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Abstract In this paper, we reformulate a class of nonlinear complementarity problems as the
implicit fixed-point equations. We demonstrate accelerated modulus-based matrix splitting
iteration method. We show their convergence by assuming that the system matrix is positive
definite or the splitting of the system matrix are H+-compatible splitting and discuss the
choice of the optimal parameter. Furthermore, we give two-step accelerated modulus-based
matrix splitting iterationmethod, whichmay achieve higher computing efficiency. Numerical
experiments are presented to show the effectiveness of the method.
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1 Introduction

In this paper, we consider the following nonlinear complementarity problems:

z ≥ 0, w = Az + �(z) ≥ 0, zTw = 0, (1.1)

where z = (z1, z2, . . . , zn)T ∈ Rn is an unknown vector, A = (ai j ) ∈ Rn×n is a given
large and sparse matrix, �(z) is a nonlinear function and the notation “≥” denotes the
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componentwise defined partial ordering between two vectors and the superscript “T” denotes
the transpose of a vector.

When �(z) = q and q ∈ Rn , the nonlinear complementarity problems of the form
(1.1) reduce to the linear complementarity problems. Many problems in scientific computing
and engineering applications demand to compute solutions of complementarity problem,
for example, the free boundary problem of fluid dynamics, contact problem in elasticity,
economic transportation; see Ferri andPang (1997),Cottle et al. (1992).Constructing efficient
and feasible iteration methods for solving linear complementarity problem has been received
widely attention. For example, the projected iterations (Hadjidimos and Tzoumas 2016; Bai
1996), the matrix muti-splitting iterations (Bai 1999; Bai and Evans 2001, 2002; Bai and
Zhang 2013) and the general fixed point iterations (Dong and Jiang 2009;Mangasarian 1997;
Noor 1988).

Recently, modulus-based iteration methods are very popular; see, e.g., Bai (2010), Zhang
(2011), Zhang and Ren (2013), Xia and Li (2015), Huang andMa (2016), Xie and Xu (2016),
Ma and Huang (2016), Hong and Li (2016), Xu (2015) and Zheng and Yin (2013, 2014).
Because these methods avoid the projections of the iterative used in the projected relaxation
iterations and the general fixed-point iterations. Frommer and Mayer (1989) researched a
modulus-based nonsmooth Newton’s method to the equivalent reformulation of the linear
complementarity problems and established its locally quadratical convergence theory. Ma
and Huang (2016) proposed modified modulus-based matrix splitting iteration method for
a class of weakly nondifferentiable nonlinear complementarity problems and studies the
convergence property when the system matrices are H+-matrices. Zheng and Yin (2013,
2014) developed the accelerated modulus-based matrix splitting iteration method for the
solution of the large sparse linear complementarity problem and derived the convergence
results.Xie andXu (2016) proved the convergence of two-stepmodulus-basedmatrix splitting
iteration method for a class of nonlinear complementarity problems.

Inspired by the previous work, in this paper, by reformulating the nonlinear complemen-
tarity problem (1.1) as an implicit fixed point equation, we give accelerated modulus-based
matrix splitting iteration methods for solving (1.1). The convergence conditions when the
system is either a positive definite matrix or an H+-matrix are presented. Moreover, we
discuss the choice of the optimal parameter.

This paper is organized as follows: We first present modulus-based matrix splitting itera-
tion methods for solving a class of nonlinear complementarity problems (1.1) in Sect. 2. The
convergence conditions and optimal parameter when the system matrix is a positive definite
matrix is presented in Sect. 3. In Sect. 4, we derive the convergence theory when the system is
an H+-matrix. And the optimal parameter of AMAOR method is established in this section.
The numerical experiments of the proposed methods are shown and analyzed in Sect. 5 and
some conclusions are given in Sect. 6.

2 Accelerated modulus-based matrix splitting iteration method

In this section, by reformulating the problem (1.1) as an implicit fixed point equation based
on the splitting of A, we present acceleratedmodulus-basedmatrix splitting iterationmethod.

We first give some definitions, notations and lemmas used in the sequel convergence
analysis. For the matrices A = (ai j ), B = (bi j ) ∈ Rn×n , we call A ≥ B (A > B), if
ai j ≥ bi j (ai j > bi j ) holds for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. |A| denotes a nonnegative matrix
with entries |ai j |. If O is a null matrix and A ≥ O (A > O), A is called a nonnegative
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matrix. We write ‖A‖ and A−1 to denote norm and the inverse of matrix A, respectively.
|x | = (|x1|, |x2|, . . . , |xn |)T ∈ Rn denotes the absolute value of the vector x . I denotes the
identity matrix of the proper size implied by context.

Let Zn×n denote the set of all real n × n matrices having all nonpositive off-diagonal
entries. A nonsingular matrix A ∈ Rn×n is called an M-matrix Berman and Plemmons
(1979) if A ∈ Zn×n and A−1 ≥ 0. Matrix A ∈ Rn×n is called an H -matrix if its comparison
matrix 〈A〉 = (̃ai j ) ∈ Rn×n is an M-matrix, where

ãi j =
{ |aii |, for i = j

−|ai j |, for i �= j
i, j = 1, 2, . . . , n.

In particular, an H -matrix is called an H+-matrix if the diagonal entries are all positive.
Let σ(A) and ρ(A) be the spectrum and the spectral radius of the matrix A, respectively.

For a given matrix A ∈ Rn×n , A = M − N is called a splitting of the matrix A if M is
nonsingular; a convergence splitting if ρ(M−1N ) < 1; an M-splitting if M is a nonsingular
M-matrix and N ≥ O; and an H -compatible splitting if 〈A〉 = 〈M〉 − |N |. Clearly , if
A = M − N is an M-splitting and A is a nonsingular M-matrix, then ρ(M−1N ) < 1, see
(Bai 1999).

For the convergence proof, we need the following lemmas:

Lemma 2.1 (Frommer and Mayer 1989) Let A, B ∈ Rn×n. If A is an M-matrix, B ∈ Zn×n

and A ≤ B, then B is an M-matrix.

Lemma 2.2 (Frommer and Szyld 1992) Let A ∈ Rn×n be an H-matrix and A = D − B,
where D is the diagonal part of the matrix A. Then the following statements hold true:

1. A is nonsingular and |A−1| ≤ 〈A〉−1;
2. |D| is nonsingular and ρ(|D|−1|B|) < 1.

Lemma 2.3 (Huang and Ma 2016) Let A = M − N be a splitting of the matrix A ∈ Rn×n,
and �, � be n × n positive diagonal matrices. Then the following statements hold true:

1. If (w, z) is a solution of the complementarity problem (1.1), then x = 1

2
(�−1z−�−1w)

satisfies the implicit fixed point equation

(M� + �)x = N�x + (� − A�)|x | − �(�(|x | + x)). (2.1)

2. If x satisfies the implicit fixed point Eq. (2.1), then

z = �(|x | + x), w = �(|x | − x),

is a solution of the complementarity problem (1.1).

According to Lemma 2.3, if A = M1 − N1 = M2 − N2 be the splitting of A, we can
reformulate the problem (1.1) as the following implicit fixed point equation

(M1 + �)x = N1x + (� − M2)|x | + N2|x | − γ�(z), (2.2)

where z = |x |+x
γ

, andω = 1
γ
�(|x |− x). By using the fixed point equation, we shall establish

the following accelerated modulus-based matrix splitting iteration method for solving the
problem (1.1).
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Algorithm 2.1 Let A = M1 − N1 = M2 − N2 be two splittings of the matrix A ∈ Rn×n , let
� be an n × n positive diagonal matrix and γ be a positive constant. Given an initial vector
x0 ∈ Rn , compute z0 = (|x0| + x0)/γ . For k = 0, 1, 2, . . ., until the iteration sequence
{zk}+∞

k=0 is convergence, compute xk+1 ∈ Rn by solving the linear system

(M1 + �)xk+1 = N1x
k + (� − M2)|xk | + N2|xk+1| − γ�(zk) (2.3)

and set

zk+1 = 1

γ

(

|xk+1| + xk+1
)

.

Algorithm 2.1 includes the modulus-based matrix splitting iteration method (Xia and Li
2015) with M2 = A and N2 = O as its special case. Moreover, with specific choices of
the matrix splitting and iteration parameters, Algorithm 2.1 can yield a series of accelerated
modulus-based matrix splitting methods. For example, let A = D − L −U with D, −L and
−U being the diagonal, the strictly lower-triangular and the strictly upper-triangular matrices
of A, then

M1 = 1

α
(D − βL), N1 = 1

α
[(1 − α)D + (α − β)L + αU ], M2 = D −U and N2 = L

Algorithm2.1 reduces to the acceleratedmodulus-based acceleratedoverrelaxation (AMAOR)
iteration method

(D + α� − βL)xk+1 = [(1 − α)D + (α − β)L + αU ]xk + α(� − D +U )|xk |
+αL|xk+1| − αγ�(zk).

It also gives the accelerated modulus-based successive overrelaxation (AMSOR) iteration
method, the accelerated modulus-based Gauss–Seidel (AMGS) iteration method and the
accelerated modulus-based Jacobi (AMJ) iteration method when α = β, α = β = 1 and
α = 1, β = 0, respectively.

3 Convergence analysis for the case of positive-definite matrix

In this section, we consider A is positive definite matrix. To this end, we introduce the
following functions:

ξ1(�) = ‖(� + M1)
−1N1‖, ξ2(�) = ‖(� + M1)

−1N2‖,
ξ3(�) = ‖(� + M1)

−1(� − M1)‖, ξ4(�) = L‖(� + M1)
−1‖.

Theorem 3.1 Let A ∈ Rn×n be a positive definite matrix, and A = M1 − N1 = M2 − N2

be two splittings of the matrix A with M1 ∈ Rn×n being positive definite matrix. Assume that
� ∈ Rn×n is a positive diagonal matrix, γ is a positive constant and �(z) : Rn → Rn is a
Lipschitz continuous function with the Lipschitz constant L, that is, for any z1, z2 ∈ Rn,

‖�(z1) − �(z2)‖ ≤ L‖z1 − z2‖
holds. Let �(�) = 2[ξ1(�) + ξ2(�) + ξ4(�)] + ξ3(�). If the parameter matrix � satisfies
�(�) < 1, then the iteration sequence {zk}+∞

k=0 ⊆ Rn+ generated by Algorithm 2.1 converges
to the solution z∗ ∈ Rn+ of the problem (1.1) for any initial vector x0 ∈ Rn.
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Proof Assume that (z∗, w∗) ∈ Rn × Rn is a solution of the problem (1.1). By relationship

(2.2), we have z∗ = γ

2
(z∗ − �−1w∗) satisfies the fix point equation

(M1 + �)x∗ = N1x
∗ + (� − M2)|x∗| + N2|x∗| − γ�(z∗), (3.1)

where z∗ = |x∗|+x∗
γ

. Together with Algorithm 2.1, subtracting (3.1) from (2.3), we obtain

(M1 + �)(xk+1 − x∗) = N1(x
k − x∗) + (� − M2)(|xk | − |x∗|)

+ N2(|xk+1| − |x∗|) − γ [�(zk) − �(z∗)]. (3.2)

Noticing that M1 is a positive definite matrix and � is a positive diagonal matrix, which
follows that M1 + � is also positive definite matrix; hence M1 + � is nonsingular. Then,
together (3.2) with A = M1 − N1 = M2 − N2 yields

xk+1 − x∗ = (M1 + �)−1
[

N1(x
k − x∗) + (� − M2)(|xk | − |x∗|) + N2(|xk+1| − |x∗|)

]

−γ (M1 + �)−1
[

�(zk) − �(z∗)
]

= (M1+�)−1
[

N1(x
k−x∗) + (�− M2 + N2−N2)(|xk |−|x∗|)

+N2(|xk+1| − |x∗|)
]

− γ (M1 + �)−1[�(zk) − �(z∗)]
= (M1+�)−1

[

N1(x
k−x∗) + (�− M1+ N1−N2)(|xk |−|x∗|)

+N2(|xk+1|−|x∗|)
]

− γ (M1+�)−1[�(zk)−�(z∗)]
= (M1+�)−1

[

N1(x
k−x∗)+(�−M1)(|xk |−|x∗|)

+N1(|xk |−|x∗|)+N2(|xk+1|−|x∗|)
]

− γ (M1 + �)−1[�(zk) − �(z∗)].
(3.3)

Taking an arbitrary matrix norm on both sides of (3.3), we have

‖xk+1 − x∗‖ ≤2‖(M1 + �)−1N1‖‖xk − x∗‖
+‖(M1 + �)−1N2‖‖xk − x∗‖ + ‖(M1 + �)−1N2‖‖xk+1 − x∗‖
+‖(M1 + �)−1)(� − M1)‖‖xk − x∗‖+γ ‖(M1+�)−1‖‖�(zk)−�(z∗)‖

≤2‖(M1 + �)−1N1‖‖xk − x∗‖+‖(M1 + �)−1N2‖‖xk − x∗‖
+‖(M1 + �)−1N2‖‖xk+1 − x∗‖ + ‖(M1 + �)−1)(� − M1)‖‖xk − x∗‖
+γ L‖(M1 + �)−1‖‖zk − z∗‖, (3.4)

where the last inequality uses the fact that �(z) is a Lipschitz continuous function with the
Lipschitz constant L . The inequality (3.4) can be rewritten as the following form:

[1 − ‖(M1 + �)−1N2‖]‖xk+1 − x∗‖ ≤ [‖2(M1 + �)−1N1‖ + ‖(M1 + �)−1N2‖
+‖(M1 + �)−1)(� − M1)‖]‖xk − x∗‖
+γ L‖(M1 + �)−1‖‖zk − z∗‖.

As γ > 0, we have

123



3058 B. Huang, C. Ma

‖zk − z∗‖ =
∥

∥

∥

∥

|xk | + xk

γ
− |x∗| + x∗

γ

∥

∥

∥

∥

= 1

γ

∥

∥|xk | + xk + |x∗| + x∗∥
∥

≤ 1

γ

[‖|xk | − |x∗|‖ + ‖xk − x∗‖]

≤ 2

γ
‖xk − x∗‖.

Hence

[1 − ξ2(�)]‖xk+1 − x∗‖ ≤ [‖2(M1 + �)−1N1‖ + ‖(M1 + �)−1N2‖
+‖(M1 + �)−1)(� − M1)‖]‖xk − x∗‖
+2L‖(M1 + �)−1‖‖xk − x∗‖

= [2ξ1(�) + ξ2(�) + ξ3(�) + 2ξ4(�)]‖xk − x∗‖.
Thereby, we can obtain

‖xk+1 − x∗‖ ≤ 2ξ1(�) + ξ2(�) + ξ3(�) + 2ξ4(�)

1 − ξ2(�)
‖xk − x∗‖,

with ξ2(�) < 1. By the fact that

2ξ1(�) + ξ2(�) + ξ3(�) + 2ξ4(�)

1 − ξ2(�)
< 1

is equivalent to �(�) = 2[ξ1(�) + ξ2(�) + ξ4(�)] + ξ3(�) < 1, which shows that
limk→+∞ xk = x∗. The proof is completed. �
Remark 3.1 If �(z) = q , where q ∈ Rn is a constant vector, then the problem (1.1) reduce
to the linear complementarity problem studied in Xu (2015). Because L = 0, ξ1(�) = ξ(�),
ξ2(�) = η(�), ξ3(�) = μ(�), �(�) = δ(�), where ξ(�), η(�), μ(�), δ(�) are defined
in Xu (2015). At this case, Theorem 3.1 reduces to Theorem 4.1 in Xu (2015).

Remark 3.2 If we use the norm ‖ · ‖�1/2,2 is defined by ‖x‖�1/2,2 = ‖�1/2x‖2 for a vector
x ∈ Rn and ‖X‖�1/2,2 = ‖�1/2X�−1/2‖2 for a matrix X ∈ Rn×n . Let M2 = A, N2 = 0;

then ξ1(�) = σ1

2
, ξ3(�) = σ1, ξ4(�) = σ3

2
, where σ1, σ2, σ3 are defined in Xie and Xu

(2016). At this case, Theorem 3.1 reduce to Theorem 2.2 in Xie and Xu (2016).

In particular, ifM1 ∈ Rn×n be a symmetric positive definitematrix and� = ωI ∈ Rn×n is
a scalar matrix, Theorem 3.1 immediately gives another convergence result. For convenience,
we introduce some parameters

τ1 := ‖M−1
1 N1‖2, τ2 := ‖M−1

1 N2‖2, κ := λmax

λmin
, L1 := L

λmin
, ω1 = ω

λmin
, (3.5)

and

ν(τ1, τ2) := [(τ1 + τ2)κ + L1 − 1] + √[(τ1 + τ2)κ + L1 − 1]2 + 4κ[(τ1 + τ2) + L1]
2

,

(3.6)
where λmax and λmin are the maximum and minimum eigenvalues of the matrix M1, respec-
tively. L is the Lipschitz constant of �(z). Combining the parameters in (3.5), (3.6) and
Theorem 3.1, the convergence results can be described as follows:
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Theorem 3.2 Let A ∈ Rn×n be a positive definite matrix and A = M1 − N1 = M2 − N2

be two splittings of the matrix A with M1 ∈ Rn×n being symmetric positive definite matrix.
Assume that � = ωI ∈ Rn×n is a positive scalar matrix, γ is a positive constant and
�(z) : Rn → Rn is a Lipschitz continuous function with the Lipschitz constant L. If L1 < 1,
then the iteration sequence {zk}+∞

k=0 ⊆ Rn+ generated by Algorithm 2.1 converges to the
solution z∗ ∈ Rn+ of the problem (1.1) for any initial vector x0 ∈ Rn, provided that the
iterative parameter ω satisfies either of the following conditions:

1. when 0 < τ1 + τ2 < 1−L1√
κ
,

ν(τ1, τ2) < ω1 ≤ √
κ;

2. when
1 − L1

κ
< τ1 + τ2 < 1−L1√

κ
,

√
κ ≤ ω1 <

[1 − L1 − (τ1 + τ2)]κ
(τ1 + τ2)κ + L1 − 1

;

3. when τ1 + τ2 ≤ 1−L1
κ

,
ω1 ≥ √

κ.

Proof From Theorem 3.1, we need to derive the condition �(�) < 1 with 2-norm. From
the properties of spectral norm, the fact that M1 be a symmetric positive definite matrix and
τ1 ≥ 0, τ2 ≥ 0, by directly calculation, we have

ξ1(�) = ‖(ωI + M1)
−1N1‖2 = ‖(ωI + M1)

−1M1M
−1
1 N1‖2

≤ ‖(ωI + M1)
−1M1‖2‖M−1

1 N1‖2
= max

λ∈σ(M1)

τ1λ

ω + λ
= τ1λmax

ω + λmax
(3.7)

and

ξ2(�) = ‖(ωI + M1)
−1N2‖2 = ‖(ωI + M1)

−1M1M
−1
1 N2‖2

≤ ‖(ωI + M1)
−1M1‖2‖M−1

1 N2‖2
= max

λ∈σ(M1)

τ2λ

ω + λ
= τ2λmax

ω + λmax
(3.8)

and by simple calculations

ξ4(�) = L‖(ωI + M1)
−1‖2 = L max

λ∈σ(M1)

1

ω + λ
= L

ω + λmin
(3.9)

and

ξ3(�) = ‖(� + M1)
−1(� − M1)‖2 = max

λ∈σ(M1)

|ω − λ|
ω + λ

= max

{ |ω − λmin|
ω + λmin

,
|ω − λmax|
ω + λmax

}

=

⎧

⎪

⎨

⎪

⎩

λmax − ω

λmax + ω
, for ω ≤ √

λminλmax,

ω − λmin

ω + λmin
, for ω ≥ √

λminλmax.

(3.10)

Together (3.7), (3.8) with (3.9), (3.10) yields
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�(�) = 2[ξ1(�) + ξ2(�) + ξ4(�)] + ξ3(�)

= 2

[

τ1λmax

ω + λmax
+ τ2λmax

ω + λmax
+ L

ω + λmin

]

+

⎧

⎪

⎨

⎪

⎩

λmax − ω

λmax + ω
, for ω ≤ √

λminλmax,

ω − λmin

ω + λmin
, for ω ≥ √

λminλmax.

=

⎧

⎪

⎨

⎪

⎩

2L

ω + λmin
+ λmax(2τ1 + 2τ2 + 1) − ω

λmax + ω
, for ω ≤ √

λminλmax,

2L + ω − λmin

ω + λmin
+ 2λmax(τ1+τ2)

ω + λmax
, for ω ≥ √

λminλmax.

(3.11)

From (3.11), we have

�(�) = [2L−λmin+λmax+2τ1λmax+2τ2λmax]ω+λmax [2L+λmin+2τ1λmin+2τ2λmin]−ω2

(ω + λmin)(ω + λmax)

(3.12)

when ω ≤ √
λminλmax and

�(�) = ω2+[2L−λmin+λmax+2τ1λmax+2τ2λmax]ω+λmax[2L−λmin+2τ1λmin+2τ2λmin]
(ω+λmin)(ω + λmax)

(3.13)

when ω ≥ √
λminλmax.

We first consider the case that ω ≤ √
λminλmax. Obviously, if �(�) < 1, relationship

(3.12) implies that

ω2 − [(τ1 + τ2)λmax − λmin + L]w − λmax[(τ1 + τ2)λmin + L] > 0.

The above inequality together with (3.5) yields

ω2
1 − [(τ1 + τ2)κ − 1 + L1]w1 − κ[(τ1 + τ2) + L1] > 0. (3.14)

This combined with ω ≤ √
λminλmax gives that

ν(τ1, τ2) < ω1 ≤ √
κ.

With consideration that the obtained upper bound with respect to ω must be not less than the
corresponding lower bound, it obtains that ν(τ1, τ2) <

√
κ when 0 < τ1 + τ2 < 1−L1√

κ
.

Next, we consider the case that ω ≥ √
λminλmax. Clearly, (3.13) implies that

[(τ1 + τ2)λmax − λmin + L]ω + [(τ1 + τ2) − 1]λminλmax + Lλmax < 0,

since �(�) < 1. Using the notation (3.5), the above inequality can be rewritten as

[(τ1 + τ2)κ − 1 + L1]ω1 + [(τ1 + τ2) − 1]κ + L1κ < 0. (3.15)

If (τ1 + τ2)κ − 1 + L1 > 0, i.e.,
1 − L1

κ
< τ1 + τ2, then we have

ω1 <
[1 − L1 − (τ1 + τ2)]κ
(τ1 + τ2)κ + L1 − 1

.

This together with ω ≥ √
λminλmax gives that

√
κ ≤ ω1 <

[1 − L1 − (τ1 + τ2)]κ
(τ1 + τ2)κ + L1 − 1

.
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Solving the following inequality:

√
κ <

[1 − L1 − (τ1 + τ2)]κ
(τ1 + τ2)κ + L1 − 1

,

we have τ1 + τ2 < 1−L1√
κ
. This together with 1−L1

κ
< τ1 + τ2 yields the second condition.

If (τ1 + τ2)κ − 1 + L1 ≤ 0, i.e., 1−L1
κ

≥ τ1 + τ2 > 0. Obviously, (3.15) holds for any
ω1 > 0. This together with the fact that ω ≥ √

λminλmax yields the third condition. �

Remark 3.3 If�(z) = q , whereq ∈ Rn is a constant vector, then the problem (1.1) reduces to
the linear complementarity problem studied in Xu (2015). Because L = 0, then Theorem 3.1
reduces to Theorem 4.2 in Xu (2015).

Let D be the interval of convergence which has been obtained in Theorem 3.2. Then the
optimal ω∗ which minimizes the value of �(�) defined as (3.11) in the proof of Theorem 3.2
can be established. Since�(�) is determined byparameterω, for convenience, denote f (ω) =
�(�). That is

f (ω) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2L

ω + λmin
+ λmax(2τ1 + 2τ2 + 1) − ω

λmax + ω
, for ω ≤ √

λminλmax,

2L + ω − λmin

ω + λmin
+ 2λmax(τ1 + τ2)

ω + λmax
, for ω ≥ √

λminλmax.

(3.16)

Based on the relation (3.16) and Theorem 3.2, we have the following theorem:

Theorem 3.3 With the same notations and interval of convergence for parameter ω in The-
orem 3.2, we have

ω∗ = arg min
ω∈D f (ω) = √

λminλmax, f (ω∗) = [1 + 2(τ1 + τ2)]√κ + 2L1 − 1√
κ + 1

,

where f (ω) is defined as (3.16).

Proof First, we claim that f (ω) is continuous at ω = √
λminλmax. From the relation (3.16),

it is easy to see that f (ω) is continuous from the left and the right at ω = √
λminλmax, and

f (ω+) − f (ω−) =
[

2L + √
λminλmax − λmin√

λminλmax + λmin
+ 2λmax(τ1 + τ2)√

λminλmax + λmax

]

−
[

2L√
λminλmax + λmin

+ λmax(2τ1 + 2τ2 + 1) − √
λminλmax

λmax + √
λminλmax

]

=
√

λminλmax − λmin√
λminλmax + λmin

− λmax − √
λminλmax

λmax + √
λminλmax

= (
√

λminλmax − λmin)
2

λmin(λmax − λmin)
− (λmax − √

λminλmax)
2

λmax(λmax − λmin)

= 0.

Hence, f (ω) is continuous at ω = √
λminλmax.
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Next, we will find the minimum value point of f (ω) in the domain D.

1. If ω <
√

λminλmax, that is, 0 < τ1 + τ2 < 1−L1√
κ
, we have

f ′(ω) = − 2L

(ω + λmin)2
+ −(ω + λmax) − λmax(2τ1 + 2τ2 + 1) + ω

(ω + λmax)2

≤ −2λmax(τ1 + τ2 + 1) + 2L

(ω + λmax)2
< 0.

With consideration that obtained convergence domain for ω at this case, we know
that f (ω) is a strictly monotonic decreasing function in the interval (λminν(τ1, τ2),√

λminλmax]. Hence f (ω) attain the minimum value at ω = √
λminλmax when 0 <

τ1 + τ2 <
1 − L1√

κ
.

2. If ω >
√

λminλmax, it then follows from (3.16) that

f ′(ω) = (ω + λmin) − (2L + ω − λmin)

(ω + λmin)2
− 2λmax(τ1 + τ2)

(ω + λmax)2

= 2
(λmin − L)(ω + λmax)

2 − λmax(τ1 + τ2)(ω + λmin)
2

(ω + λmax)2(ω + λmin)2
.

Let
g(ω) = (λmin − L)(ω + λmax)

2 − λmax(τ1 + τ2)(ω + λmin)
2. (3.17)

Then

f ′(ω) = 2g(ω)

(ω + λmax)2(ω + λmin)2
.

Now, we simplify (3.17). From (3.5) and (3.17), we have

g(ω) = (λmin − L)(ω + λmax)
2 − λmax(τ1 + τ2)(ω + λmin)

2

= ω2[λmin − L − λmax(τ1 + τ2)] + 2ω[λmax(λmin − L) − λminλmax(τ1 + τ2)]
+[λ2max(λmin − L) − λ2minλmax(τ1 + τ2)]

= ω2λmin[1 − L1 − κ(τ1 + τ2)] + ω2λminλmax[(1 − L1) − (τ1 + τ2)]
+λ2minλmax[κ(1 − L1) − (τ1 + τ2)]

= aω2 + bω + c,

where a = λmin[1 − L1 − κ(τ1 + τ2)], b = 2λminλmax[(1 − L1) − (τ1 + τ2)] > 0,
c = λ2minλmax[κ(1 − L1) − (τ1 + τ2)] > 0. If quadratic term coefficient a �= 0, then
discriminant of aω2 + bω + c = 0 is

� = b2 − 4ac

= 4λ2minλ
2
max[(1 − L1) − (τ1+τ2)]2

−4λ3minλmax[κ(1 − L1) − (τ1+τ2)][1 − L1 − κ(τ1+τ2)]
= 4λ3minλmaxκ[(1 − L1) − (τ1+τ2)]2

−4λ3minλmax[κ(1 − L1) − (τ1+τ2)][1 − L1 − κ(τ1+τ2)]
= 4λ3minλmax(κ − 1)2(1 − L1)(τ1 + τ2)

> 0.
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Hence, there are two real roots of aω2 + bω + c = 0, that is,

ω(1) = −b − √
�

2a
, ω(2) = −b + √

�

2a
, ω(1) + ω(2) = −b

a
.

In the sequel, we are going to come up with the results by discussing three cases.

(2i) If a > 0, that is,

τ1 + τ2 <
1 − L1

κ
.

From the proof of Theorem 3.2, f (ω) < 1 for
√

λminλmax < ω when 1−L1
κ

> τ1+τ2.
On the other hand, ω(1) < 0, ω(1) < ω(2), ω(1) + ω(2) = − b

a < 0. As quadratic
function g(ω) opens upward, if ω(2) ≥ 0, then certainly g(0) ≤ 0, which obtains the
contradiction with g(0) = c > 0. Therefore, ω(2) < 0 and f (ω) is strictly monotonic
increasing in the interval [√λminλmax,+∞). Then f (ω) attains the minimum vale at
ω = √

λminλmax.
(2ii) If a = 0, that is,

τ1 + τ2 = 1 − L1

κ
.

Then g(ω) = bω + c > 0, which is always true for ω >
√

λminλmax. On the
other hand, from the proof of Theorem 3.2, we know that f (ω) < 1 for all ω >√

λminλmax. Therefore, f (ω) attains the minimum vale at ω = √
λminλmax in the

interval [√λminλmax,+∞).
(2iii) If a < 0, that is,

τ1 + τ2 >
1 − L1

κ
.

From the proof of Theorem 3.2, f (ω) < 1 for
√

λminλmax ≤ ω <
[1−L1−(τ1+τ2)]λmax

(τ1+τ2)κ+L1−1

when 1−L1
κ

< τ1 + τ2 < 1−L1√
κ
. By using the same analysis as the case (2i), we can con-

clude that f (ω) is strictly monotonic increasing in the interval
{

ω|√λminλmax ≤ ω <

[1−L1−(τ1+τ2)]λmax
(τ1+τ2)κ+L1−1

}

, which means
√

λminλmax is the minimum value point of the function

f (ω).
Sum up the above cases, we know that

ω∗ = arg min
ω∈D f (ω) = √

λminλmax, f (ω∗) = [1 + 2(τ1 + τ2)]√κ + 2L1 − 1√
κ + 1

,

which completes the proof. �
Notice that Zhang (2011) researched the two-stepmodulus-basedmatrix splitting iteration

method for linear complementarity problems. Xie and Xu (2016) proposed the two-step
modulus-based matrix splitting iteration method for nonlinear complementarity problems.
Theyproved that two-stepmodulus-basedmatrix splitting iterationmethod can achieve higher
computing efficiency by utilizing the information contained in the system matrix. Based on
Algorithm 2.1, we now present a two-step modulus-based matrix splitting iteration method
for (1.1).

Algorithm 3.1 Let A = M1 − N1 = M2 − N2 be two splittings of the matrix A ∈ Rn×n , let
� be an n × n positive diagonal matrix and γ be a positive constant. Given an initial vector
x0 ∈ Rn , compute z0 = (|x0| + x0)/γ . For k = 0, 1, 2, . . ., until the iteration sequence
{zk}+∞

k=0 is convergence, compute xk+1 ∈ Rn by solving the linear system
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{

(M1 + �)xk+ 1
2 = N1xk + (� − M2)|xk | + N2|xk+ 1

2 | − γ�(zk)

(M2 + �)xk+1 = N2xk+
1
2 + (� − M1)|xk+ 1

2 | + N1|xk+1| − γ�(zk+ 1
2 )

(3.18)

and set

zk+1 = 1

γ

(

|xk+1| + xk+1
)

.

Similar to the proof in Theorem 3.1, we can easily obtain the following convergence
theorem:

Theorem 3.4 Let A ∈ Rn×n be a positive definite matrix, and A = M1 − N1 = M2 − N2 be
two splittings of the matrix A with M1, M2 ∈ Rn×n being positive definite matrix. Assume
that � ∈ Rn×n is a positive diagonal matrix, γ is a positive constant and �(z) : Rn → Rn

is a Lipschitz continuous function with the Lipschitz constant L, that is, for any z1, z2 ∈ Rn,

‖�(z1) − �(z2)‖ ≤ L‖z1 − z2‖
holds. Let

ξ1(�) = ‖(� + M1)
−1N1‖, ξ2(�) = ‖(� + M1)

−1N2‖,
ξ3(�) = ‖(� + M1)

−1(� − M1)‖,
ξ4(�) = L‖(� + M1)

−1‖, ξ(�) = ξ2(�) + ξ3(�) + 2ξ1(�) + 2ξ4(�)

and

η1(�) = ‖(� + M2)
−1N2‖, η2(�) = ‖(� + M2)

−1N1‖,
η3(�) = ‖(� + M2)

−1(� − M2)‖,
η4(�) = L‖(� + M2)

−1‖, η(�) = ξ2(�) + η3(�) + 2ξ1(�) + 2ξ4(�).

Let �(�) = ξ(�) + η(�)

[1 − ξ2(�)][1 − η2(�)] . If the parameter matrix � satisfies �(�) < 1, then

the iteration sequence {zk}+∞
k=0 ⊆ Rn+ generated by Algorithm 3.1 converges to the solution

z∗ ∈ Rn+ of the problem (1.1) for any initial vector x0 ∈ Rn.

Proof The proof is the same as that of Theorem 3.1, so we omit here. �

4 Convergence analysis for the case of H+-matrix

In the following, we consider the convergence analysis of Algorithm 2.1 when the system
matrix A is an H+-matrix. To this end, we suppose that there exists a nonnegative matrix G
such that

|�(y) − �(z)| ≤ G|y − z| (4.1)

holds for any y, z ∈ Rn .
We shall emphasize that the assumption of� satisfies (4.1) is the same as that in Hong and

Li (2016). In Sun and Zeng (2011), the authors assume that � is continuously differentiable
monotone. In Ma and Huang (2016), the authors assume that � is Lipschitz continuous
diagonal function on Rn , that is, the ith component �i of � is a function of the ith variable
zi only:

�(z) = (�1(z),�2(z), . . . , �n(z))
T = (�1(z1),�2(z2), . . . , �n(zn))

T
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where z = (z1, z2, . . . , zn)T , and some functions �i : R → R, for any y, z ∈ Rn holds that

|�i (yi ) − �i (zi )| ≤ li |yi − zi |, i = 1, 2, . . . , n,

where li ≥ 0 are the Lipschitz constants. By contrast, the assumption here is much weaker.

4.1 Convergence analysis

In this subsection, we will give some convergence theorems.

Theorem 4.1 Let A ∈ Rn×n be an H+-matrix, and A = M1 − N1 = M2 − N2 be two
H-compatible splittings of the matrix A, with M1 = (m(1)

i j ), M2 = (m(2)
i j ) ∈ Rn×n. Let

A = D − B be a splitting of A with D, −B are the diagonal and the nondiagonal matrices,
respectively. Assume that � ∈ Rn×n is a positive diagonal matrix, and γ is a positive
constant. If parameter matrix � satisfies � ≥ diag(M2), 〈A〉 − G and � + M1 − |N2| are
M-matrix, then the iteration sequence {zk}+∞

k=0 ⊆ Rn+ generated by Algorithm 2.1 converges
to the solution z∗ ∈ Rn+ of the problem (1.1) for any initial vector x0 ∈ Rn.

Proof First, we prove that M1 +� is a H+-matrix. Since A = M1 − N1 is an H -compatible
splitting, i.e., 〈A〉 = 〈M1〉 − |N1|, which follows that |m(1)

i i | − |n(1)
i i | > 0. Together with

A is an H+-matrix, we have aii = m(1)
i i − n(1)

i i > 0; hence m(1)
i i > 0, i = 1, 2, . . . , n. As

〈A〉 = 〈M1〉 − |N1| and � is a positive diagonal matrix, it holds that

〈A〉 ≤ 〈M1〉 ≤ diag(M1).

According to Lemma 2.1, M1 is an H+-matrix; hence M1 + � is an H+-matrix and it holds
from Lemma 2.3 that

|(M1 + �)−1| ≤ 〈M1 + �〉−1 = (〈M1〉 + �)−1.

Combining (3.13) and (4.1) yields that

|xk+1 − x∗| ≤ |(M1 + �)−1|[|N1||xk − x∗| + |� − M2|||xk | − |x∗|| + |N2|||xk+1| − |x∗||]

+γ |(M1 + �)−1||�(zk) − �(z∗)|
≤ (〈M1〉 + �)−1[|N1| + |� − M2| + |N2|

]|xk − x∗|
+(〈M1〉 + �)−1|N2||xk+1 − x∗| + γ (〈M1〉 + �)−1G|zk − z∗|. (4.2)

As γ > 0, we have

|zk − z∗| =
∣

∣

∣

|xk | + xk

γ
− |x∗| + x∗

γ

∣

∣

∣

= 1

γ

∣

∣|xk | + xk + |x∗| + x∗∣
∣

≤ 1

γ

[||xk | − |x∗|| + |xk − x∗|]

≤ 2

γ
|xk − x∗|. (4.3)

Substituting (4.3) into (4.2), we have

|xk+1 − x∗| ≤ (〈M1〉 + �)−1[|N1| + |� − M2| + 2G
]|xk − x∗|

+(〈M1〉 + �)−1|N2||xk+1 − x∗|. (4.4)
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By simple calculation, (4.4) can be rewritten as

[1 − (〈M1〉 + �)−1|N2|]|xk+1 − x∗| ≤ (〈M1〉 + �)−1[|N1| + |� − M2| + 2G
]|xk − x∗|.

Since � + M1 − |N2| is an M-matrix, 〈M1〉 + � is an M-matrix by Lemma 2.1; hence
the splitting � + M1 − |N2| is an M-splitting and ρ((〈M1〉 + �)−1|N2|) < 1; thus if
1 − (〈M1〉 + �)−1|N2| is an M−matrix and its inverse is nonnegative, then

|xk+1−x∗| ≤ [1−(〈M1〉 + �)−1|N2|]−1(〈M1〉 + �)−1[|N1| + |� − M2| + 2G
]|xk − x∗|

≤ (� + 〈M1〉 − |N2|)−1[|N1| + |� − M2| + 2G
]|xk − x∗|.

Let ˜A = ˜M − ˜N , ˜M = �+〈M1〉− |N2|, ˜N = |N1| + |�− M2| + 2G, by some calculation,
we immediately have

˜A = ˜M − ˜N

= � + 〈M1〉 − |N2| − |N1| − |� − M2| − 2G

= � − |� − diag(M2)| + |M2| − diag(M2) + 〈A〉 − |N2| − 2G

= � − diag(M2) − |� − diag(M2)| + 2〈A〉 − 2G

If � ≥ diag(M2) and 〈A〉 − G is an M-matrix, the splitting ˜A = ˜M − ˜N is an M-splitting;
thus ρ( ˜M−1

˜N ) < 1 and hence limk→∞ xk = x∗, which completes the proof. �
Analogously, the convergence theorem for AMAOR iteration methods can be established

as follows:

Theorem 4.2 Let A ∈ Rn×n be an H+-matrix with A = D − B being a splitting of A,
where D, −B are the diagonal and the nondiagonal part of A, respectively. Assume that
ρ := ρ(〈A〉−1G) < 1, γ is a positive constant, and � ∈ Rn×n is a positive diagonal matrix
satisfying � ≥ D. Then for any initial vector, the AMAOR iteration method is convergent if
the parameter α and β satisfying

α < β <
1

ρ
, β ∈ [0, α] ∪ [α, αθα),

where θα ∈ [1,+∞) such that

ρ(D−1(θ |L| + |U | + G)) = α + 1 − |1 − α|
2α

(4.5)

Proof From the proof of Theorem 4.1, the AMAOR splitting A = M1 − N1 = M2 − N2

with

M1 = 1

α
(D − βL), N1 = 1

α
[(1 − α)D + (α − β)L + αU ], M2 = D −U and N2 = L

is convergence when ˜M is an M-matrix, ˜N ≥ 0 and ˜A = ˜M − ˜N is an M-matrix. By some
calculation, we have

˜M = � + 〈M1〉 − |N2| = � + D

α
− β

α
|L| − |L|

= � + D

α
− α + β

α
|L| (4.6)

and
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˜N = |N1| + |� − M2| + 2G =
∣

∣

∣

1

α
[(1 − α)D + (α − β)L + αU ]

∣

∣

∣ + |� − D +U | + 2G

= |� − D| + |1 − α|
α

D + |α − β|
α

|L| + 2|U | + 2G. (4.7)

Hence

˜A = ˜M − ˜N

= [� + 〈M1〉 − |N2|] − [|N1| + |� − M2| + 2G]
=

[

� + D

α
− α + β

α
|L|

]

−
[

|� − D| + |1 − α|
α

D + |α − β|
α

|L| + 2|U | + 2G
]

= α + 1 − |1 − α|
α

D − α + β + |α − β|
α

|L| − 2|U | − 2G,

where the last equality uses the condition � ≥ D. Since ˜M ≥ ˜A and ˜M is a Z -matrix, ˜M is
an M-matrix if ˜A is an M-matrix by Lemma 2.1. And the sufficient conditions for ˜A to be
an M-matrix are α + 1 − |1 − α| > 0, α > 0 and

ρ(D−1(θ |L| + |U | + G)) <
α + 1 − |1 − α|

2α
, where θ = α + β + |α − β|

2α
. (4.8)

On the other hand, note that

α + 1 − |1 − α|
2α

=
{

1, for α ∈ (0, 1];
1

α
for α ∈ [1,+∞),

with the maximum value 1 at α = 1. Since ρ := ρ(〈A〉−1G) < 1, it can be easily verified
that (α + 1 − |1 − α|)/(2α) ∈ (ρ, 1] if α ∈ (0, 1/ρ). Hence, for any fixed α, there exists

θα ∈ [1,+∞) such that (4.5) is valid. Therefore, for α < β <
1

ρ
, β ∈ [0, α] ∪ [α, αθα), the

inequality (4.8) is true. �

Similar to the proof of Theorem 4.1, we can easily obtain the following convergence
theorem:

Theorem 4.3 Let A ∈ Rn×n be an H+-matrix, and A = M1 − N1 = M2 − N2 be two
H-compatible splittings of the matrix A, with M1 = (m(1)

i j ), M2 = (m(2)
i j ) ∈ Rn×n. Let

A = D − B be a splitting of A with D, −B are the diagonal and the nondiagonal matrices,
respectively. Assume that � ∈ Rn×n is a positive diagonal matrix, γ is a positive constant. If
parameter matrix � satisfies � ≥ diag(M1), � ≥ diag(M2), 〈A〉−G and �+ M1 −|N2|,
� + M2 − |N1| are M-matrix, then the iteration sequence {zk}+∞

k=0 ⊆ Rn+ generated by
Algorithm 3.1 converges to the solution z∗ ∈ Rn+ of the problem (1.1) for any initial vector
x0 ∈ Rn.

Proof The proof is similar to that of Theorem 4.1, so we omit here. �
4.2 The optimal parameter of AMAOR method

In this subsection, we will discuss the optimal possible AMAOR method by minimizing the
associated spectral radius of the iteration matrix ρ( ˜M−1

˜N ). First, we review the following
lemma, which can be seen in Marek and Szyld (1990):
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Lemma 4.1 (Marek and Szyld 1990) Let Ai = Mi −Ni be weak nonnegative splittings with
Li = M−1

i Ni and ρ(Li ) < 1, i = 1, 2. Let xi ≥ 0 be such that Li xi = ρ(Li )xi , i = 1, 2.
Let A−1

2 ≥ 0 and A−1
2 ≥ A−1

1 . If either N2x1 ≥ N1x1 ≥ 0 or N2x2 ≥ N1x2 ≥ 0 with
x2 > 0, then ρ(L1) ≤ ρ(L2). Moreover, if A−1

2 > 0 and if N1 �= N2, then ρ(L1) < ρ(L2).

Theorem 4.4 Under the assumption of Theorem 4.2 and for any fixed � = ωD ≥ D, the
spectral radius of the AMAOR iteration matrix is a decreasing function for β ∈ [0, α], and
an increasing function for β ∈ [α, αθα). Hence, the optimalAMAOR method is theAMSOR
method.

Proof 1. If 0 ≤ β2 ≤ β1 ≤ α, from (4.6) and (4.7), we know that the AMAOR methods
corresponding to two β ′s are

˜Mω,i = (ω+ 1

α
)D− α + βi

α
|L|, ˜Nω,i = (ω−1)D+ |1 − α|

α
D+ α − βi

α
|L|+2|U |+2G

and hence
˜Aω,i = D + 1 − |1 − α|

α
D − 2|B| − 2G.

Since ˜Aω,i is irrelevant with βi , ˜Nω,2 ≥ ˜Nω,1, it then follows from Lemma 4.1 that
ρ( ˜M−1

ω,2
˜Nω,2) ≥ ρ( ˜M−1

ω,1
˜Nω,1). Hence, the spectral radius of the AMAOR iteration

matrix ρ( ˜M−1
ω

˜Nω) is a decreasing function for β ∈ [0, α].
2. If α ≤ β2 ≤ β1 < αθα , then from (4.6) and (4.7), we have

˜Mω,i = (ω+ 1

α
)D− α + βi

α
|L|, ˜Nω,i = (ω−1)D+ |1 − α|

α
D+ βi − α

α
|L|+2|U |+2G

and hence
˜Aω,i = D + 1 − |1 − α|

α
D − 2βi

α
|L| − 2|U | − 2G.

From Theorem 4.2, we know that ˜Mω,i − ˜Nω,i are M-splittings of nonsingular M-
matrices,with ˜M−1

ω,i
˜Nω,i ≥ 0 andρ( ˜M−1

ω,i
˜Nω,i ) < 1, i = 1, 2.Let δ = 2α/(α+1−|1−α|)

and ϑi = βi/α. Then

˜A−1
ω,i =

(

2

δ
D − 2ϑi |L| − 2|U | − 2G

)−1

= δ

2
[I − δD−1(ϑi |L| + |U | + G)]−1D−1

= δ

2

[

I + δD−1(ϑi |L| + |U | + G) + (δD−1(ϑi |L| + |U | + G))2 + · · ·
]

D−1

≥ 0.

Hence, ˜A−1
ω,1 ≥ ˜A−1

ω,2. Since ˜N−1
ω,1 ≥ ˜N−1

ω,2 ≥ 0, then ˜N−1
ω,1x1 ≥ ˜N−1

ω,2x1 ≥ 0, where

x1 is the eigenvector associated with ˜M−1
ω,1

˜Nω,1. It then follows from Lemma 4.1 that

ρ( ˜M−1
ω,2

˜Nω,2) ≤ ρ( ˜M−1
ω,1

˜Nω,1). Hence, the spectral radius of the AMAOR iteration

matrix ρ( ˜M−1
ω

˜Nω) is a increasing function for β ∈ [α, αθα).
From cases 1 and 2, we can conclude that the optimal AMAOR method is the AMSOR

method. The proof is completed.

Theorem 4.5 Under the assumption of Theorem 4.2 and for any fixed � = ωD ≥ D, the
spectral radius of the AMAOR iteration matrix is an increasing function for ω ∈ [1,+∞).
Hence, the optimal parameter of AMAOR method is ω∗ = 1.
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Proof Since � = ωD ≥ D, then ω ∈ [1,∞). If ω1 ≥ ω2 ≥ 1, then from (4.6) and (4.7),
we have

˜Mω,i =
(

ωi + 1

α

)

D−α + β

α
|L|, ˜Nω,i = (ωi−1)D+|1 − α|

α
D+α − β

α
|L|+2|U |+2,G

and hence
˜Aω,i =

(

D + 1 − |1 − α|
α

)

D − 2θ |L| − 2|U | − 2G.

Since ˜Aω,i is irrelevant with ωi , ˜Nω,1 ≥ ˜Nω,2, it then follows from Lemma 4.1 that
ρ( ˜M−1

ω,1
˜Nω,1) ≥ ρ( ˜M−1

ω,2
˜Nω,2). Hence, the spectral radius of the AMAOR iteration matrix

ρ( ˜M−1
ω

˜Nω) is an increasing function for ω ∈ [1,+∞]. Therefore, we can conclude that the
optimal parameter is ω∗ = 1. �

5 Numerical experiments

In this section, we represent some numerical examples to demonstrate the effectiveness of
accelerated modulus-based matrix splitting iteration methods from the aspects of iteration
steps (denoted by ‘Iter’), elapsed CPU time in seconds (denoted by ‘CPU’) and the norm of
absolute residual vectors (denoted by ‘Res’). Here, ‘Res’ is defined as

RES(zk) := ‖min(Azk + �(zk), zk)‖2,
where zk is the kth approximate solution to the problem (1.1), and the minimum is taken
componentwise.

All of the tests were run on the Intel (R) Core (TM), where the CPU is 2.40 GHz and
the memory is 8.0 GB, the programming language was MATLAB R2015a. The stopping
criterion for all methods are Res(zk) ≤ 10−5 or k reaches the maximal number of iteration,
e.g., 5000.

5.1 Comparison of Algorithm 2.1 with modulus-based method in Ma and Huang
(2016)

In this subsection, we compare ourmethodwithmodulus-basedmatrix splittingmethods (Ma
andHuang 2016). In addition, all initial vectors are chosen to be x0 = (1, 1, 1, . . . , 1)T ∈ Rn ,
and γ = 1,� = θD are chosen for both accelerated modulus-based matrix splitting methods
and modulus-based matrix splitting methods.

For convenience, let A = D− L −U with D, −L and −U being the diagonal, the strictly
lower triangular and the strictly upper-triangular matrices of A, then

M1 = 1

α
(D − βL), N1 = 1

α
[(1 − α)D + (α − β)L + αU ]

Algorithm 2.1 ofMa and Huang (2016) reduces to modulus-based accelerated overrelaxation
(MAOR) iteration method

(D + α� − βL)xk+1 = [(1 − α)D + (α − β)L + αU ]xk + α(� − A)|xk | − αγ�(zk).

It also gives modulus-based successive overrelaxation (MSOR) iteration method, modulus-
basedGauss-Seidel (MGS) iterationmethod andmodulus-based Jacobi (MJ) iterationmethod
when α = β, α = β = 1 and α = 1, β = 0, respectively.

In Table 1, the abbreviations of testing methods are listed.
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Table 1 Abbreviations of testing
methods

Method Description

MJ The modulus-based Jacobi method

MGS The modulus-based Gauss–Seidel method

MSOR The modulus-based successive overrelaxation method

AMJ The accelerated modulus-based Jacobi method

AMGS The accelerated modulus-based Gauss–Seidel method

AMSOR The accelerated modulus-based overrelaxation method

Example 5.1 We consider the nonlinear complementarity problem (1.1), which is also con-
sidered in Xia and Li (2015), for which A ∈ Rn×n is given as

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B −I O · · · O O
−I B −I · · · O O
O −I B · · · O O
...

...
. . .

...
...

O O · · · · · · B −I
O O · · · · · · −I B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, �(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z1/(1 + z1)
z2/(1 + z2)
z3/(1 + z3)

...

zn−1/(1 + zn−1)

zn/(1 + zn)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where B = tridiag(−1, 4,−1) ∈ Rm×m , I ∈ Rm×m is a unit matrix and n = m2. It is clear
that A ∈ Rn×n is symmetric positive definite matrix.

In Table 2, the iteration steps, the CPU time and the residual norms for the modulus-based
matrix splitting iterativemethods and the acceleratedmodulus-basedmatrix splitting iterative
methods for Example 5.1 are listed. Here, � = 3D.

Example 5.2 We consider the nonlinear complementarity problem (1.1), which is also con-
sidered in Xia and Li (2015), for which A ∈ Rn×n is given as

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B −0.5I O · · · O O
−1.5I B −0.5I · · · O O
O −1.5I B · · · O O
...

...
. . .

...
...

O O · · · · · · B −0.5I
O O · · · · · · −1.5I B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, �(z) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

arctan(z1)
arctan(z2)
arctan(z3)
...

arctan(zn−1)

arctan(zn)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where B = tridiag(−1.5, 4,−0.5) ∈ Rm×m , I ∈ Rm×m is a unit matrix and n = m2.

In Table 3, the iteration steps, the CPU time and the residual norms for the modulus-based
matrix splitting iterativemethods and the acceleratedmodulus-basedmatrix splitting iterative
methods for Example 5.2 are listed. Here, � = 5D.

From Tables 2 and 3, we can easily see that the iteration steps and CPU time of six
methods increase with the increasing of the problem size n = m2. Moreover, it is observed
that the accelerated modulus-based Jacobi, Gauss–Seidel and SOR methods require less
iteration steps and CPU time than modulus-based Jacobi, Gauss–Seidel and SOR methods,
respectively.Among all thesemethods, acceleratedmodulus-basedSORuse the least iteration
steps and CPU time.
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Table 4 Comparison of parameter α for Example 5.3

m α = 0.8 α = 0.9 α = 1.0 α = 1.1 α = 1.2 α = 1.3

10

MSOR

Iter 20 18 17 18 20 22

CPU 0.0243 0.0103 0.0109 0.0126 0.0109 0.0153

AMSOR

Iter 12 10 8 9 10 11

CPU 0.0231 0.0081 0.0076 0.0064 0.0074 0.0090

20

MSOR

Iter 21 19 17 19 21 23

CPU 0.0689 0.0609 0.0487 0.0687 0.0732 0.0755

AMSOR

Iter 13 10 8 9 10 11

CPU 0.0571 0.0437 0.0301 0.0368 0.0385 0.0429

30

MSOR

Iter 22 19 18 19 21 23

CPU 0.2566 0.2209 0.2255 0.2308 0.2613 0.2716

AMSOR

Iter 13 11 9 9 10 11

CPU 0.2423 0.1569 0.1321 0.1326 0.1537 0.1566

40

MSOR

Iter 22 20 18 19 21 24

CPU 0.7978 0.7210 0.6448 0.6929 0.7608 0.8560

AMSOR

Iter 13 11 9 9 10 11

CPU 0.6321 0.5341 0.4614 0.4503 0.4899 0.5347

5.2 The optimal parameter of AMSOR method

In this subsection, we consider the optimal AMAOR method, that is, AMSOR method.
First, we determine the optimal iteration parameter α, which is obtained experimentally by
minimizing the corresponding iteration steps. Moreover, we determine the optimal iteration
parameter ω in the AMGS method to illustrate the conclusion of Sect. 4. Finally, we choose
the initial vector as x0 = (0, 0, . . . , 0)T ∈ Rn , and γ = 1 in this subsection.

Example 5.3 Weconsider the nonlinear complementarity problem (1.1), forwhich A ∈ Rn×n

is given as
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Table 5 Results of AMGS with
different ω for Example 5.4

m ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

10

Iter 18 31 46 62 77

CPU 0.0294 0.0173 0.0327 0.0441 0.0515

20

Iter 20 34 50 66 82

CPU 0.0864 0.1132 0.1681 0.2332 0.2690

30

Iter 22 36 52 68 84

CPU 0.3174 0.4667 0.6436 0.8725 1.0838

40

Iter 22 36 52 69 85

CPU 0.9983 1.6766 2.2798 5.3235 3.7466

50

Iter 22 36 53 69 85

CPU 2.8024 6.6500 6.8752 11.9720 14.7316

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B −0.5I O · · · O O
−1.5I B −0.5I · · · O O
O −1.5I B · · · O O
...

...
. . .

...
...

O O · · · · · · B −0.5I
O O · · · · · · −1.5I B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where B = tridiag(−1.5, 4,−0.5) ∈ Rm×m , I ∈ Rm×m is a unit matrix and n = m2,�(z) =
h(z) − Az∗, here h(z) = (

√

z21 + 0.01, . . . ,
√

z2n + 0.01)T , z∗ = (1, 2, 1, 2, . . . , 1, 2, . . .)T .
In this example, we choose � = D + I .

In Table 4, the number of iteration steps and the elapsed CPU time in seconds are listed for
two methods when the parameter α varies from 0.8 to 1.3 for Example 5.3. From Table 4,
it is observed that for Example 5.3 the optimal parameter α∗ = 1.0 for MSOR method and
AMSOR method.

Example 5.4 Weconsider the nonlinear complementarity problem (1.1), forwhich A ∈ Rn×n

is given as

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B −I −I

B −I
. . .

B
. . . −I
. . . −I

B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where B = tridiag(−1, 4,−1) ∈ Rm×m , I ∈ Rm×m is a unit matrix and n = m2, �(z) =
h(z) − Az∗, here h(z) = (arctan(z1), . . . , arctan(zn))T , z∗ = (1, 2, 1, 2, . . . , 1, 2, . . .)T . In
this example, we fix α = 1. That is, we consider the AMGS method.
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In Table 5, we list the iteration steps and CPU time of AMGS method with iteration
parameter ω = 1, 2, 3, 4, 5. From Table 5, it is further confirmed that the iteration steps
and CPU time increase as problem size increases. At the same time, we find that the AMGS
methodwithω = 1 requires the least iteration steps andCPU time compared to other iteration
parameters. This result verifies the analysis in Theorem 4.5.

6 Conclusions

The accelerated modulus-based matrix splitting iteration methods for the solution of a class
of nonlinear complementarity problem is presented. The proposed method not only compu-
tationally more convenient to use because of storage requirement, but it is also faster than
the modulus-based matrix splitting methods. We show their convergence by assuming that
the system matrix is positive definite or the splitting of the system matrix are H+-compatible
splitting. Also, we discuss the optimal parameter. Furthermore, we give two-step acceler-
ated modulus-based matrix splitting iteration method, which may achieve higher computing
efficiency. In addition, we present numerical examples, which demonstrate that accelerated
modulus-based matrix splitting iteration method is efficient.
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