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Abstract We introduce and study the family of sets in a finite-dimensional Euclidean space
which can be written as the Minkowski sum of an open, bounded, and convex set and
a closed convex cone. We establish several properties of the class of such sets, called
OM-decomposable, some of which extend related properties holding for the class ofMotzkin
decomposable sets (i.e., those for which the convex and bounded set in the decomposition is
requested to be closed, hence compact).
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1 Introduction

It has been known at least since themid nineteenth century that the set of solutions of a system
of linear equations admits an explicit representation, as the sum of a particular solution plus
an arbitrary linear combination of the vectors forming a basis of the linear subspace consisting
of the solutions of the associated homogeneous system. The corresponding result for systems
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of linear inequalities is much more recent. In his doctoral thesis Motzkin (1936), proved that
the set F of solutions of such a system consists of the sums of convex combinations of a
finite set of vectors (the vertices of F) and nonnegative combinations of another finite set (the
extreme rays of F). In modern terminology, every (possibly unbounded) convex polyhedron
is the Minkowski sum of a convex and compact polytope and a closed and convex cone. This
characterization turned out to be quite useful for establishing finite convergence of pivotal
algorithms for Linear Programming (e.g., the Simplex Method, see Dantzig 1963), and more
specifically, for Quadratic Programming, like Lemke’s method, see Cottle et al. (1992).

Motzkin’s representation result suggested the consideration of a class of convex sets
more general than polyhedra, resulting from removing the “linear” nature of these, while
keeping the decomposition aspect. More precisely, those sets in R

n can be written as the
Minkowski sum of a compact and convex set and a closed and convex cone. Such sets were
introduced in Goberna et al. (2010a), where they were called Motzkin decomposable, or M-
decomposable, in short, and further studied in Goberna et al. (2010b, 2013), together with
the M-decomposable functions, namely those whose epigraphs are M-decomposable. The
class of M-decomposable sets lies hence in between the classes of closed polyhedra and of
closed and convex sets.

M-decomposable sets were considered, without further analysis, in Bair (1976, 1979),
where they were called generalized convex polyhedral, since it follows fromMotzkin’s result
that polyhedral sets are always M-decomposable. Unfortunately, the same name has been
given by other authors to those sets whose nonempty intersectionwith polytopes is polytopes,
which are also called quasipolyhedral or boundedly polyhedral. Another early reference
related to M-decomposability is Klee (1958). In fact, it follows from the representation
theorem in Klee (1958) that a set is M-decomposable if and only if its intersection with the
orthogonal complement of its affine hull is M-decomposable (see Theorem 6 in Goberna
et al. 2010b).

We comment now on some features of M-decomposable sets. It is easy to check that the
cone D appearing in the decomposition of an M-decomposable set F = C + D (where C
is the compact set), is uniquely determined; it is precisely the recession cone 0+(F) of F ,
namely the set of directions d ∈ R

n , such that {a + td : t ∈ R+} ⊂ F for any a ∈ F . On the
other hand, whenever D �= {0}, the compact and convex setC is not uniquely determined; the
given set C might be replaced, for instance, by F ∩ B, where B is any ball in Rn containing
C .

A sizable number of additional properties of such sets and functions were established in
the above-mentioned references, and we single out two of them for future reference.

First, M-decomposable sets whose recession cones are pointed admit aminimal decompo-
sition, which we define next.We say that a representation F = C+D of anM-decomposable
set F is minimal when C ⊂ C ′ for any convex and compact set C ′ ⊂ R

n , such that
F = C ′ + D. When F is M-decomposable and D is pointed, there exists such a min-
imal decomposition, and the corresponding compact and convex set C is itself uniquely
determined: it is the closed and convex hull of the extreme points of F (see Theorem 11(ii)
in Goberna et al. 2010b).

Second, M-decomposable sets whose recession cones are pointed admit an
M-decomposition of truncation type, meaning a decomposition F = C + D with the follow-
ing property: there exits a hyperplane H , such that C is the intersection of F with one of the
halfspaces determined by H , while the intersection of F with the opposite halfspace consists
of a set of halflines emanating from F ∩ H (see Lemmas 21 and 29 in Goberna et al. 2013).

M-decomposable sets share some properties of convex sets, but not all. For instance, the
Minkowski sum of two convex sets is convex, but the Minkowski sum of M-decomposable
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sets may fail to beM-decomposable. This is a consequence of the facts that M-decomposable
sets are always closed, and theMinkowski sumof closed setsmay not be closed. This situation
suggests that it might be of interest to relax the closedness assumptions on the sets involved in
anM-decomposition, namely the bounded convex set and the cone. The closedness hypothesis
on the cone was relaxed in Iusem et al. (2014), where the so-calledM-predecomposable sets
were introduced, meaning those sets of the form F = C + D, where C is a convex and
compact set and D is a convex cone, not necessarily closed. Several properties of these sets
(including some not enjoyed by M-decomposable sets, like the one related to the Minkowski
sum) were established in Iusem et al. (2014).

In this paper, we will continue this line of research, keeping the closedness of the cone, but
discarding the compactness assumption on the bounded set. More precisely, we will assume
that C is an open, bounded, and convex set. Regarding the cone D, for the sake of simplicity,
we will fix it as the recession cone of F , i.e., we will consider sets F ⊂ R

n , such that
F = C + O+(F), where C is open, bounded, and convex, and O+(F) is the recession cone
of F . These sets will be called OM-decomposable (OM standing for “Open Motzkin”).

We will prove in Sect. 2 that the OM-decomposable sets are precisely those whose closure
is M-decomposable. After showing that the Minkowski sum of two OM-decomposable sets
is OM-decomposable, we will proceed to establish suitable extensions to OM-decomposable
sets of the two above-described results on M-decomposable sets.

2 OM-decomposable sets

We start this section with the formal definition of OM-decomposable sets.

Definition 1 The convex set ∅ �= F ⊂ R
n is OM-decomposable if there exists a nonempty,

open, convex, and bounded set C ⊂ R
n , such that F = C + O+(F).

Remark 1 Observe that if F ⊂ R
n is OM-decomposable, then F is open and convex.

We start with an elementary property of open and convex sets, needed in for the proof of
Theorem 2.

Lemma 1 Let ∅ �= F ⊂ R
n be an open and convex set. Then, O+(F) = O+[cl(F)].

Proof Take d ∈ O+(F), x ∈ cl(F) and λ ≥ 0. There exists a sequence {xk} ⊂ F converging
to x . Hence, the sequence {xk + λd} is contained in F and it converges to x + λd ∈ cl(F).
Therefore, d ∈ O+[cl(F)]. Now, take d ∈ O+[cl(F)], x ∈ F and λ ≥ 0. Since F is an open
and convex set, we have that int[cl(F)] = F . Therefore, x + λd ∈ F . The lemma is proved.

	

Next, we deal with the relation between OM-decomposable sets and M-decomposable

ones. Before establishing the result, we quote a theorem onM-decomposable sets which will
be needed in the proof.

Theorem 1 If F is M-decomposable and O+(F) is pointed, then there exists an M-
decomposition of F, say F = C + O+(F), of truncation type, meaning that there exists
a hyperplane H, such that C = F ∩ H+, and F ∩ H− = (F ∩ H) + O+(F), i.e., F ∩ H−
is a set of halflines emanating from F ∩ H.

Proof See Lemmas 21 and 29 in Goberna et al. (2013). 	
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Our result on the connection between M- and OM-decomposability is the following.

Theorem 2 Let ∅ �= F ⊂ R
n be an open and convex set. Assume that O+(F) is pointed.

Then, F is OM-decomposable if and only if cl(F) is M-decomposable.

Proof �⇒) F = C + O+(F), implying that cl(F) = cl(C) + cl[O+(F)] = cl(C)

+ cl[O+(cl(F))] = cl(C) + O+[cl(F)]. Since C is bounded and convex, we get that cl(F)

is M-decomposable.
⇐�) cl(F) is M-decomposable, so that there exists a convex, compact set C , such that

cl(F) = C + O+[cl(F)] = C + O+(F). Since O+(F) is a pointed cone, we invoke
Theorem 1, concluding that there exists a hyperplane H , such that C ⊂ H− ∩ cl(F) and
cl(F) = H− ∩ cl(F) + O+(F). Since F is an open set, without loss of generality, we
can consider that H− ∩ cl(F) has dimensionality n. By convexity, int[H− ∩ cl(F)] =
int(H−) ∩ F ⊂ F . Hence

int
[
H− ∩ cl(F)

] + O+(F) = int
(
H− ∩ F

) + O+(F) ⊂ F.

Now, let us take a point x ∈ F . Suppose that x /∈ int(H−) ∩ F + O+(F). It follows that:

cl(F) = H− ∩ cl(F) + O+[cl(F)]
= cl

[
int

(
H−) ∩ F

] + O+(F) = cl
[
int

(
H−) ∩ F + O+(F)

]
,

by convexity and Lemma 1. Hence, x ∈ bd[cl(F)], which is a contradiction. Thus, we obtain
that F = int(H−) ∩ F + O+(F), which implies that the set F is OM-decomposable. The
proof is complete. 	

Remark 2 Theorem 2 shows a kind of symmetry between closed M-decomposable and the
open OM-decomposable sets.

Remark 3 We remark that a set lying strictly in between an OM-decomposable set and its
closure, is neither OM-decomposable nor M-decomposable. Indeed, in view of Remark 1,
such set would be in between an open set and its closure, and hence, it would be neither
open nor closed, but OM-decomposable sets are open, invoking again Remark 1, and M-
decomposable sets are clearly closed.

Next, we show that the Minkowski sum of OM-decomposable sets is OM-decomposable.

Proposition 1 Let the convex set F ⊂ R
n be such that F = C + D, where C ⊂ F is a

convex, open, and bounded set and D is a convex cone. Then, D ⊆ O+(F) and F = C + D
= C + O+(F).

Proof Take any d ∈ D and x ∈ F . Then, x = c + h, with c ∈ C and h ∈ D. Observe
that x + d = c + (h + d) belongs to F , because h + d ∈ D. Therefore, d ∈ O+(F) and
D ⊆ O+(F). Hence, F = C + D ⊂ F + D ⊆ F + O+(F) = F, so that F = C + D
= C + O+(F). 	

Corollary 1 If F,G are OM-decomposable, then F + G is OM-decomposable.

Proof It follows easily from Proposition 1. 	

At this point, a comment is in order on the possibility of considering OM-decomposable

sets in an infinite-dimensional space V (e.g., a Hilbert or Banach space), defined as in
Definition 1 with V substituting for Rn . It is easy to check that Corollary 1 holds in this
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context, i.e., the Minkowski sum of infinite-dimensional OM-decomposable sets is indeed
OM-decomposable. However, the extension of the reminder of our work to the infinite dimen-
sional setting becomes much more complicated, because a basic component of our analysis
will be the relation between an OM-decomposition C + O+(F) and the decomposition
cl(C) + O+(F). Now, since C ⊂ V is assumed to be open, its affine hull is necessarily
infinite dimensional when V is infinite dimensional, in which case cl(C) cannot be compact,
i.e., cl(C) + O+(F) fails to be an M-decomposition. Of course, one could request the com-
pact set in an M-decomposition the be just closed and bounded, but it turns out to be that in
most results on M-decomposable sets proved in Goberna et al. (2010a, b, 2013) (including
those which will be invoked in the sequel), the compactness of the bounded component plays
an essential role. In other words, to study OM-decomposable sets in infinite-dimensional
spaces, one should rework first the theory of M-decomposability in such spaces, relaxing the
compactness assumption, e.g., to closedness and boundedness, which is certainly a nontrivial
task. For this reason, in this work, we restrict our analysis of OM-decomposability to the
finite-dimensional case.

Now, we will extend to OM-decomposable sets some results which hold for M-
decomposable sets. We recall that a closed set F ⊂ R

n is M-decomposable iff
F = C+O+(F) for some compact and convex setC . We start by introducing some notation
and quoting a result on M-decomposable sets.

Given a hyperplane H = {x ∈ R
n : at x = α}, with a ∈ R

n , α ∈ R, we denote
as H+, H− the two halfspaces determined by H , i.e., H+ = {x ∈ R

n : at x ≥ α},
H− = {x ∈ R

n : at x ≤ α}.
Theorem 3 If F is M-decomposable and O+(F) is pointed, then there exists a minimal
M-decomposition of F, meaning an M-decomposition of the form F = C + O+(F), such
that C ⊂ C ′ for all M-decomposition F = C ′ + O+(F). In fact, C is precisely the closed
convex hull of the extreme points of F.

Proof See Theorem 11 in Goberna et al. (2010b). 	

We study next the suitable extensions of Theorems 1 and 3 to the case of OM-

decompositions. We start by stating an elementary property.

Proposition 2 Let C ⊂ R
n be an open, bounded, and convex set, E ⊂ R

n be a closed and
convex set, and K ⊂ R

n a closed and convex cone. Then

(i) int(E) + K = int(E + K ),
(ii) cl(C) + K = cl(C + K ).

Proof (i) It is immediate that both sets int(E) + K and int(E + K ) are open, and that they
have the same closure, namely cl(E + K ). Hence, they coincide.

(ii) Observe that cl(C + K ) = cl(C) + cl(K ) = cl(C) + K , by closedness of K .
	


Now, we state and prove the extension of Theorem 3 to OM-decomposable sets.

Theorem 4 Assume that F is OM-decomposable and that O+(F) is pointed. Let C
be the closed convex hull of the extreme points of cl(F). If int(C) �= ∅, then
F = int(C) + O+(F), and this is a minimal OM-decomposition of F, meaning that
int(C) ⊂ C ′ for all OM-decomposition F = C ′ + O+(F) of F. If int(C) = ∅, then there
exists no minimal OM-decomposition of F.
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Proof By Theorem 2, cl(F) is M-decomposable. By Theorem 3, cl(F) = C + O+(F) and
this M-decomposition is minimal. We proceed to prove that F = int(C)+O+(F). Note that

int(C) + O+(F) = int(C + O+(F)) = int[cl(F)] = int(F) = F,

using Proposition 2(i) in the first equality, Theorem 3 in the second one, convexity of F in
the third one, and openness of F in the fourth one. The claim is proved. Next, we prove the
minimality of the OM-decomposition F = int(C) + O+(F). Assume that there exists an
open set E , such that E + O+(F) =int(C) + O+(F). Then

cl(E) + O+(F) = cl[E + O+(F)] = cl[int(C)] + O+(F) = cl(F),

using Proposition 2(ii) in the first equality. It follows that cl(E) + O+(F) is an M-
decomposition of cl(F). By the minimality property of C (Theorem 3), we get that
C ⊂ cl(E), so that int(C) ⊂ int[cl(E)] = E , using the fact that E is open and convex in the
equality.Wehave established theminimality of theOM-decomposition F = int(C)+O+(F).

Finally, we prove that if int(C) = ∅, then there is no minimal OM-decomposition of F .
Consider an OM-decomposition of F , i.e., F = E + O+(F) with E open and bounded.
Let A be the affine hull of C (also called the linearity of C , i.e., the intersection of all the
affine manifolds containing C). Since int(C) = ∅, we get that dim(A) < n. Let B = A⊥
be the orthogonal complement of A, and relint(C) be the relative interior of C , meaning the
interior of C relative to A. For ε > 0, define Ĉε = {d + u : d ∈ relint(C), u ∈ B, ‖u‖ < ε}.
Note that Ĉε is homeomorphic to relint(C) × B̂, with B̂ = {u ∈ B : ‖u‖ < ε}. Observe
that relint(C) is open in the relative topology of A, and B̂ is open in the relative topology of
B, so that relint(C) × B̂ is an open subset of A × B in the product topology, which is just
the standard topology of Rn = A × B. We conclude that Ĉε is open in R

n for all ε > 0.
Define C̃ε = Ĉε ∩ E . Clearly, C̃ε is open. We will prove that it is nonempty. We claim first
that C ⊂ cl(E). By Theorem 2, cl(F) = cl(E) + O+(F) is an M-decomposition of cl(F).
Note that the extreme points of cl(F) belong to cl(E), because otherwise, they would be of
the form c + y with 0 �= y ∈ O+(F) and c ∈ cl(E), but then c + y belongs to the segment
between c + (1/2)y ∈ cl(E) + O+(F) and c + (3/2)y ∈ cl(E) + O+(F), and hence, it
cannot be an extreme point. Since cl(E) is convex, it follows thatC ⊂ cl(E), establishing the
claim. Take a point z ∈ relint(C) ⊂ Ĉε . Since z ∈ cl(E), there exists a sequence {zk} ⊂ E ,
such that limk→∞ zk = z. Since Ĉε is open, zk belongs to Ĉε for large enough k, so that
zk ∈ Ĉε ∩ E = C̃ε, and hence, C̃ε is nonempty. We claim now that C̃ε + O+(F) = F for
all ε > 0. Since C̃ε ⊂ E , we have that

C̃ε + O+(F) ⊂ E + O+(F) = F. (1)

On the other hand, note that C ⊂ cl(Ĉε). Since C ⊂ cl(E), we have that C ⊂ cl(Ĉε ∩ E)

= cl(C̃ε), so that

cl(F) = C + O+(F) ⊂ cl
(
C̃ε

) + O+(F) = cl
(
C̃ε + O+(F)

)
, (2)

using Proposition 2(ii) in the last equality. Since F and C̃ε + O+(F) are both convex, taking
interior in both sides of (2), we obtain that F ⊂ C̃ε + O+(F), which, in view of (1),
gives F = Ĉε + O+(F), establishing the claim. We have shown that C̃ε + O+(F) is an
OM-decomposition of F for all ε > 0. If there existed a minimal OM-decomposition of
F , say of the form F = C∗ + O+(F) with C∗ open and bounded, we would have that
C∗ ⊂ ∩ε>0C̃ε ⊂ ∩ε>0Ĉε, but it follows easily from the definition of Ĉε that ∩ε>0Ĉε = ∅,
completing the proof. 	
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We give next an example of an OM-decomposable set for which there exists no minimal
OM-decomposition.

Example 1 Take F = {(x, y) ∈ R
2 : 0 < x < 2, y > 0}.

It is clear that the set of extreme points of cl(F) is {(0, 0), (2, 0)}, so that the closed and
convex hull of the extreme points of F is the set C = {(x, 0) : 0 ≤ x ≤ 2}, which has empty
interior in R2. Consider the triangle with vertices at (0, 0), (2, 0), and (1, t), with t ∈ (0, 1),
and let Ut be the interior of such triangle. It is easy to check that O+(F) = {(0, s) : s ≥ 0},
and that F admits the OM-decomposition F = Ut +O+(F) for all t > 0. Since∩t>0Ut = ∅,
there exists no minimal OM-decomposition of F .

Next, we extend Theorem 1 to OM-decompositions. We start by introducing a suitable
definition of an OM-decomposition of truncation type.

Definition 2 An OM-decomposition of truncation type of an OM-decomposable set F is an
OM-decomposition F = C + O+(F), such that there exists a hyperplane H satisfying:

(i) C = F ∩ int(H+),
(ii) F ∩ H− = (F ∩ H) + O+(F).

We will need an elementary result.

Proposition 3 Assume that the hyperplane H = {x ∈ R
n : at x = α} induces an M-

decomposition of truncation type of anM-decomposable set E. If β < α, then the hyperplane
Ĥ = {x ∈ R

n : at x = β} also induces an M-decomposition of truncation type of E.

Proof First, we must check that E ∩ Ĥ+ is compact and convex. It is certainly closed and
convex, since both E and Ĥ+ are closed and convex. We prove next that it is bounded.
Suppose, for the sake of contradiction, that it is unbounded. Since E ∩ H+ is bounded,
because H induces an M-decomposition of truncation type, we obtain that E ∩ {x ∈ R

n :
β ≤ at x ≤ α} is unbounded, and hence, being convex, it contains a halfline, say with
direction u ∈ O+(E). It follows that u is a direction in H , but then E ∩ H+ is unbounded,
a contradiction. Hence, E ∩ Ĥ+ is bounded. Now, E ∩ Ĥ− ⊂ E ∩ H−. Therefore, E ∩ Ĥ−
also consists of a set of halflines emanating from E ∩ Ĥ (each one of which is contained in
the corresponding halfline of E ∩ H− of the same direction, emanating from E ∩ H ). 	


The extension of Theorem 1 is the following.

Theorem 5 If F is OM-predecomposable and O+(F) is pointed, then there exists an
OM-decomposition of F, say F = C + O+(F), of truncation type.

Proof By Theorem 2, cl(F) is M-decomposable. By Theorem 1, cl(F) admits an M-
decomposition of truncation type, say the one given by the hyperplane H =
{x ∈ R

n : at x = α} (a ∈ R
n, α ∈ R). Take any β < α, and consider the hyperplane

Ĥ := {x ∈ R
n : at x = β}. By Proposition 3, Ĥ induces an M-decomposition of cl(F) of

truncation type. We must check that Ĥ also induces an OM-decomposition of F of trun-
cation type. It is clear that F ∩ Ĥ− is a set of halflines emanating from F ∩ Ĥ , and that
F ∩ int(Ĥ+) is open. Since F ∩ int(Ĥ+) ⊂ cl(F) ∩ Ĥ+, which is a compact set, we obtain
that F ∩ int(Ĥ+) is bounded. It only remains to see that F ∩ int(Ĥ+) is nonempty (indeed,
this is the only reason for switching from H to Ĥ ; the set F∩ int(H+)might be empty). Note
that cl(F) ∩ H �= ∅, because H induces an M-decomposition of truncation type of cl(F).
Take x ∈ relint[cl(F)∩H ] = F ∩H . Then, at x = α > β, meaning that x ∈ int(Ĥ+). Thus,
x ∈ F∩ int(Ĥ+), completing the proof. 	
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