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Abstract This paper presents a prey–predator harvesting model with time delay for bifur-
cation analysis. We consider the parameters of the proposed model with imprecise data as
form of interval in nature, due to the lack of precise numerical information of the biological
parameters such as prey population growth rate and predator population decay rate. The inter-
action between prey and predator is assumed to be governed by a Holling type II functional
response and discrete type gestation delay of the predator for consumption of the prey under
impreciseness of the biological parameters. Parametric functional form of interval number
with two parameters is introduced. This study reveals that not only delay and harvesting
effort play a significant role on the stability on the system but also interval parameters play
a crucial role on the stability of the system. Computer simulations of numerical examples
are given to explain our proposed imprecise model. We also address critically the biological
implications of our analytical findings with proper numerical example.
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1 Introduction

There has been a great interest during the past few decades in dynamical characteristics of
populationmodels (Kot 2001;Murray 1993) and among thesemodels, predator–prey systems
play an important role in population dynamics. Also over the past few decades, mathematics
plays an important role to understand biological phenomena. Most of the biological phenom-
ena such as prey–predator harvesting model (Hoekstra and van den Bergh 2005; Palma and
Olivares 2012; Gupta and Chandra 2013; Pal et al. 2012; Duncan et al. 2011; Anita et al.
2009), prey–predator refuge model (Chen et al. 2012, 2013;Wang et al. 2009; Rebaza 2012),
prey–predator disease model (Das et al. 2009; Bairagi et al. 2009; Hethcote et al. 2004; Pal
and Samanta 2010), etc. can be represented by the set of nonlinear differential equations. But
in most of the models on ecosystem, the population of one species does not respond instantly
to the interactions with other species. These types of model can be handled by incorporating
time lag in the differential equations of the models. In population dynamics, a time delay is
introduced when the rate of change of population not only depends on the function of the
present population, but also depends on the past population. Therefore, time delay can be
included in the mathematical population model due to various factors such as maturation
time, capturing time and other reasons. Moreover, the existence of time delays is frequently a
source of instability in some ways. To make a more realistic biological mathematical model,
many researchers (Gopalsamy 1983; Kar 2003; Yongzhen et al. 2011; Qu and Wei 2007;
Shao 2010; Jiao et al. 2009) introduced time delay in their respective model. In reality, time
delays occur in almost every biological situation (MacDonald 1989) and assumed to be one
of the reasons of regular fluctuations in population density. Misra and Dubey (2010) pro-
posed a prey–predator model with discrete delay and ratio-dependent functional response.
Zhang (2012) presented prey–predator delay model using a modified Holling–Tanner func-
tional response with delay as the bifurcation parameter. Bandyopadhyay and Banerjee (2006)
introduced a stage-structured predator–prey model with gestation as the delay and switching
of stability due to variation of delay. On the other hand, two species models with differ-
ent functional responses are extensively studied in ecological literature. The Lotka–Volterra
functional response (Holling type I functional response) (Kot 2001; Murray 1993) is of the
form p(x) = ex and the Holling type II functional response (Kot 2001; Murray 1993) is of
the form p(x) = ex

( f +x) , where x is the population density of prey, e is the maximum rate
of predation, i.e., the maximum number of prey that can be eaten by a predator in unit a
time, f is the half-saturation constant, i.e., the number of prey necessary to achieve one-half
of the maximum rate e. With the help of such functional responses, many researchers have
concentrated their study on the stability of the predator–prey systems.

So far most of the above researchers considered their models in a precise environment
but in reality, data cannot be recorded or collected precisely due to several reasons. The
impreciseness of the bio-mathematical model is caused by environmental fluctuations or
imprecise biological phenomenon. Therefore, there are many cases where the parameters of
bio-mathematicalmodel cannot be presented in a precisemanner. So,mathematicalmodelling
of the biological phenomenon through the deterministic approach is subject to inaccuracies
due to the nature of the state variables involved, by parameters as coefficients of the model
and by the initial conditions. There are few approaches such as fuzzy approach, stochastic
approach and fuzzy stochastic approach to handle these types of imprecise models. Bas-
sanezi et al. (2000) put a foundation stone to apply fuzzy differential equations in population
dynamics to study the stability of fuzzy dynamical systems. After that, Barros et al. (2000),
Peixoto et al. (2008), Tuyako et al. (2009), Pal et al. (2013a) and few more researchers
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used the concepts of fuzziness in biomathematical model. Again stochastic prey–predator
model was enormously studied by Abundo (1991), Rudnicki (2003), Liu and Wang (2012),
Vasilova (2013), andAguirre et al. (2013).However, there are somedifficulties in handling the
imprecise biological parameters by fuzzy approach as well as stochastic approach. In fuzzy
approach, the imprecise parameters are replaced by fuzzy sets with knownmembership func-
tion or by fuzzy numbers. But it is very difficult to construct a suitable membership function
for the imprecise biological parameters. In stochastic approach, the imprecise parameters
are assumed to be a random variable with known probability distributions. But to identify
the suitable probability distribution for a stochastic approach is a very tough one. Keeping
in mind such difficulties Pal et al. (2013b) first introduced the concept of interval number
to present imprecise prey–predator model. They used parametric functional form of inter-
val number with one parameter to illustrate different aspects of the model. After that many
researchers (Zhang andZhao 2014; Pal et al. 2014; Pal andMahapatra 2014)were attracted by
this new approach to use parametric functional form with single parameter in their respective
models. However, according to the information available, until now no one has considered
prey–predator system with interval biological parameter using parametric functional form
with two parameters to illustrate dynamical behaviour of the model.

In this paper, we present an imprecise prey–predator harvesting model with discrete type
gestation delay of predators, where the prey-specific growth rate, predator decay rate in
the absence of prey species are in interval in nature. We consider the intrinsic growth rate
of the prey species and decay rate of predator species (in the absence of prey species), as
interval in nature. We transform the imprecise prey–predator delay model to a parametric
prey–predator delay model (PPPDM) with two parameters (p and q ) using the functional
form of the interval number to make the model more realistic. The dynamical behaviour of
the parametric model is investigated for different values of the parameters p ∈ [0, 1] and
q ∈ [0, 1]. We study the combined effects of harvesting and delay as well as impreciseness
on the dynamics of the model. Our aim was to obtain some interesting and new results due to
the presence of impreciseness in the model. The construction of our imprecise model system
is sketched in Sect. 3. In Sect. 4, positivity, permanence and persistence of the solutions and
stability of different types of equilibrium points are discussed. The analysis of the delayed
model is described in Sect. 5. This analysis shows that there is a critical value of delay
(τ+

0 ) based on the parameters p and q below which the system is stable and above which
the system becomes unstable at the interior equilibrium P3(x∗, y∗). The system undergoes
Hopf-bifurcation around P3(x∗, y∗) when the value of the delay τ = τ+

0 . In Sect. 6 we have
estimated the length of delay to preserve the stability around P3(x∗, y∗). All our analytical
results are numerically verified and presented graphically in Sect. 7. Finally, Sect. 8 contains
the general discussions of the paper and biological implications of our mathematical findings.

2 Prerequisite mathematics

In this section, we discuss some preliminarymathematicswhichwe use to study the imprecise
prey–predator delay model.

Definition 1 (Interval number) An interval number B is represented by closed interval
[bl , bu] and defined by B = [bl , bu] = {y : bl ≤ y ≤ bu, y ∈ R}, where R is the set
of real numbers and bl , bu are the left and right limits of the interval number, respectively.
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Now we define interval-valued function (Pal et al. 2013b, 2014; Zhang and Zhao 2014;
Pal and Mahapatra 2014; Mahapatra and Mandal 2012) which will be used to present an
interval number.

Definition 2 (Interval-valued function) Let c, d > 0 and consider the interval is of the form
[c, d]; the interval-valued function of the interval is represented as h(p) = c1−pd p for
p ∈ [0, 1].

Nowwe present some arithmetic operations on interval-valued functions. Let A = [al , au]
and B = [bl , bu] be two interval numbers so that al , bl > 0.

Addition: A + B = [al , au] + [bl , bu] = [al + bl , au + bu]. The interval-valued function
for the interval A + B is given by h(p) = a1−p

L a p
U where aL = al + bl and aU = au + bu .

Subtraction: A − B = [al , au] − [bl , bu] = [al − bu, au − bl ]. provided al − bu > 0.
The interval-valued function for the interval A − B is given by h(p) = b1−p

L bp
U where

bL = al − bu and bU = au − bl .

Scalar multiplication: βA = β[al , au] =
{ [βal , βau], if β ≥ 0
[βau, βal ] , if β < 0

, provided al > 0. The

interval-valued function interval βA is given by h(p) = c1−p
L cpU if β ≥ 0 and h(p) =

−d1−p
U d p

L if β < 0, where cL = βal , cU = βau , dL = |β|al and dU = |β|au .

3 Mathematical form of prey–predator model with time delay

In this section, we present mathematical form of a prey–predator harvesting model with a
time delay due to gestation. First, we present the concept behind the construction of the
model which will specify its biological significance of it. We assume that in the absence
of predators, the prey population grows according to a logistic low of growth with intrinsic
growth rate r and carrying capacity k. Further, it is inherently assumed that the metabolic
energy a predator obtains through its food is used for growth, which ultimately enhances the
predator population. The predator population consumes the prey population at a constant rate
α but the reproduction of predators after predating the prey population is not instantaneous.
It will be incorporative by some time lag required for gestation of predators. Suppose that
the time interval between the moments when an individual prey is killed and the correspond-
ing biomass is added to predator population is considered as time delay τ . Here, we also
assume that both the prey and predator species are continuously harvested by the harvest-
ing agencies. Therefore, the mathematical form of our proposed prey–predator model with
Michaelis–Menten–Holling type functional response, delay in predator response function
and subject to harvesting efforts E1 and E2 of prey and predator species, respectively,
is as follows:

dx

dt
= r x

(
1 − x

k

)
− αxy

m + x
− q1E1x

dy

dt
= −δy + βx(t − τ)y

m + x(t − τ)
− q2E2y (1)

with initial conditions

x(θ) = φ1(θ), y(θ) = φ2(θ), such that φi (θ) ≥ 0 (i = 1, 2), ∀ θ ∈ [−τ , 0],
where φi (θ) ≥ 0 (i = 1, 2) are non-negative continuous functions on θ ∈ [−τ , 0]. For a
biological meaning, we further assume that φi (θ) > 0 (i = 1, 2).
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Here x(t) and y(t) stand for prey and predator density, respectively, at time t . Also r ,
δ, k, α, m, β, q1 and q2 are positive constants that stand for prey intrinsic growth rate,
predator death rate, carrying capacity, capturing rate, half-saturation constant, conversion
rate, catchability coefficient of prey and catchability coefficient of predator, respectively.
τ ≥ 0 is a constant representing the delay that prey species takes τ unit of time to become
mature. Also, the conversion of prey biomass to predator biomass takes τ unit of time.
Our proposed mathematical model fits well in fishery industry. The real-life example of our
proposed model is Antarctic Krill–Whale community where Krill is the main resource of
food for whales and the Antarctic Krill is being increasingly harvested. On the contrary,
the moratorium imposed by the International Whaling Commission (IWC) on killing of
Whales continues. Large catches from the lower trophic level (Krill) make a serious impact
on lower trophic level (Krill) and higher trophic level (Whale). Therefore, a harvesting plan
is recommended to keep the ecological balance. Also, the conversion of Krill biomass to
Whale biomass is not instantaneous and eventually takes some time. This required time is
known as discrete time delay or discrete time lag. Again we are completely unaware of the
nature of biological phenomenon of both species; these are based on survey data so they are
not precise in nature. Therefore, the imprecise model is more powerful than the precise one
to present bio-mathematical model.

3.1 Imprecise prey–predator delay model

All the biological coefficients of the prey–predatormodel are positive in nature. Consequently
in model (1), all the biological parameters are considered positive and precise. But in reality,
they are not always precise due to lack of proper information or the data of our ecosystem.
Therefore, there are many cases in which the biological parameters may not be presented in a
precise manner. Intuitively, if any of the parameters is imprecise then the model presented in
(1) becomes an imprecise one. Furthermore, when right-hand side of the model becomes an
interval number rather than a single value, then there does not exist so straightforward rule
to convert the model to the standard form like model (1). So, for an imprecise parameter, we
present our proposed model with an interval parameter.

Let r̂ and δ̂ be the interval counterparts of r (>0) intrinsic growth rate of the prey species
and δ (>0) predator death rate, respectively; then the imprecise prey–predator delay model
with prey harvesting effort E is in the following form:

dx

dt
= r̂ x

(
1 − x

k

)
− αxy

m + x
− q1E1x

dy

dt
= −̂δy + βx(t − τ)y

m + x(t − τ)
− q2E2y, (2)

where r̂ ∈ [rl , ru], δ̂ ∈ [δl , δu]. Also rl > 0 and δl > 0 for all time t .
The delay model (2) can be written in parametric form with two parameters as follows:

dx(t;p)
dt = r1−p

l r pu x
(
1 − x

k

)− αxy
m+x − q1E1x

dy(t;q)
dt = −δ

1−q
u δ

q
l y + βx(t−τ)y

m+x(t−τ )
− q2E2y

for p ∈ [0, 1] and q ∈ [0, 1] (3)

with initial conditions

x(θ; p) = φ1(θ), y(θ; q) = φ2(θ), such that φi (θ) > 0 (i = 1, 2),

for all θ ∈ [−τ , 0] (4)
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The following Lemma gives the concept that the parametric form of model (2) is possible
with two different parameters p and q is possible when r̂ and δ̂ are interval numbers.

Lemma 1 The following differential equation with interval-valued coefficient

dx

dt
= r̂0x

(
1 − x

k

)
− αxy

m + x
− q1E1x

dy

dt
= −̂δ0y + βx(t − τ)y

m + x(t − τ)
− q2E2y,

(5)

where r̂0 ∈ [rl , ru] and δ̂0 ∈ [δl , δu] with rl , δl > 0 given has the corresponding interval-
valued function coefficients form representation with two different parameters p and q by
the following differential equation:

dx(t;p)
dt = r1−p

l r pu x
(
1 − x

k

)− αxy
m+x − q1E1x

dy(t;q)
dt = −δ

1−q
u δ

q
l y + βx(t−τ )y

m+x(t−τ )
− q2E2y

for p ∈ [0, 1] and q ∈ [0, 1]

Proof The differential equation (5) can be written as

dx

dt
= [rl , ru]x

(
1 − x

k

)
− αxy

m + x
− q1E1x

dy

dt
= −[δl , δu]y + βx(t − τ)y

m + x(t − τ)
− q2E2y

(6)

Let r1 ∈ [rl , ru] and δ1 ∈ [δl , δu], respectively. Following the interval arithmetic operations
and properties equation (6) reduce to

dx

dt
= r1x

(
1 − x

k

)
− αxy

m + x
− q1E1x

dy

dt
= −δ1y + βx(t − τ)y

m + x(t − τ)
− q2E2y

(7)

For fixed n and m, let us consider interval-valued functions hn(p) = a1−p
n bp

n for p ∈ [0, 1]
and hm(q) = a1−q

m bq
m for q ∈ [0, 1] for the intervals βn ∈ [an, bn] and βm ∈ [am, bm]. Since

hn(p) and hm(q) are strictly increasing and continuous functions, the Eq. (7) reduces to

dx

dt
= r ′

1x
(
1 − x

k

)
− αxy

m + x
− q1E1x

dy

dt
= −δ′

1y + βx(t − τ)y

m + x(t − τ)
− q2E2, y,

where r ′
1 ∈ r1−p

l r pu , δ′
1 ∈ δ

1−q
u δ

q
l , p ∈ [0, 1] and q ∈ [0, 1]. Therefore, the parametric form

of the differential equation (5) with two different parameters p and q is given by

dx(t;p)
dt = r1−p

l r pu x
(
1 − x

k

)− αxy
m+x − q1E1x

dy(t;q)
dt = −δ

1−q
u δ

q
l y + βx(t−τ)y

m+x(t−τ)
− q2E2y

for p ∈ [0, 1] and q ∈ [0, 1]

�
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4 Dynamical behaviour of the proposed delay prey–predator model

System (3) has three non-negative equilibria, namely P1(0, 0), P2(k, 0) and P3(x∗, y∗) for
all p ∈ [0, 1] and q ∈ [0, 1], where x∗ and y∗ are the solution of the equations

r1−p
l r pu

(
1 − x

k

)− αy
m+x − q1E1 = 0

−δ
1−q
u δ

q
l + βx

m+x − q2E2 = 0

}
(8)

Solving (8) we get x∗ =
(
δ
1−q
u δ

q
l +q2E2

)
m

β−δ
1−q
u δ

q
l −q2E2

and y∗ = βm

α
(
β−δ

1−q
u δ

q
l −q2E2

) [r1−p
l r pu − q1E1

−
(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]
for all p ∈ [0, 1] and q ∈ [0, 1]. The nontrivial equilibrium point P3

(x∗, y∗) exists only if (i) E2 < 1
q2

(
β−δ

1−q
u δ

q
l

)
and (ii) E1 <

r1−p
l r pu
q1

[
1 −

(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]
.

From y∗, we observe that as the harvesting effort E1 of the prey species increases, y∗ grad-
ually decreases. This situation is natural because predator species suffers for adequate food
as the harvesting rate of the prey species increases which causes a slump in predator survival
rate.

4.1 Stability analysis of the model

Stability of the equilibrium points is discussed in two cases: first we consider delay τ = 0 and
in the second case we consider delay τ �= 0. The characteristic equation about an arbitrary
equilibrium point (x∗, y∗) of (3) is given by

�(λ, τ) = |A + Be−λτ − λI | = 0, (9)

where A = (ai j )2×2, a11 = αx∗y∗
(m+x∗)2 − r1−p

l r pu x∗
k , a12 = − αx∗

m+x∗ , a21 = 0, a22 = 0,

B = (bi j )2×2, b11 = 0, b12 = 0, b21 = βmy∗
(m+x∗)2 and b22 = 0. After some algebraic

calculation, the characteristic equation ( 9) reduces to

�(λ, τ) = λ2 + a1λ + a2e
−λτ = 0, (10)

where a1 = −
(

αx∗y∗
(m+x∗)2 − r1−p

l r pu x∗
k

)
and a2 = αβmx∗y∗

(m+x∗)3 .

5 Analysis of the prey–predator model without time delay

In this section, we discuss the existence and uniqueness solution of our proposed
prey–predator system (3) in the absence of delay with the given initial condition. We present
persistence and permanence, which play an important role to describe long-term behaviour
of the system.

5.1 Positivity and boundedness

Let R+ denote the set of all non-negative real numbers and R
n+ = {x ∈ R

n : x =
(x1, x2, . . . xn), where xi ∈ R+,∀i = 1, 2, . . . n}. If we denote the function on the right-
hand side of system (3) in the absence of delay, by f = ( f1, f2) clearly f ∈ C1(R2+).
Hence, f : R

2+ → R
2 is locally lipschitz on R

2+ = {(x, y) : x > 0, y > 0}. Thus the
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fundamental theorem of existence and uniqueness assures existence and uniqueness of solu-
tion of system (3) in the absence of delay with the given initial condition. The state space of
aforesaid system is the non-negative cone, R2+ = {(x, y) : x > 0, y > 0}.
Theorem 1 Every solution of system (3) in the absence of delay with initial conditions
x(0; p), y(0; q) > 0 exists in the interval [0,∞) and x(t; p), y(t; q) > 0 for all t ≥ 0,
p ∈ [0, 1] and q ∈ [0, 1].
Proof Since the right-hand side of system (3) in the absence of delay (i.e., τ = 0) is com-
pletely continuous and locally Lipschitzian on C1, the solution (x(t; p), y(t; q)) of system
(3) in the absence of delay with given initial condition exists and is unique on [0, ξ), where
0 ≤ ξ < +∞. From system (3) with τ = 0 and given initial condition, we have

x(t; p) = x(0; p) exp
[∫ t

0

{
r1−p
l r pu

(
1 − x(s; p)

k

)
− αy(s; q)

m + x(s; p) − q1E1

}
ds

]
> 0

y(t; q) = y(0; q) exp

[∫ t

0

{
βx(s; p)

m + x(s; p) − δ
1−q
u δ

q
l − q2E2

}
ds

]
> 0,

which completes the proof. �

To prove the boundedness of system (3) in the absence of delay, we need to recall the
following result, whose proof can be found in Brikhoff and Rota (1982) and Abbas et al.
(2010)):

Lemma 2 If a, b > 0 and du
dt = u(t)(a−bu(t)), along with initial condition u(0) > 0, then

for all t ≥ 0, u(t) ≤ a
b−ce−at with c = b − a

u(0) . In particular, u(t) ≤ max
{
u(0), a

b

}
for all

t ≥ 0.

Theorem 2 Let S be the set defined by S = {(x, y) : 0 ≤ x ≤ M1, 0 ≤ y ≤ M2}, where
M1 = max{x(0; p), k}, M2 = k2 and k2 = y(0; q) exp

[
−δ

1−q
u δ

q
l − q2E2 + βM1

m

]
. Then S

is positively invariant.

Proof If we take (x(0; p), y(0; q)) ∈ S, from the Theorem 1, it is obvious that
(x(t; p), y(t; q)) remains non-negative. To show that (x(t; p), y(t; q)) ∈ S for all t ≥ 0, we
need to prove that x(t; p) ≤ M1 and y(t; q) ≤ M2. We first show that x(t; p) ≤ M1. Under
positivity of the variables x and y (see Theorem 1) from first equation of system (3), we can
write

dx(t; p)
dt

≤ r1−p
l r pu x

(
1 − x

k

)
(11)

From Eq. (11) and using Lemma 2, we get x(t; p) ≤ max{x(0; p), k} = M1 for all t ≥ 0.
Further, from second equation of system (3) in the absence of delay, we obtain

dy(t; q)

dt
≤ y(t; q)

(
−δ

1−q
u δ

q
l − q2E2 + βM1

m

)

⇒ y(t; q) ≤ y(0; q) exp

[
−δ

1−q
u δ

q
l − q2E2 + βM1

m

]
= M2 (12)

This completes the proof. �

In other words, we can say that all trajectories of system (3) in the absence of delay
initiating from any point in R

2+ ultimately lies in fixed bounded region defined by S: Hence,
the flow/dynamical systems associated with system (3) in the absence of delay is dissipative.
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5.2 Permanence and persistence

A system analytically is said to be persistent if it persists for each population, i.e.,
lim t → ∞ inf x(t) > 0 (stronger case) or lim t → ∞ sup x(t) > 0 (weaker case) for each
of the population x(t) of the system. Again geometrically, persistence means that trajectories
that initiate in a positive cone are eventually bounded away from coordinate planes. On the
contrary, permanent coexistence (uniformpersistence) implies the existence of a region in the
phase space at a non-zero distance from boundary, in which all the population vectors must
lie ultimately. To show the persistence for the non delay system (3) we need the following
definitions and Lemma (Chen 2005; Chen et al. 2007):

Definition 3 Persistence: Prey–predator system (3) in the absence of delay is said to be
weakly persistent if every solution (x(t; p), y(t; q)) satisfies two conditions for all p ∈
[0, 1] and q ∈ [0, 1]: (i) x(t; p) ≥ 0 and y(t; q) ≥ 0. (ii) limt→∞ sup x(t; p) > 0 and
lim t → ∞ sup y(t; q) > 0. On the other hand, Model system (3) in the absence of delay
is strongly persistent if every solution (x(t; p), y(t; q)) satisfies two conditions for all p ∈
[0, 1] and q ∈ [0, 1]: (i) x(t; p) ≥ 0 and y(t; q) ≥ 0. (ii) lim t → ∞ inf x(t; p) > 0 and
lim t → ∞ inf y(t; q) > 0.

Definition 4 Permanence: The prey–predator system (3) in the absence of delay is said to
be permanent if there exist positive constants ξ1 and ξ2 (0 < ξ1 < ξ2) such that each
solution (x(t; p, x0, y0), y(t; q, x0, y0)) for all p ∈ [0, 1] and q ∈ [0, 1] with initial con-
dition (x0, y0) ∈ Int(R2+) satisfies the following: (i) min{lim t → ∞ inf x(t; p, x0, y0),
lim t → ∞ inf y(t; p, x0, y0)} ≥ ξ1 (ii) max{lim t → ∞ sup x(t; p, x0, y0), lim t → ∞
sup x(t; p, x0, y0)} ≤ ξ2.

Lemma 3 If L > 0, M > 0 and du
dt ≤ (≥)u(t)(M − Lu(t)), u(t0) > 0, then we have

limt→∞ sup u(t) ≤ M
L

(
limt→∞ inf u(t) ≥ M

L

)
.

Theorem 3 The system (3) is said to be permanent if r1−p
l r pu > αk2

m +q1E1 for all p ∈ [0, 1]
and q ∈ [0, 1].

Proof From Eq. (11) and Lemma 2, it is clear that 0 < x(t; p) < k for sufficiently large t .
Also from Eq. (12) and Lemma 2, we obtain 0 < y(t; q) < M2 for sufficiently large t . Using
the positivity of variables x, y and the first equation of system (3) in the absence of delay,
we have

dx(t; p)
dt

= x(t; p)
(
r1−p
l r pu − r1−p

l r pu x

k
− αy(t; q)

m + x
− q1E1

)

≥ x(t; p)
[
r1−p
l r pu − r1−p

l r pu x

k
− αM2

m
− q1E1

]
= x(t; p)

[
a1 − r1−p

l r pu x(t; p)
k

]

for sufficiently large t , where a1 = r1−p
l r pu − αM2

m − q1E1. If a1 > 0, i.e., r1−p
l r pu >

αM2
m + q1E1, then from Lemma 3, we have limt→∞ inf x(t; p) ≥ a1k

r1−p
l r pu

≡ ω1. So for

arbitrary, ∈1> 0 there exists a positive real number T1 such that x(t; p) ≥ ω1− ∈1 for all
t > T1. In the similar fashion, using the positivity of variables x , y and the second equation
of system (3), we have
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dy(t; p)
dt

= y(t; q)

(
−δ

1−q
u δ

q
l + βx(t; p)

m + x(t; p) − q2E2

)

≥ y(t; q)

⎛
⎝−δ

1−q
u δ

q
l +

β
(

βx(t;p)
m+x(t;p)− ∈1

)
m + k

− q2E2

⎞
⎠

As ∈1> 0 is arbitrary, we can write

dy(t; p)
dt

≥ y(t; q)

(
−δ

1−q
u δ

q
l + βa1k

r1−p
l r pu (m + k)

− q2E2

)
;

therefore, lim t → ∞ inf y(t; q) ≥ y(0; q) exp
[(− δ

1−q
u δ

q
l + βa1k

r1−p
l r pu (m+k)

− q2E2
)] ≡ ω2

for sufficiently large t . Also from inequalities (11) and (12) together with Lemma 3, we have
limt→∞ sup x(t; p) ≤ k, limt→∞ sup y(t; q) ≤ M2. Now, choosing ξ1 = min(ω1, ω2) and
ξ2 = max(k, M2), we obtain the permanence of system (3) for all p ∈ [0, 1] and q ∈ [0, 1].

�

5.3 Stability of equilibrium points

For τ = 0, the characteristic Eq. (10) reduces to

�(λ, 0) = λ2 + a1λ + a2 = 0 (13)

Theorem 4 The trivial equilibrium point P1(0, 0) is stable if E1 > (BT P)x , where

(BT P)x = r1−p
l r pu
q1

= Biotechnical Productivity = Bioticpotential
Catchability coefficient of the prey species.

Proof The eigenvalues corresponding to the equilibrium point P1(0, 0) are r
1−p
l r pu − q1E1

and −(δ
1−q
u δ

q
l + q2E2) for all p ∈ [0, 1] and q ∈ [0, 1]. Since (δ

1−q
u δ

q
l + q2E2) > 0 for

all q ∈ [0, 1], P1(0, 0) is asymptotically stable if r1−p
l r pu − q1E1 < 0 ⇒ E1 >

r1−p
l r pu
q1

, i.e.,
E1 > (BT P)x for all p ∈ [0, 1] and q ∈ [0, 1].
Theorem 5 The equilibrium point P2(k, 0) is asymptotically stable if the condition E2 >
1
q2

(
βk
m+k − δ

1−q
u δ

q
l

)
for all p ∈ [0, 1] and q ∈ [0, 1] holds.

Proof The eigenvalues corresponding to the equilibrium point P2(k, 0) are
−(r1−p

l r pu + q1E1) < 0 and −δ
1−p
u δ

p
l + βk

m+k − q2E2. Therefore, the equilibrium

point P2(k, 0) is asymptotically stable if −δ
1−p
u δ

p
l + βk

m+k − q2E2 < 0, i.e., E2 >

1
q2

(
βk
m+k − δ

1−q
u δ

q
l

)
for all p ∈ [0, 1] and q ∈ [0, 1]. �

Theorem 6 The interior equilibrium point P3(x∗, y∗) is asymptotically stable if

(BT P)x

[
1 − m

(
β+δ

1−q
u δ

q
l +q2E2

)
k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

< E1 < (BT P)x

[
1 −

(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

and

E2 < 1
q2

(
β − δ

1−q
u δ

q
l

)
f or all p ∈ [0, 1] and q ∈ [0, 1].

Proof The roots of the characteristic equation (13) corresponding to the equilibrium point
P3(x∗, y∗) is given by

λ = −1

2
a1 ± 1

2

√
a21 − 4a2 (14)
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From Eq. (14), the roots of the characteristic equation are negative or complex with negative
real part if a1 > 0 and a2 > 0. As a2 is always positive, the condition is satisfied only

if a1 > 0. Now a1 > 0 implies the condition E1 > (BT P)x

[
1 − m

(
β+δ

1−q
u δ

q
l +q2E2

)
k
(
β−δ

1−q
u δ

q
l −q2E2

)
]
.

Again the equilibrium point exists if E1 < (BT P)x

[
1 −

(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]
and E2 <

1
q2

(
β − δ

1−q
u δ

q
l

)
for all p ∈ [0, 1] and q ∈ [0, 1]. Hence, the interior equilibrium point

P3(x∗, y∗) exists and is asymptotically stable if (BT P)x

[
1 − m

(
β+δ

1−q
u δ

q
l +q2E2

)
k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

< E1 <

(BT P)x

[
1 −

(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]
and E2 < 1

q2

(
β−δ

1−q
u δ

q
l

)
for all p ∈ [0, 1] and q ∈ [0, 1].

�

Nowwe investigate the global stability of the interior equilibrium. The following theorem
gives the condition of global stability:

Theorem 7 The interior equilibrium point P3(x∗, y∗) is globally asymptotically stable if

(BT P)x

[
1 − m

(
β+δ

1−q
u δ

q
l +q2E2

)
k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

< E1 < (BT P)x

[
1 −

(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

and

E2 < 1
q2

(
β − δ

1−q
u δ

q
l

)
f or all p ∈ [0, 1] and q ∈ [0, 1].

Let us consider the system

dx
dt = xa(x) − yb(x)
dy
dt = y[−γ + c(x)]

}
, (15)

where x(0), y(0) > 0. Then by a theorem given in Kuang and Freedman (1988) the system
(15) has exactly one limit cycle which is globally asymptotically stable with respect to the set

{(x, y) | x > 0, y > 0}�P3(x∗, y∗) if d
dx

{
xa′(x)+a(x)−xa(x) b

′(x)
b(x)

−γ+c(x)

}
≤ 0, in 0 ≤ x ≤ x∗ and

0 < x∗ ≤ k. In our system a(x) = r1−p
l r pu x

(
1 − x

k

) − q1E1, b(x) = αx
m+x , c(x) = βx

m+x ,

and γ = (δ
1−q
u δ

q
l + q1E2). In that case d

dx

{
xa′(x)+a(x)−xa(x) b

′(x)
b(x)

−γ+c(x)

}∣∣∣∣∣
x=x∗

≤ 0 implies

E1 ≤ (BT P)x

[
1 − m

(
β + δ

1−q
u δ

q
l + q2E2

)
k
(
β − δ

1−q
u δ

q
l − q2E2

)
]

for all p ∈ [0, 1] and q ∈ [0, 1]
(16)

Now if the condition (16) is satisfied, then the proposed parametric delay model (3) has a
globally stable limit cycle. Again if a equilibrium point P3(x∗, y∗) exists and is stable and if
the system has no limit cycle, the equilibrium point is globally asymptotically stable. Hence,
the interior equilibrium point P3(x∗, y∗) is globally asymptotically stable if

(BT P)x

[
1 − m

(
β+δ

1−q
u δ

q
l +q2E2

)
k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

< E1 < (BT P)x

[
1 −

(
δ
1−q
u δ

q
l +q2E2

)
m

k
(
β−δ

1−q
u δ

q
l −q2E2

)
]

and

E2 < 1
q2

(
β − δ

1−q
u δ

q
l

)
for all p ∈ [0, 1] and q ∈ [0, 1].

⎫⎪⎬
⎪⎭
(17)
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From Theorems 6 and 7, we observe that if the harvesting efforts E1 and E2 satisfy the above
inequalities , then the local stability of the interior equilibriumpoint P3(x∗, y∗) implies global
asymptotic stability. It is also observable that the range of the harvesting effort E1 and E2 as
given in (17) depends upon the parameters p and q , i.e., the imprecise nature of parameters.
Therefore, we may conclude that stability of the system may be hampered due to imprecise
nature of the biological parameters. Also, the resource manager should plan harvesting effort
within the range of the interval (17) for the sustainable progress of ecosystem.

6 Stability analysis of time delay model

In this section, we discuss the existence and uniqueness solution of our proposed model
system (3) with delay and given initial condition.

6.1 Positivity

Theorem 8 Every solution of system (3)with initial condition (4) exists in the interval [0,∞)

and x(t; p), y(t; q) > 0 for all t ≥ 0, p ∈ [0, 1] and q ∈ [0, 1].
Proof Since the first equation of the system (3) is completely continuous and locally Lips-
chitzian on C1, the solution x(t; p) of system (3) with given initial conditions (4) exists and
is unique on [0, ξ1) where 0 ≤ ξ1 < +∞. From the first equation of the system (3) with
given initial condition, we have

x(t; p) = x(0; p) exp
⎡
⎣

t∫
0

{
r1−p
l r pu

(
1 − x(η; p)

k

)
− αy(η; q)

m + x(η; p) − q1E1

}
dη

⎤
⎦ > 0

To show that y(t; q) is positive on [0,∞), suppose that there exists t1 > 0 such that
y(t1; q) = 0 and y(t; q) > 0 for t1 ∈ [0, t1). Then dy(t1;q)

dt < 0. From the second equation

of the system (3), we have dy(t1;q)
dt = −δ

1−q
u δ

q
l y(t1; q) + βx(t−τ)y(t1;q)

m+x(t−τ)
− q2E2y(t1; q) = 0,

which is contradictory. Therefore, x(t; p), y(t; q) > 0 for all t ≥ 0, p ∈ [0, 1] and q ∈ [0, 1].
�

6.2 Stability and bifurcation analysis

Here, we discuss the effects of time delay to the system (3) for different values of the
parameters p.

Let λ = iw, (w > 0) is a root of the Eq. (10); then we have

− w2 + ia1w + a2e
−iwτ = 0 (18)

Equating real and imaginary parts of the Eq. (18) we have

− w2 + a2 coswτ = 0 and a1w − a2 sinwτ = 0 (19)

Squaring both the equations of (19) and adding, we get the following fourth-degree polyno-
mial

w4 + a21w
2 − a22 = 0 (20)

Solving the above quadratic equation in w2, we get w2 = − 1
2a

2
1 ± 1

2

√
a41 + 4a22 . Since

a41 + 4a22 > a41 , the Eq. (20) has only one positive solution w2+ . Therefore, the characteristic
equation (10) has a pair of purely imaginary roots ±iw+ for all values of the parameter
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p ∈ [0, 1] and q ∈ [0, 1]. Putting the value of w2+ in both the equations of (19) and solving
for τ we get

τ+
i = 1

w+
arctan

(
a1
w+

)
+ 2iπ

w+
, i = 0, 1, 2 . . . . (21)

From the above discussion, we have the following lemma:

Lemma 4 For τ = τ+
0 the Eq. (10) has a pair of imaginary roots ±iw+ for all p ∈ [0, 1]

and q ∈ [0, 1].
Theorem 9 Let τ+

i be defined by (21) and the condition (17) is satisfied; then the equilibrium
point P3(x∗, y∗) of the system (3) is asymptotically stable for τ < τ+

0 and unstable for
τ > τ+

0 . Further, as τ increases through τ+
0 , P3(x

∗, y∗) bifurcates into small amplitude
periodic solutions, where τ+

0 = τ+
i for i = 0 and for all values of p ∈ [0, 1] and q ∈ [0, 1].

Proof For τ = 0, the equilibrium point P3(x∗, y∗) is asymptotically stable if the condition
(17) is satisfied based on the Theorem 6. Hence, by Butler’s lemma (Freedman and Sree
1983), P3(x∗, y∗) remains stable for τ < τ+

0 for all p ∈ [0, 1] and q ∈ [0, 1]. Now we have

to show that d(Reλ)
dt

∣∣∣
τ=τ+

0 ,w=w+
> 0. This indicates that there exists at least one eigenvalue

with positive real part for τ > τ+
0 and for all p ∈ [0, 1] and q ∈ [0, 1] . Also, the conditions

for Hopf-bifurcation are satisfied yielding the required periodic solution for all p ∈ [0, 1]
and q ∈ [0, 1]. Now differentiating (10) with respect to τ , we get [2λ + a1 − a2e−λτ ] dλdτ =
a2λe−λτ . This implies (

dλ

dτ

)−1

= 2λ + a1
a2λe−λτ

− τ

λ
(22)

Since e−λτ = − λ2+a1λ
a2

, the Eq. (22) becomes
( dλ
dτ

)−1 = − 2λ+a1
λ(λ2+a1λ)

− τ
λ
. Thus

sign

{
d

dt
(Reλ)

}∣∣∣∣
w=iw+

= sign

{
Re

(
dλ

dτ

)−1
}∣∣∣∣∣

w=iw+

= SignRe

[
− 2λ + a1

λ(λ2 + a1λ)
− τ

λ

]
w=iw+

Therefore, sign
{
d(Reλ)

dt

}∣∣∣
w=iw+

= sign

{
a21+2w2+

w4++a21w
2+

}
.

So d(Reλ)
dt

∣∣∣
τ=τ+

0 ,w=w+
> 0; therefore, the transversality condition holds and hence Hopf-

bifurcation occurs at w = w+, τ = τ+
0 for all p ∈ [0, 1] and q ∈ [0, 1]. This completes

the proof. �

6.3 Estimation of the length of delay to preserve stability

We consider the prey–predator delay system (3) and the space of all real-valued continuous
functions defined on [−τ ,∞) satisfying the initial conditions on [−τ , 0). We initialize the
prey–predator system (3) about its interior equilibrium P3(x∗, y∗) and we get

dx1(t;p)
dt = a11x1 + a12y1

dy1(t;q)
dt = b21x1(t − τ)

}
for p ∈ [0, 1] and q ∈ [0, 1] , (23)

where x1(t; p) = x(t; p) + x∗ and y1(t; q) = y(t; q) + y∗.
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Taking Laplace transform of the system (23), we get

(s + a11)x1(s; p) = a12y1(s; q) + x1(0; p)
sy1(s; q) = b21e

−sτ x1(s; p) + b21e
−sτ k1(s) + y1(0; q), (24)

where

k1(s) =
0∫

−τ

e−sτ x1(t; p)dt

and x1(s; p) and y1(s; q) are the Laplace transform of x1(t; p) and y1(t; q), respectively.
Now, we will use the “Nyquist theorem” which states that if s is the arc length along a

curve encircling the right half of the plane, then a curve x1(s; p) will encircle the origin
a number of times equal to the difference between the number of poles and the number of
zeros of x1(s; p) in the right half of the plane. From Erbe et al. (1986) and using “Nyquist
theorem”, it can be shown that the conditions for local asymptotic stability of P3(x∗, y∗) are
given by

ImH(iw0) > 0 (25)

ReH(iw0) = 0, (26)

where H(s) = s2 + a1s + a2e−sτ and w0 is the smallest positive root of the Eq. (26).
We have already shown that P3(x∗, y∗) is stable in the absence of delay. Hence, by

continuity all eigenvalues will continue to have negative real parts for sufficiently small
τ > 0, provided one can guarantee that no eigenvalue with positive real parts bifurcates from
infinity as τ increases from zero. This can be proved by using Bulter’s lemma (Erbe et al.
1986).

In this case, conditions (25) and (26) give

a1w0 − a2 sinw0τ > 0 (27)

−w2
0 + a2 cosw0τ = 0 (28)

Now, the sufficient conditions to guarantee stability if (27) and ( 28) satisfy simultaneously.
We shall utilize them to get an estimate on the length of delay. Our aim was to find an upper
bound w+ on w0, independent of τ so that (27) holds for all values of w, 0 ≤ w ≤ w+ and
hence in particular at w = w0. We rewrite the Eq. (28) as

− w2
0 + a2 cosw0τ = 0

⇒ w2
0 = a2 cosw0τ (29)

Maximizing a2 cosw0τ subject to | cosw0τ | ≤ 1, we obtain

w2
0 ≤ |a2| (30)

Hence, if
w+ = √|a2|, (31)

then clearly from (31), we have w0 ≤ w+. From the inequality (27) we get

a1w0 > a2 sinw0τ

⇒ a1w
2
0 > a2w0 sinw0τ (32)
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As P3(x∗, y∗) is locally asymptotically stable for τ = 0, for sufficiently small τ > 0 the Eq.
(32) will continue to hold. Substituting (29) into (32) and rearranging, we get

a2w0 sinw0τ − a1a2 cosw0τ < 0 (33)

Using the bounds, we obtain

a2w0 sinw0τ ≤ a2w
2+τ and a1a2 cosw0τ ≤ a1a2 (34)

Now, from (33) and (34) we get
l1τ − l2 < 0, (35)

where l1 = a2w2+ and l2 = a1a2. Hence, if

τ+ = l2
l1

, (36)

then the stability is preserved for 0 ≤ τ < τ+. Summarizing the above discussions we come
to the following result:

Theorem 10 The delayed model (3) will be locally asymptotically stable at P3(x∗, y∗) if the
delay τ lies within the interval (0, τ+) where τ+ is given by (36).

7 Numerical illustrations and biological interpretations

Analytical studies can never be completed without numerical verification of the derived
results. Beside verification of our analytical findings, numerical solutions are very important
from practical point of view. For this purpose, in this section we demonstrate the analytical
results that we establish in the previous sections using numerical simulations instead of real-
world data, which of course would be of great interest and has the advantage that it is easy to
isolate the effects of the interactions between the different classes. With the real-world data,
the prices, costs and technological factors are likely to vary from one epidemic system to
other, and it would be harder to assign the causes for different results. However, numerous
scenarios covering the breath of the biological feasible parameter space were conducted and
the results display the range of dynamical results collected from all the scenarios tested. For
the purpose of simulation experiments we mainly use the software MATLAB R2008a and
Wolfram Mathematica 8. As the problem is not a case study for a particular species, here
some hypothetical data are taken for the sole purpose of illustrating the analytical results of
the previous sections. Moreover, it may be noted that as the parameters of the model are not
based on real-world observations, the main features described by the simulations presented
in this section should be considered from a qualitative, rather than a quantitative point of
view. Numeric results of the proposed imprecise delay model are illustrated through proper
numerical example in the absence of delay and with delay. For the purpose of simulation we
consider the hypothetical values of the parameters such as the following: [rl , ru] = [0.4, 0.6],
[dl , du] = [0.1, 0.3], α = 0.9, β = 0.9, k = 200, q1 = 0.2, q2 = 0.1 and m = 12.3794 in
appropriate units. We study numerically the basic dynamics between prey–predator (Krill–
Whale) interaction responses by discrete time delay due to gestation of predators under
interval environment. We observe the effects of variation of the parameters p and q on the
parametric prey–predator delay model (3). In order to study the effects of parameters p and
q on the parametric prey–predator delay model (3), we run simulations separately in two
different cases (τ = 0 and τ �= 0) using the standard matlab differential integrator.
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Table 1 Interval of the
harvesting effort of predator
species (E2) for different p and q

p 0 0.2 0.4 0.6 0.8 1

q 1 0.8 0.6 0.4 0.2 0

E2 (0, 8) (0, 7.75) (0, 7.45) (0, 7.07) (0, 6.59) (0, 6)

Table 2 Interval of the harvesting effort of prey species (E1) for different p and q

p 0 0.2 0.4 0.6 0.8 1

q 1 0.8 0.6 0.4 0.2 0

E1 (1.57, 1.84) (1.66, 1.98) (1.74, 2.12) (1.78, 2.24) (1.75, 2.34) (1.52, 2.35)

Table 3 Equilibrium point when harvesting efforts lies within specified intervals for different p and q

p 0 0.2 0.4 0.6 0.8 1

q 1 0.8 0.6 0.4 0.2 0

E1 1.6 1.7 1.8 1.8 1.8 1.8

E2 4 4 4 4 4 4

(x∗, y∗) (15.46, 1.36) (17.29, 1.67) (19.92, 2.05) (23.94, 3.24) (30.59, 4.67) (43.30, 6.12)

Nature Stable Stable Stable Stable Stable Stable

7.1 Simulation of the proposed model in the absence of time delay

For the above values of the biological parameters it is found that the non trivial equilibrium
point exists and globally asymptotically stable if the harvesting efforts of two species (E1and
E2) lie in the specified interval (see Theorem 6) for different choices of the two distinct
parameters p and q . If we take the harvesting effort outside the interval, the predator–prey
system becomes unstable.

The interval of the harvesting effort E2 for different values of the parameter are given in
Table 1 in which the non trivial equilibrium point exists and is globally asymptotically stable.

Now depending on the values of E2 (here we consider E2 = 4 which belongs to the
respective interval for different combinations of the parameter) the interval of E1 where the
non trivial equilibrium point globally asymptotically stable is given in Table 2.

It is clearly observed fromTables 1 and 2 thatwhen functional parameters p and q increase
through zero, the intervals of the harvesting efforts are changing and hence the stability of
model at the interior equilibrium point (x∗, y∗) changes from being stable to unstable or vice
versa. The stable (taking harvesting effort within the specified interval) equilibrium points
for different values of the parameter p and q are given in Table 3.

From Table 3 we observe that whatever be the values of the parameters p and q if the
harvesting efforts of two species lie within the specified intervals, then the system has a
unique positive equilibrium point which is globally asymptotically stable or converges to a
unique globally stable limit cycle. Again, in reality to increase the profit the fishermen will
harvest both the species. Also, harvesting of predator species is very costly and sometimes
difficult. However, in the case of prey species fishermen will not get that much profit when
compared to predators. However, some fishermen concentrate their attention to harvest the
prey species, since prey fishes (like Goldband small fishes) play a vital role for curing eye
related diseases.Therefore, we take the harvesting effort of the predator species within the
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Table 4 Equilibrium point when harvesting efforts of prey lies outside the specified intervals for different p
and q

p 0 0.2 0.4 0.6 0.8 1

q 1 0.8 0.6 0.4 0.2 0

E1 1 1.4 1.2 1.1 0.9 0.8

E2 4 4 4 4 4 4

(x∗, y∗) (15.47, 4.71) (23.94, 3.7) (19.92, 5.93) (23.94, 8.32) (30.59, 12.40) (43.31, 17.26)

Nature Unstable Unstable Unstable Unstable Unstable Unstable
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Fig. 1 Time evolution of species when harvesting efforts lie within and outside the specified interval for
p = 0, q = 1 and p = 0.2, q = 0.8

specified interval (E2 = 4) and taking the harvesting efforts of the prey species outside
the specified intervals of the harvesting of the prey species (E1) for different values of the
functional parameters p and q . In that case we see that the system becomes unstable. The
unstable nature of the equilibrium point is found for different values of the parameters p and q
if we take the harvesting effort of the prey species outside the specified interval. The specified
interval for the harvesting effort of the prey species for different values of parameters p and
q is given in Table 4.

The variation of population against time depending on the above result, as shown in
Tables 1 and 2, is clearly shown in Figs. 1, 2 and 3 with x(0) = 1 and y(0) = 5 for different
p and q .

Also the phase plane trajectories of the system biomass beginning with different initial
levels when the harvesting efforts of prey and predator species lies within and outside the
specified interval with different values of the functional parameter are depicted through
Figs. 4, 5 and 6. Here, different colour shows different initial levels.

From Tables 1 and 2 we observe that the interval of the harvesting efforts and the level
of both the populations at the equilibrium stage changes depending upon the values of the
parameters p and q .
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Fig. 3 Time evolution of species when harvesting efforts lie within and outside the specified interval for
p = 0.8, q = 0.2 and p = 0, q = 1

Figures 1, 2, 3, 4, 5 and 6 show the consistency with the result obtained in Table 4.
Therefore, in the absence of delay, the dynamical behaviour of the model has great impact
due to imprecise nature of some biological parameters of the model. Therefore, the imprecise
modelling is more realistic than the precise one.

7.2 Simulation of the proposed model in the presence of time delay

It is mentioned before that the stability criteria in the absence of delay (τ = 0) will not
necessarily guarantee the stability of the system in the presence of delay (τ �= 0). Let us
choose the parameters of the system same as previous section. It is already seen in Table 3
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that for such choices of parameters (taking the harvesting efforts within the specified interval)
the obtained equilibrium (x∗, y∗) for different values of the parameters p and q is locally
asymptotically stable in the absence of delay. Now for these choices of parameters and
depending on the values of p and q it is seen from Lemma 4 and Theorem 8 that there is a
unique positive root (w+) of the Eq. (20) and critical value of τ = τ 0 from Eq. (21) which is
given in Table 5. Here, x(0) = 1 and y(0) = 5, for a particular value of p and q , if the value
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Table 5 Values of w+ and
critical values of time delay (τ0)
for different p and q

p 0 0.2 0.4 0.6 0.8 1

q 1 0.8 0.6 0.4 0.2 1

w+ 0.1042 0.1109 0.1161 0.1343 0.1415 0.1271

τ0 0.35 0.38 0.57 0.12 0.36 2.64

of τ is below the critical value τ 0, then Figs. 7, 8 and 9 show that the nontrivial equilibrium
point (x∗, y∗) is asymptotically stable and both prey and predator species converge to their
steady states in finite time and the xy-plane projections of the solution (presented in Fig. 10)
being stable spiral. Keeping other parameters fixed, if we take τ > τ 0 for all values of p and
q in each case (presented in Figs. 7, 8, 9) for x(0) = 1 and y(0) = 5, it is seen that (x∗, y∗)
is unstable which is the case of Hopf-bifurcation and there is a bifurcating periodic solution
near (x∗, y∗) (see Fig. 11).

Again if we increase delay τ from its threshold value for different p and q (∈ [0, 1]) then
we get the presentation of the dynamical behaviour of the model through Figs. 12, 13 and
14.

8 Discussion and conclusion

It is a well-known fact that the oceans and their living resources are in alarming condition.
Significant numbers of marine organisms, including mammals, birds and turtles as well as
some commercially harvested fish and shellfish are now threatened or endangered. Clearly
mathematical approaches are considered to stem the damage and ensure that ecosystems
and their unique features are protected and restored. To construct the mathematical model,
researchers or mathematicians consider some parameters on the basis of their requirement.
But the sensitive parameters of the model system fluctuate above their average values due
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Fig. 7 Populations approach their equilibrium values in finite t if τ < τ0 and become unstable if τ > τ0 for
p = 0, q = 1 and p = 0.2, q = 0.8
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Fig. 8 Populations approach their equilibrium values in finite t if τ < τ0 and become unstable if τ > τ0 for
p = 0.4, q = 0.6 and p = 0.6, q = 0.4

to random fluctuations of nature. Mathematics has so far made a considerable impact to
model and understand complicated interaction. Most of the research work in this area have
focused on predator–prey models in precise environment. A little attention has been paid
on the models with imprecise environment. To tackle imprecise parameters most of the
researchers have opted fuzzy approach, stochastic approach and fuzzy stochastic approach.
But all the mentioned approaches pose little bit difficulties which we have already discussed
in the Introduction section. In this paper, we study the complex dynamics of a prey–predator
system with discrete time delay due to gestation under imprecise biological parameters. We
analyse the dynamical behaviour of an imprecise prey–predatormodel system incorporating a
discrete time delay as bifurcationmechanism using parametric functional form of the interval
number with two distinct parameters. Boundedness of the system in the presence and absence
of the time delay is discussed. Stability analysis of the trivial, axial and nontrivial equilibrium
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Fig. 10 Phase portrait of system 3 showing that (x∗, y∗) is locally asymptotically stable when τ < τ0

is presented with different values of parameters p and q . The criterion for stable coexistence
of the prey and predator in the absence of delay due to imprecise biological parameters is
given inTheorem6.The theoretical results are illustrated numerically in Sect. 5.1 and strongly
supported by Figs. 1, 2, 3, 4, 5 and 6. Here it is established that when time delay is zero then
the interior equilibrium P3(x∗, y∗) is asymptotically stable, provided the harvesting effort of
both the species must lie in the certain interval depending on the values of the parameters p
and q .

Again it is mentioned by several researchers that the effect of time delay is an impor-
tant factor to construct a biological useful mathematical model. Here, to make the model
more sensible and acceptable, we consider the time delay as well as the imprecise biological
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Fig. 11 Phase portrait of the system 3 showing a limit cycle which grows out of (x∗, y∗) when τ > τ0
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Fig. 12 Unstable solution of growing oscillation of imprecise delayed system as τ increases from the threshold
value τ0 for p = 0, q = 1

parameters as interval number to construct model 2. Here, we consider the time delay due
to gestation period for predators. In general, delay differential equations exhibit much more
complicated dynamics than the ordinary differential equation and due to inserting the impre-
cise parameters, the model becomes more complicated. But we suitably handled the delay
differential equation by unique approach, known as functional parametric approach with two
different parameters for two different intervals. We know that a time delay could cause a
locally stable equilibrium to become unstable and cause the populations to fluctuate. We
formulate the model 2 where the delay may be looked upon as gestation time for predators.
Then a rigorous analysis in interval environment leads us to Theorem 8 which mentions that
the stability criteria in absence of delay are no longer enough to guarantee the stability in
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Fig. 13 Unstable solution of growing oscillation of imprecise delayed system as τ increases from the threshold
value τ0 for p = 0.6, q = 0.4
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Fig. 14 Unstable solution of growing oscillation of imprecise delayed system as τ increases from the threshold
value τ0 for p = 1, q = 0

the presence of delay, rather than there is a critical value τ+
0 of the delay τ (depending on

the values of the parameters p and q) the system is locally stable for τ < τ+
0 and unstable

when τ just exceeds τ+
0 which is shown numerically in Sect. 7.2 and strongly supported by

Figs. 7, 8, 9, 10 and 11. Thus using the time delay and functional parameters p and q as
control, it is possible to break the stable behaviour of the system and derive unstable state.
Also it is possible to keep the populations at a desired level using the above-stated control.
Such regulatory impact of delay is also illustrated elaborately through computer simulation
in Sect. 5.2.

It is well known that natural populations of plants and animals neither increase indefinitely
to blanket the world nor become extinct except in some rare cases due to some rare reasons.
Hence in practice, we often want to reduce the predator to an acceptable level in finite time. In
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order to accomplish this, we strongly suggest that in realistic field situations (where effect of
time delays can never be violated) the biological parameters of the system should be regulated
in such a way that they are imprecise in nature and 0 < τ < τ+

0 .
We have not made any case studies, but a good example of our presented imprecise

model is Antartic Krill–Whale fishery. The ultimate objective is to maintain the ecological
balance between prey and predator. It is deemed important to undertake this type of imprecise
model for the purpose of investing the impact of imprecise biological parameters, harvesting
efforts on the species as well as time delay so that sustainability of the ecosystem may be
resumed through achieving the commercial purpose of the fishery. Hence, the results of our
new proposed model are not only useful for assessing the biological, social and economic
impact of existing resources but also provide appropriate measures to maintain long-term
sustainability of the resource.

From the analysis of the proposed model, it may be concluded that the interval model has
highmovement probabilities to explain easily the different characteristic of themodel than the
other imprecise one. An imprecise prey–predator interval model with parametric functional
form is generally utilised to investigate the critical dynamical behaviour of the model for
different values of the functional parameter. Therefore, the functional parameters play an
important role to incorporate impreciseness to the model parameters. Thus for a sustainable
ecosystem, interval model of population is an important modelling approach which ensures
the presence of random fluctuation of the modelling parameters. The delay model can be
made more realistic when incorporated with impreciseness in the delay term it makes the
model more complicated and is left for future work consideration.
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