′
1v1 + δ2 + β ′

2v1 + a + c + β3Tm1,

a2 = a2(β3) = (δ1 + β ′
1v1)(δ2 + β ′

2v1) + (δ1 + β ′
1v1

+ δ2 + β ′
2v1)(a + c + β3Tm1) − β ′

2β3Tm1v1,

a3 = a3(β3) = (δ1 + β ′
1v1)(δ2 + β ′

2v1)(a + c + β3Tm1) + bβ ′
2β2Tm1v1 + bβ ′

1T1β1v1

−β ′
2β3Tm1v1(a + δ1 + β ′

1v1),

a4 = a4(β3) = bβ ′
2β2Tm1v1(δ1 + β ′

1v1) + bβ ′
1β1T1v1(δ2 + β ′

2v1)

−β ′
2β3Tm1v1a(δ1 + β ′

1v1).

By the Routh–Hurwitz criterion, it follows that all eigenvalues of Eq. (10) have negative
real parts if and only if

a1 > 0, a4 > 0, a1a2 > a3, and a3(a1a2 − a3) > a21a4.

By simply calculating, we derive that a1 > 0, a2 > 0, and a1a2 > a3. Moreover, when
aβ3 = bβ2, we can obtain a4 > 0. So we derive the following proposition:

Proposition 3 When R0 > 1, the infected equilibrium E1 of system (5–8) is locally asymp-
totically stable if

a4 > 0, a3(a1a2 − a3) > a21a4. (11)

In the following, we discuss the conditions for which E1 enters into Hopf bifurcation.

Theorem 2 Suppose a3 > 0, a4 > 0 and R0 > 1. If there exists a critical value β30 > 0
such that φ(β30) = 0 and φ′(β30) �= 0, Hopf bifurcation occurs at E1 of system (5–8) when
β3 passes through β30. That is, periodic solutions bifurcate from E1.

Proof Suppose a3 > 0 and a4 > 0. Define the continuously differentiable function of β3:

φ(β3) = a3(β3)(a1(β3)a2(β3) − a3(β3)) − a21(β3)a4(β3).

If there exists φ(β30) = 0, Eq. (10) becomes

(λ2 + a3(β30)

a1(β30)
)(λ2 + a1(β30)λ + a1(β30)a4(β30)

a3(β30)
) = 0. (12)

It is easy to show that (12) has a pair of purely imaginary roots and either another pair
of complex roots with negative real parts or two negative real roots. Since φ(β3) is one
continuous function of all its roots in β3, we can derive that Eq. (10) has a pair of complex
conjugate roots in a neighborhood of β30, denoted by λ1 and λ2. They are conjugated purely
imaginary roots at β3 = β30. The transversality condition (Roy et al. 2017; Greenhalgh 1997;
Liu 1994)

d(Reλ1(β3))

dβ3
|β30 �= 0

is equivalent to

φ′(β30) = d(φ(β3))

dβ3
|β30 �= 0.

This completes the proof.

123



Global properties and bifurcation analysis… 3463

0 500 1000 1500
100

200

300

400

500

600

day

 T

0 500 1000 1500
0

50

100

150

200

day

 T
m

0 500 1000 1500
0

200

400

600

800

1000

day

 T
*

0 500 1000 1500
0

2000

4000

6000

8000

day

v

Fig. 3 Simulations of system (5–8). We choose β3 = 0.05 < β30. E1 is locally asymptotically stable
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Fig. 4 Simulations of system (5–8). We choose β3 = 0.058 > β30. The bifurcating periodic solutions from
E1 occur

We present some numerical results of system (5–8) for different values of β3 and use the
parameter values as the same as in Sect. 2 except for δ2 = 0.008 and β3. Let initial values be
(500, 200, 300, 100). We obtain β30 ≈ 0.057 from φ(β3) = 0. Numerical simulations show
that E1 is locally asymptotically stable if β3 = 0.05 < β30 (see Fig. 3). When β3 = β30,
E1 loses its stability and Hopf bifurcation occurs. When β3 = 0.058 > β30, E1 becomes
unstable and there are periodic solutions surrounding E1 (see Fig. 4).
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4 Global stability of two equilibria

Theorem 3 If R0 ≤ 1 and bβ2 ≥ aβ3, the disease-free equilibrium E0 of system (5–8) is
globally asymptotically stable in P.

Proof Define a Lyapunov function

L1 = β1

β ′
1

(
T − T0 − T0 ln

T

T0

)
+ bβ2 − aβ3

bβ ′
2

(
Tm − Tm0 − Tm0 ln

Tm
Tm0

)
+ T ∗ + a

b
v.

Calculating the time derivative of L1 along the solution of system (5–8), we obtain

dL1

dt
= β1

β ′
1

(
λ1 − δ1T − β ′

1T v
) (

1 − T0
T

)

+bβ2 − aβ3

bβ ′
2

(
λ2 − δ2Tm − β ′

2Tmv
) (

1 − Tm0

Tm

)

+β1T v + β2Tmv − aT ∗ + aT ∗ − ac

b
v − aβ3

b
Tmv. (13)

Note that λ1 = δ1T0 and λ2 = δ2Tm0. It follows from (13) that

dL1

dt
= β1λ1

β ′
1

(
2 − T

T0
− T0

T

)

+bβ2 − aβ3

bβ ′
2

λ2

(
2 − Tm

Tm0
− Tm0

Tm

)
+ R0 − 1

δ1δ2b(acδ1δ2 + λ2δ1aβ3)
v.

Apparently, we can obtain 2 − T
T0

− T0
T ≤ 0 and 2 − Tm

Tm0
− Tm0

Tm
≤ 0. So we obtain

dL1
dt ≤ 0 if R0 ≤ 1. The largest compact invariant set in {(T, Tm, T ∗, v) ∈ P : dL1

dt = 0}
is the singleton {E0}. Using the Lasalle invariant principle, we derive that all solutions with
initial conditions in P converge to E0. We complete the proof.

From Theorem 3, we obtain that the virus can be cleared under some conditions. In
addition, we easily derive that system (5–8) does not exhibit backward bifurcation if bβ2 ≥
aβ3.

Theorem 4 If R0 > 1, bβ2 > aβ3 and bλ1β1β
′
2β3 ≤ β ′

1(bβ2 − aβ3)(cδ2 − λ2β3), the
endemic equilibrium E1 of system (5–8) is globally asymptotically stable in P.

Proof We consider a Lyapunov function

L2 = β1

β ′
1

(
T − T1 − T1 ln

T

T1

)
+ bβ2 − aβ3

bβ ′
2

(
Tm − Tm1 − Tm1 ln

Tm
Tm1

)

+
(
T ∗ − T ∗

1 − T ∗
1 ln

T ∗

T ∗
1

)
+ a

b

(
v − v1 − v1 ln

v

v1

)
.

Calculating the time derivative of L1 along the solution of system (5–8), we obtain

dL2

dt
= β1

β ′
1

(
λ1 − δ1T − β ′

1T v
) (

1 − T1
T

)
+ bβ2 − aβ3

bβ ′
2

(
λ2 − δ2Tm − β ′

2Tmv
) (

1 − Tm1

Tm

)

+ (
β1T v + β2Tmv − aT ∗) (

1 − T ∗
1

T ∗

)
+ a

b

(
bT ∗ − cv − β3Tmv

) (
1 − v1

v

)
.
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From system (5–8), we obtain that

λ1 = δ1T1 + β ′
1T1v1, λ2 = δ2Tm1 + β ′

2Tm1v1,

aT ∗
1 = β1T1v1 + β2Tm1v1, b(β1T1 + β2Tm1) = ac + aβ3Tm1.

Then we get

dL2

dt
= β1δ1T1

β ′
1

(
2 − T

T1
− T1

T

)
+

(
(bβ2 − aβ3) δ2Tm1

bβ ′
2

− aβ3Tm1v1

b

)(
2 − Tm

Tm1
− Tm1

Tm

)

+β1T1v1

(
3 − T1

T
− T ∗

1 T v

T ∗T1v1
− T ∗v1

T ∗
1 v

)
+ β2Tm1v1

(
3 − Tm1

T
− T ∗

1 T v

T ∗Tm1v1
− T ∗v1

T ∗
1 v

)
.

If bβ2 > aβ3 and bλ1β1β
′
2β3 ≤ β ′

1(bβ2 − aβ3)(cδ2 − λ2β3), we can obtain

v1 <
bλ1β1β

′
2 + λ2β

′
1 (bβ2 − aβ3)

acβ ′
1β

′
2

<
(bβ2 − aβ3) δ2

aβ3β
′
2

.

Then, we have:

(bβ2 − aβ3) δ2

bβ ′
2

− aβ3v1

b
> 0.

Therefore, the endemic equilibrium E1 is globally asymptotically stable by the similar anal-
ysis in Theorem 3. Especially, we know E1 is globally asymptotically stable when β3 = 0.
The proof is completed.

5 Analysis of the delayed model

In this section, we consider one differential equation model with a time delay, which denotes
the time for the viruses from entry into CD4 T cells or macrophages to the production of new
viruses. The model is given as follows:

dT

dt
= λ1 − δ1T − β ′

1T v, (14)

dTm
dt

= λ2 − δ2Tm − β ′
2Tmv, (15)

dT ∗

dt
= β1T (t − τ)v(t − τ) + β2Tm(t − τ)v(t − τ) − aT ∗, (16)

dv

dt
= bT ∗ − cv − β3Tmv. (17)

The positive constant τ represents the length of the delay. All the other parameters are the
same as in system (5–8). The initial conditions are:

T (t) = ψ1(t) ≥ 0, Tm(t) = ψ2(t) ≥ 0, T ∗(0) = ψ3 ≥ 0, v(t) = ψ4(t) ≥ 0, t ∈ [−τ, 0],
where ψ3 is a given constant, and ψ1, ψ2, ψ4 ∈ C([−τ, 0], R+) with R+ = [0,∞).

Being similar to the analysis of system (5–8), we find system (14–17) always
has one disease-free equilibrium E0(T0, Tm0, 0, 0) and a unique positive equilibrium
E1(T1, Tm1, T ∗

1 , v1) if R0 > 1, where T0, Tm0, T1, Tm1, T ∗
1 , and v1 are the same as in Sect. 2.
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Let Ē(T̄ , T̄m, T̄ ∗, v̄) be any equilibrium of system (14–17). Denote X = (T, Tm, T ∗, v)T .

The linearized system in vector form is given as:

dX

dt
= A1X + A2X (t − τ),

where A1 and A2 are 4 × 4 matrices given by:

A1 =

⎛
⎜⎜⎝

−δ1 − β ′
1v̄ 0 0 −β ′

1T̄
0 −δ2 − β ′

2v̄ 0 −β ′
2T̄m

0 0 −a 0
0 −β3v̄ b −c − β3T̄m

⎞
⎟⎟⎠

and

A2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

β1v̄ β2v̄ 0 β1T̄ + β2T̄m
0 0 0 0

⎞
⎟⎟⎠ .

The characteristic equation for system (14–17) is given by:

det(λI − A1 − A2e
−λτ ) = 0.

Theorem 5 The disease-free equilibrium E0 of system (14–17) is locally asymptotically
stable for all τ ≥ 0 when R0 < 1, and is unstable when R0 > 1.

Proof For the disease-free equilibrium E0, the characteristic equation reduces to,

(λ + δ1) (λ + δ2)

(
λ2 +

(
a + c + β3

λ2

δ2

)
λ

+acδ1δ2 + λ2δ1aβ3

δ1δ2

(
1 − R0e

−λτ
)) = 0. (18)

When τ = 0, we know that E0 is locally asymptotically stable if R0 < 1 and is unstable
if R0 > 1 from former analysis. In the following, we discuss the case of τ �= 0. Equation
(18) has two negative solutions λ1 = −δ1 and λ2 = −δ2. The other eigenvalues of Eq. (18)
satisfy the following transcendental equation:

λ2 +
(
a + c + β3

λ2

δ2

)
λ + acδ1δ2 + λ2δ1aβ3

δ1δ2

(
1 − R0e

−λτ
) = 0. (19)

Denote,

F(λ) = λ2 +
(
a + c + β3

λ2

δ2

)
λ + acδ1δ2 + λ2δ1aβ3

δ1δ2

(
1 − R0e

−λτ
)
.

For the case of R0 > 1, we obtain F(0) < 0 and F(λ) → +∞ (λ → +∞). Thus, Eq. (19)
has at least one positive real root. So E0 is unstable. For the case of R0 < 1, we assume that
λ = iω, ω > 0. Substituting λ = iω into (19), we have:

−ω2 +
(
a + c + β3

λ2

δ2

)
iω + acδ1δ2 + λ2δ1aβ3

δ1δ2
− λ1bβ1δ2 + λ2δ1bβ2

δ1δ2
cos(ωτ)

+ i
λ1bβ1δ2 + λ2δ1bβ2

δ1δ2
sin(ωτ) = 0.
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We separate the real and imaginary parts and obtain,

−ω2 + acδ1δ2 + λ2δ1aβ3

δ1δ2
= λ1bβ1δ2 + λ2δ1bβ2

δ1δ2
cos(ωτ), (20)

(
a + c + β3

λ2

δ2

)
ω = −λ1bβ1δ2 + λ2δ1bβ2

δ1δ2
sin(ωτ). (21)

Adding the squared Eqs. (20) and (21), it follows that,

ω4+
(
a2+

(
c+β3

λ2

δ2

)2
)

ω2 +
(
acδ1δ2 + λ2δ1aβ3

δ1δ2

)2

−
(

λ1bβ1δ2 + λ2δ1bβ2

δ1δ2

)2

= 0.

(22)

If R0 < 1, Eq. (22) has no positive real roots and there is no iω(ω �= 0) satisfying
Eq. (18). Equation (18) has roots with positive real parts if and only if it has purely imaginary
roots by Rouché’s theorem (Culshaw and Ruan 2000). For all values of the delay τ ≥ 0, all
eigenvalues of Eq. (18) have negative real parts. This completes the proof.

Theorem 6 If R0 ≤ 1 and bβ2 ≥ aβ3, the disease-free equilibrium E0 of system (14–17) is
globally asymptotically stable for any time delay τ ≥ 0.

Proof Define a Lyapunov function L3 as follows:

L3 = β1

β ′
1

(
T − T0 − T0 ln

T

T0

)
+ bβ2 − aβ3

bβ ′
2

(
Tm − Tm0 − Tm0 ln

Tm
Tm0

)

+ T ∗ + a

b
v +U1(t),

where

U1(t) =
∫ t

t−τ

[β1T (s)v(s) + β2Tm(s)v(s)] ds.

We calculate the time derivative of U1(t),

dU1(t)

dt
= β1T (t)v(t) + β2Tm(t)v(t) − [β1T (t − τ)v(t − τ) + β2Tm(t − τ)v(t − τ)] .

Calculating the time derivative of L1 along the solution of system (14-17), we obtain

dL3

dt
= β1

β ′
1

(
λ1 − δ1T − β ′

1T v
) (

1 − T0
T

)
+bβ2 − aβ3

bβ ′
2

(
λ2 − δ2Tm − β ′

2Tmv
) (

1 − Tm0

Tm

)

+β1T (t − τ)v(t − τ) + β2Tm(t − τ)v(t − τ) − aT ∗ + aT ∗ − ac

b
v − aβ3

b
Tmv

+β1T (t)v(t) + β2Tm(t)v(t) − [β1T (t − τ)v(t − τ) + β2Tm(t − τ)v(t − τ)] .

Note that λ1 = δ1T0 and λ2 = δ2Tm0. Thus, we obtain

dL3

dt
= β1λ1

β ′
1

(
2 − T

T0
− T0

T

)

+bβ2 − aβ3

bβ ′
2

λ2

(
2 − Tm

Tm0
− Tm0

Tm

)
+ R0 − 1

δ1δ2b (acδ1δ2 + λ2δ1aβ3)
v.

So, it follows that dL3
dt ≤ 0 if R0 ≤ 1 and bβ2 ≥ aβ3. It is clear that E0 is stable.

Furthermore, the largest compact invariant set is the singleton {E0}. Accordingly, it follows
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from LaSalle invariance principle that E0 is globally asymptotically stable. We complete the
proof.

The characteristic equation for the linearized system around the infected equilibrium E1

is given by

λ4 + m1λ
3 + m2λ

2 + m3λ + m4 + (m5λ
2 + m6λ + m7)e

−λτ = 0, (23)

where

m1 = δ1 + β ′
1v1 + δ2 + β ′

2v1 + a + c + β3Tm1,

m2 = (
δ1 + β ′

1v1
) (

δ2 + β ′
2v1

) + (
δ1 + β ′

1v1 + δ2 + β ′
2v1

)
(a + c + β3Tm1)

+ a (c + β3Tm1) − β ′
2β3Tm1v1,

m3 = (
δ1 + β ′

1v1
) (

δ2 + β ′
2v1

)
(a + c + β3Tm1) + (

δ1 + β ′
1v1 + δ2 + β ′

2v1
)
a (c + β3Tm1)

−β ′
2β3Tm1v1

(
a + δ1 + β ′

1v1
)
,

m4 = (
δ1 + β ′

1v1
) (

δ2 + β ′
2v1

)
a (c + β3Tm1) − β ′

2β3Tm1v1a
(
δ1 + β ′

1v1
)
,

m5 = −b (β1T1 + β2Tm1) = −a (c + β3Tm1) ,

m6 = bβ ′
2Tm1β2v1 + bβ ′

1T1β1v1 − a (c + β3Tm1)
(
δ1 + β ′

1v1 + δ2 + β ′
2v1

)
,

m7 = bβ ′
2Tm1β2v1

(
δ1 + β ′

1v1
) + bβ ′

1β1T1v1
(
δ2 + β ′

2v1
)

−a (c + β3Tm1)
(
δ1 + β ′

1v1
) (

δ2 + β ′
2v1

)
.

Substituting λ = iω with ω > 0 into (23) and separating the real and imaginary parts, we
yield

ω4 − m2ω
2 + m4 = (m5ω

2 − m7)cosωτ − m6ωsinωτ,

−m1ω
3 + m3ω = (m7 − m5ω

2)sinωτ − m6ωcosωτ.

Adding up the squares of above both equations, we obtain

ω8 + p1ω
6 + p2ω

4 + p3ω
2 + p4 = 0, (24)

where

p1 = m2
1 − 2m2, p2 = m2

2 + 2m4 − 2m1m3 − m2
5,

p3 = m2
3 + 2m5m7 − 2m2m4 − m2

6, p4 = m2
4 − m2

7.

We put ω2 = υ into Eq. (24) and obtain a fourth degree polynomial

υ4 + p1υ
3 + p2υ

2 + p3υ + p4 = 0. (25)

By directly calculating, it is easy to show that p1 > 0 and p4 = (m4−m7)(m4+m7) > 0
if a4 > 0. Furthermore, we also obtain

p2 >
(
δ1 + β ′

1v1
)2 (

δ2 + β ′
2v1

)2 + a2
((

δ1 + β ′
1v1

)2 + (
δ2 + β ′

2v1
)2)

> 0,

p3 = (
δ1 + β ′

1v1
)2 [

β ′
2β3Tm1v1 − (

δ2 + β ′
2v1

)
(c + β3Tm1)

]2 + a2
(
β ′
2β3Tm1v1

)2
+2a2β ′

2β3Tm1v1
(
δ1 + β ′

1v1
)2 + a2

(
δ1 + β ′

1v1
)2 (

δ2 + β ′
2v1

)2
+ 2a (c + β3Tm1)

(
bβ2Tm1β

′
2v1

(
δ2 + β ′

2v1
) + bβ1T1β

′
1v1

(
δ1 + β ′

1v1
))

− 2a2
(
β ′
2β3Tm1v1

) (
δ2 + β ′

2v1
)
(c + β3Tm1) − (

bβ2Tm1β
′
2v1 + bβ1T1β

′
1v1

)2
.

123



Global properties and bifurcation analysis… 3469

If p3 ≥ 0, we know that Eq. (25) has no positive root. The real parts of all eigenvalues of
Eq. (23) remain negative for all values of the delay τ > 0. Considering the special case of
β3 = 0, we can obtain

p3 ≥ (δ1 + β ′
1v1)

2(δ2 + β ′
2v1)

2(a2 + c2) + (bβ ′
2Tm1β2v1 − bβ ′

1T2β1v1)
2 > 0.

Summarizing the above analysis, we have the following theorem.

Theorem 7 Suppose that the conditions in (11), R0 > 1 and p3 ≥ 0 hold, the infected
equilibrium E1 of system (14–17) is locally asymptotically stable for all τ ≥ 0.

Although we introduce the delay, E1 is also locally asymptotically stable under some
conditions. Under the circumstances, system (14–17) does not undergo Hopf bifurcations.

Theorem 8 If R0 > 1, bβ2 > aβ3 and bλ1β1β
′
2β3 ≤ β ′

1(bβ2 − aβ3)(cδ2 − λ2β3), the
endemic equilibrium E1 of system (14–17) is globally asymptotically stable for all τ ≥ 0.

Proof We consider a Lyapunov function

L4 = β1

β ′
1

(
T − T1 − T1 ln

T

T1

)
+ bβ2 − aβ3

bβ ′
2

(
Tm − Tm1 − Tm1 ln

Tm
Tm1

)

+
(
T ∗ − T ∗

1 − T ∗
1 ln

T ∗

T ∗
1

)

+a

b

(
v − v1 − v1 ln

v

v1

)
+ β1T1v1U2 + β2Tm1v1U3,

where

U2 =
∫ t

t−τ

[
T (s)v(s)

T1v1
− 1 − ln

T (s)v(s)

T1v1

]
ds,

U3 =
∫ t

t−τ

[
Tm(s)v(s)

Tm1v1
− 1 − ln

Tm(s)v(s)

Tm1v1

]
ds.

Calculating the time derivative of L4 along the solution of system (14–17), we obtain

dL4

dt
= β1

β ′
1

(
λ1 − δ1T−β ′

1T v
) (

1 − T1
T

)
+bβ2 − aβ3

bβ ′
2

(
λ2 − δ2Tm − β ′

2Tmv
) (

1−Tm1

Tm

)

+ (
β1T (t − τ) v (t − τ) + β2Tm (t − τ) v (t − τ) − aT ∗) (

1 − T ∗
1

T ∗

)

+a

b

(
bT ∗ − cv − β3Tmv

) (
1 − v1

v

)
+ β1T1v1

dU2 (t)

dt
+ β2Tm1v1

dU3 (t)

dt
.

We calculate the time derivative of U2(t) and U3(t),

dU2(t)

dt
= T (t)v(t)

T1v1
− T (t − τ)v(t − τ)

T1v1
+ ln

T (t − τ)v(t − τ)

T (t)v(t)
,

dU3(t)

dt
= Tm(t)v(t)

Tmv1
− Tm(t − τ)v(t − τ)

Tm1v1
+ ln

Tm1(t − τ)v(t − τ)

Tm1(t)v(t)
.

From system (14–17), we obtain that

λ1 = δ1T1 + β ′
1T1v1, λ2 = δ2Tm1 + β ′

2Tm1v1,

aT ∗
1 = β1T1v1 + β2Tm1v1, b(β1T1 + β2Tm1) = ac + aβ3Tm1.
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Note that

ln
T (t − τ)v(t − τ)

T (t)v(t)
= ln

T1
T (t)

+ ln
T ∗
1 T (t − τ)v(t − τ)

T ∗(t)T1v1
+ ln

T ∗(t)v1
T ∗
1 v(t)

,

ln
Tm(t − τ)v(t − τ)

Tm(t)v(t)
= ln

Tm1

Tm(t)
+ ln

T ∗
1 Tm(t − τ)v(t − τ)

T ∗(t)Tm1v1
+ ln

T ∗(t)v1
T ∗
1 v(t)

.

Then we yield

dL4

dt
= β1δ1T1

β ′
1

(
2 − T

T1
− T1

T

)

+
(

(bβ2 − aβ3) δ2Tm1

bβ ′
2

− aβ3Tm1v1

b

) (
2 − Tm

Tm1
− Tm1

Tm

)

+β1T1v1

(
1 − T1

T
+ ln

T1
T

)
+ β1T1v1

(
1 − T ∗

1 T (t − τ) v (t − τ)

T ∗ (t) T1v1

+ ln
T ∗
1 T (t − τ) v (t − τ)

T ∗ (t) T1v1

)

+β1T1v1

(
1 − T ∗ (t) v1

T ∗
1 v (t)

+ ln
T ∗ (t) v1

T ∗
1 v (t)

)
+ β2Tm1v1

(
1 − Tm1

Tm (t)
+ ln

Tm1

Tm (t)

)

+β2Tm1v1

(
1 − T ∗

1 Tm (t − τ) v (t − τ)

T ∗ (t) Tm1v1
+ ln

T ∗
1 Tm (t − τ) v (t − τ)

T ∗ (t) Tm1v1

)

+β2Tm1v1

(
1 − T ∗ (t) v1

T ∗
1 v (t)

+ ln
T ∗ (t) v1

T ∗
1 v (t)

)
.

It is known that the function f (x) = 1 − x + lnx is always non-positive for x > 0, and
f (x) = 0 if and only if x = 1. Therefore, E1 is globally asymptotically stable by similar
analysis as in Theorem 3. Especially, we know E1 is global asymptotically stable when
β3 = 0. The proof is completed.

We use the parameter values in Sect. 2 except for β3 = 0.01. The condition (11),
p2 > 0, and p3 > 0 are all satisfied. We also get R0 = 3.1034 > 1. It is shown that
E1(164.3169, 40.7940, 319.2487, 1.3586 × 103) is locally asymptotically stable for τ = 1
and τ = 10 via simulating results (see Fig. 5). Time delay τ does not change the stabilities
of the equilibrium E1.

6 Discussions and conclusions

In the present paper,wepropose amathematicalmodel,whichdescribe the interactions ofHIV
virus and two target cells. The model can undergo the phenomenon of backward bifurcation
if R0 < 1. Meanwhile, we find that Hopf bifurcation occurs under some conditions. By using
Lyapunov functions, we obtain sufficient conditions for the global asymptotical stabilities
of the equilibria. Especially, the two equilibria are globally asymptotically stable in case of
β3 = 0. We cannot ignore the fact that macrophages really influence dynamics behavior of
HIV virus from our analysis. What is more, we establish an extended model, and derive that
the local asymptotical stabilities of the uninfected and infected equilibria are independent of
the size of the delay if β3 = 0 by analyzing the transcendental characteristic equations. We
also derive that the two equilibria are globally asymptotically stable for the delayed model
under some conditions.
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Fig. 5 Simulation of system (14–17).We choose the initial condition (200, 100, 100, 500), τ = 1 and τ = 10.
E1 is locally asymptotically stable

Finally, some interesting questions deserve further investigation about our model. One
may consider the non-bilinear incidence rate for system (5–8). Moreover, we can study the
influence of distributed delays not just discrete delays on system (14–17).
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