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Abstract An alternative approach for the analysis and the numerical approximation of sin-
gular perturbation problems, using a variational framework, is presented. It is based on the
natural idea of minimizing the residual of the differential equation measured in the L2 norm.
By this strategy, the approximation is based in the solution of a set of linear problems giving
the descent step directions of the problem. This is the main advantage of our approach, since
we can use stable and convergent methods for linear problems (without assuming the knowl-
edge of good initial guesses used in the approximation of the associated non-linear systems
necessary in Newton-type methods). Remember that for this type of problems, we should
use implicit methods. We prove that our procedure can never get stuck in local minima,
and the error decreases until getting to the original solution independent of the perturbation
parameter. Finally, we include some numerical examples.
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1 Introduction

We start with the singular perturbation problem

y
′
(t) = f (y(t), z(t)),

εz
′
(t) = g(y(t), z(t)), 0 < ε << 1,

y(0) = y0, z(0) = z0.

The structure of the solutions of these problems is well understood (Hairer and Wanner
1991). They are a superposition of smooth solution having an ε-expansion plus some rapidly
decay functions. Of course, we should assume some hypotheses on the function g: gz(y, z)
is invertible and his logarithmic norm is negative in a ε-independent neighborhood of the
solution.

To approximate these equations, we should use implicit methods. For explicit methods, the
discretization parameters depend on the perturbation parameters and they have not practical
interest. The error analysis and the existence and uniqueness of the implicit Runge–Kutta
equations are also analyzed in Hairer and Wanner (1991). The results are supported in the
Newton–Kantorovich theory. In particular, we have the difficult task to find good initial
guesses to approximate the nonlinear Runge–Kutta equations by Newton-type methods. In
practice, this fact should be a real problem, as we will point out in the following example:

1.1 Linear vs nonlinear singular perturbation problems

The problems with nonlinear equations can appear even for very robust methods using step
variable implementations. In this section, we analyze the numerical behavior, for linear and
nonlinear equations, of the stiff solver ode23s, that we can find in the odeset of MATLAB
(The MathWorks 2017).

We consider the linear problem (Stoer and Bulirsch 1993)

y′
1(t) = λ1 + λ2

2
y1(t) + λ1 − λ2

2
y2(t),

εy′
2(t) = λ1 − λ2

2
y1(t) + λ1 + λ2

2
y2(t),

with λi < 0, and two (associated) nonlinear problems:

y′
1(t) = λ1 + λ2

2
y1(t) + λ1 − λ2

2
y2(t) + y1(t)y2(t),

εy′
2(t) = λ1 − λ2

2
y1(t) + λ1 + λ2

2
y2(t).

and

y′
1(t) = λ1 + λ2

2
y1(t) + λ1 − λ2

2
y2(t) + y1(t)y2(t),

εy′
2(t) = λ1 − λ2

2
y1(t) + λ1 + λ2

2
y2(t) + 2y1(t)y2(t).

We consider in all the cases λ1 = −1015, λ2 = −10−15, ε = 1015 and (1, 1) as the initial
conditions.

As we can see, in Fig. 1, for the linear case and for the first nonlinear perturbation, the
method gives good results even for these large parameters. In this case, the nonlinear part
appears only in the first equation (without ε).
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Fig. 1 Left second component of the linear problem, right second component of the first nonlinear problem
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Fig. 2 Left second component of the second nonlinear problem, right a zoom of the oscillation near the end
of the interval

However, some oscillations occur in the second nonlinear problem (Fig. 2). The stiffness
caused by the linear part at the beginning of the interval is well integrated. The oscillations
are at the end of the interval where the nonlinear part dominates. This fact indicates that the
considered initial guess is outside of the basin of attraction of the used Newton-type method
(Hairer and Wanner 1991).

1.2 Our variational approach

The ideas which we would like to introduce for the treatment of singular perturbation prob-
lems are based on the analysis of a certain error functional of the form:

E(y, z) = 1

2

∫ T

0
|y ′

(t) − f (y(t), z(t))|2 + |εz′
(t) − g(y(t), z(t))|2 dt,

to be minimized among the absolutely continuous paths y, z : (0, T ) → RN with
(y(0), z(0)) = (y0, z0). Note that if E(y, z) is finite for one such path (y, z), then auto-
matically, y′ and z

′
are square integrable.

This error functional is associated in a natural way with the original singular perturbation
problem.
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One main property of this functional is the absence of local minima different from the
solution of the problem. Thus, the typical minimization schemes like (steepest) descent
methods will work fine as they can never get stuck in local minima, and converge steadily to
the solution of the problem, no matter what the initialization is. In our approach, based on
optimality conditions, we only need to approximate linear singular perturbation problems.
In particular, the problem of having good initial guesses in the application of Newton-type
methods, to approximate the associated nonlinear equations, is avoided. In fact, we will able
to ensure global convergence independent of ε.

We should mention that we have already explored in some previous papers this point of
view. Since the initial contributions (Amat and Pedregal 2009, 2013), we have also treated
the reverse mechanism of using first discretization and then optimality (Amat et al. 2014).
We also have addressed, from this viewpoint, other problems like DAEs (Amat et al. 2013)
or problems with retarded arguments (Amat et al. 2012).

The paper is organized as follows: in Sect. 2, we introduce our algorithm and we prove
its global convergence for all ε > 0, and in Sect. 3, we present some numerical analysis
pointing out some advantages of our variational approach in comparison with the classical
implicit approach.

2 Some analysis of the variational approach

The analytical part of this contribution requires a special property on the maps f and g: for
every positive C > 0 and small η > 0, there are constants D f

C,η > 0 and Dg
C,η > 0, so that

| f (y + r, z + s) − f (y, z) − ∇ f (y, z)(r, s)| ≤ D f
C,η|(r, s)|2, |(y, z)| ≤ C, |(r, s)| ≤ η,

and

|g(y + r, z + s) − g(y, z) − ∇g(y, z)(r, s)| ≤ Dg
C,η|(r, s)|2, |(y, z)| ≤ C, |(r, s)| ≤ η.

This regularity is somehow not surprising as our approach here is based on regularity and
optimality. On the other hand, that regularity holds for most of the important problems
in applications. It certainly does in all numerical tests performed in this work. See, how-
ever, Amat and Pedregal (2009) for a similar analysis under more general assumptions. Our
emphasis here is placed on the fact that this optimization strategy may be utilized to set
up approximation schemes based on the minimization of the error functional. Indeed, the
analytical part is oriented towards providing a solid basis for this approximation procedure.

Proposition 1 Let (y, z) be a critical point for the error E. Then, (y, z) is the solution of
the singular perturbation problem.

Proof The proof is elementary. Based on the smoothness and bounds assumed on the map-
pings f and g, we conclude that if (y, z) ≡ (y, z) is a critical point for the error E , then
(y, z) ought to be a solution of the problem:

− d

dt

(
y′(t) − f (y(t), z(t))

) − (
y′(t) − f (y(t), z(t))

) ∇ f (y(t), z(t)) = 0 in (0, T ),

− d

dt

(
εz′(t) − g(y(t), z(t))

) − (
εz′(t) − g(y(t), z(t))

) ∇g(y(t), z(t)) = 0 in (0, T ),

y(0) = y0, y
′(T ) − f (y(T ), z(T )) = 0, z(0) = z0, εz

′
(T ) − g(y(T ), z(T )) = 0.
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The vector-valued maps r(t) = y′(t) − f (y(t), z(t)) and s(t) = εz′(t) − g(y(t), z(t)) are
then solutions of the linear, nondegenerate problems:

r ′(t) + r(t)∇ f (y(t), z(t)) = 0 in (0, T ), r(T ) = 0,

s′(t) + s(t)∇g(y(t), z(t)) = 0 in (0, T ), s(T ) = 0.

The only solutions of these problems are r ≡ 0 and s ≡ 0, and so (y, z) is the solution of
the singular perturbed problem. ��

It, therefore, looks like a promising strategy to search for approximations of the solution
(y, z) by minimizing the error E .

On the other hand, suppose that we start with an initial crude approximation (y(0), z(0)) ≡
(y, z) to the solution of our original singular perturbation problem. We could take
(y(0), z(0)) = (y0, z0) for all t . We would like to improve this approximation in such a
way that the error is significantly decreased.

It is straightforward to find the Gâteaux derivative of E at a given feasible (y, z) in the
direction (r, s) with (r(0), s(0)) = (0, 0). Namely

E ′(y, z)(r, s) =
∫ T

0
(y′(t) − f (y(t), z(t)), εz′(t) − g(y(t), z(t)))T

· (r ′(t) − ∇ f (y(t), z(t))r(t), εs′(t) − ∇g(y(t), z(t))s(t)) dt.

This expression suggests a main possibility to select (r, s) from:
Choose (r, s), such that

r ′(t) − ∇ f (y(t), z(t))(r(t), s(t)) = f (y(t), z(t)) − y′(t) in (0, T ), r(0) = 0,

εs′(t) − ∇g(y(t), z(t))(r(t), s(t)) = g(y(t), z(t)) − εz′(t) in (0, T ), r(0) = 0.

In this way, it is clear that E ′(y, z)(r, s) = −2E(y, z), and so the (local) decrease of the
error is of the size E(y, z). Finding (r, s) requires only solving the above linear problem.

2.1 Strong global convergence

Suppose (y, z) are feasible paths in the interval (0, T ), so that y(0) = y0, z(0) = z0, y′, z′
are square integrable, and the quantity

E(y, z) = 1

2

∫ T

0
|y′(t) − f (y(t), z(t))|2 + |εz′(t) − g(y(t), z(t))|2 dt,

measures how far such x is from being a solution of our problem. We also assume that
|(y(t), z(t))| ≤ C for a fixed constant C , and all t ∈ (0, T ).

Choose η > 0 and 0 < α < 1, so that η

1−√
α

≤ C .

We then solve for (r, s) the linear problem

r ′(t) − ∇ f (y(t), z(t))(r(t), s(t)) = f (y(t), z(t)) − y′(t) in (0, T ), r(0) = 0,

εs′(t) − ∇g(y(t), z(t))(r(t), s(t)) = g(y(t), z(t)) − εz′(t) in (0, T ), s(0) = 0,

and pretend to update (y, z) to (y + r, z + s) in such a way that the error for (y + r, z + s)
be less than the error for the current iteration (y, z).
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Note that

E(y + r, z + s) = 1

2

∫ T

0
|y′

(t) + r
′
(t) − f (y(t) + r(t), z(t) + s(t))|2

+ |ε(z′ (t) + s
′
(t)) − g(y(t) + r(t), z(t) + s(t))|2 dt

= 1

2

∫ T

0
| f (y(t) + r(t), z(t) + s(t)) − f (y(t), z(t)) − ∇ f (y(t), z(t))(r(t), s(t))|2

+ |g(y(t) + r(t), z(t) + s(t)) − g(y(t), z(t)) − ∇g(y(t), z(t))(r(t), s(t))|2 dt
where we have used the differential equations satisfied by r and s.

By our assumption on f and g above,

| f (y + r, z + s) − f (y, z) − ∇ f (y, z)(r, s)| ≤ D f
C,η|(r, s)|2,

and

|g(y + r, z + s) − g(y, z) − ∇g(y, z)(r, s)| ≤ Dg
C,η|(r, s)|2,

provided that |(y, z)| ≤ C, |(r, s)| ≤ η. Let D := max{D f
C,η, D

g
C,η}.

Since we know that (r, s) is the solution of the above linear problem and recalling ourmain
assumption, gz(y, z) is invertible, and his logarithmic norm is negative in a ε-independent
neighborhood of the solution, we have the upper bounds (see Theorem 3.2 in Hairer and
Wanner 1991):

max{|r(t)|2, |s(t)|2} ≤ T K E(y, z) for all t ∈ [0, T ], K > 0. (1)

Notice that (r(t), s(t)) is the solution of a linear perturbation problem with jacobian respect
to the second component equal to gz(y, z) (the same as the original problem). Thus, assuming
the above hypothesis on g, we ensure the above bounds for all the associated linear problems.
In particular, all these constants are independent of ε.

Assume that we select T > 0 so small that

E(y, z) ≤ η2

KT
, (2)

and then max{|r(t)|, |s(t)|} ≤ η for all t ∈ [0, T ].
By the previous bounds, we can write

E(y + r, z + s) ≤ D2

2

∫ T

0
|r(t)|4 + |s(t)|4 dt ≤ D2

2
K 2T 3E(y, z)2. (3)

If, in addition, we demand, by making T smaller if necessary,

E(y, z) ≤ 2α

D2K 2T 3 , (4)

then E(y + r, z + s) ≤ αE(y, z).
All these calculations form the basis of a typical induction argument (see Amat and

Pedregal 2013 for more details), giving us the following convergence result:

Theorem 1 With the previous notation, the sequence

(y( j), z( j)) = (y( j−1) + r ( j), z( j−1) + s( j)),

where

(r ( j))′(t) − ∇ f (y( j−1)(t), z( j−1)(t))(r ( j)(t), s( j)(t)) = f (y( j−1)(t), z( j−1)(t)) − (y( j−1))′(t),
ε(s( j))′(t) − ∇g(y( j−1)(t), z( j−1)(t))(r ( j)(t), s( j)(t)) = g(y( j−1)(t), z( j−1)(t)) − ε(z( j−1))′(t),
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Table 1 Nonautonomous
singular perturbed problem,
ε = 10−5

Tol Error

10−3 9.76 × 10−4

10−4 6.10 × 10−5

10−5 7.63 × 10−6

in (0, T ), with r(0) = 0, s(0) = 0, converges strongly in L∞(0, T ) to the unique solution
of the singular perturbed problem in a small interval (0, T ).

Since the various ingredients of the problem do not depend on T , we can proceed to have
a global solution in a big interval by successively performing this analysis in intervals of
appropriate small size. For instance, we can always divide a global interval (0; T ) into a
certain number n of subintervals of small length h(T = nh) with

E(y, z)D2K 2

2α
≤ 1

h3
. (5)

3 Numerical analysis

We pretend to provide some experimental evidence that our iterative schemes are competitive
with respect to the classical approach, without pretending at this stage to provide any further
numerical analysis for our approach. We consider some singular perturbation problems well
known in the literature.

In practice, we use as stopping criterion that the norms of r j and s j be smaller than a
prefixed tolerance Tol.

Wewill observe the good convergence of our approach for different sizes of ε andmoderate
sizes of the discretization parameter. As initial guess of our algorithm, we simple consider
the initial condition of the problems.

In all the paper, for simplicity in the notation, we only have considered autonomous
problems. However, our approach works similarly for nonautonomous singular perturbed
problems.

3.1 A nonautonomous singular perturbed problem

We consider the problem (Hairer and Wanner 1991)

εz′(t) = −z(t) + cos(t),

z(0) = 1,

whose explicit solution is

z(t) = (1 + ε2)−1(cos(t) + ε sin(t)) + C exp(−t/ε),

where C = 1 − (1 + ε2)−1.

We consider again the trapezoid method with N = 100 and T = 10.We consider different
tolerances for a given ε and different ε for two particular tolerances. In Tables 1, 2, and 3,
we observe a very good numerical behavior of our approach according with our global
convergence result.
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Table 2 Nonautonomous
singular perturbed problem,
Tol = 10−3

ε Error

10−3 9.7650 × 10−4

10−5 9.7641 × 10−4

10−10 9.7641 × 10−4

Table 3 Nonautonomous
singular perturbed problem,
Tol = 10−5

ε Error

10−3 4.9494 × 10−5

10−5 7.6278 × 10−6

10−10 7.6282 × 10−6
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Fig. 3 Classical implementation of the trapezoid method, nonlinear test problem, ‘circle’-original, ‘asterisk’-
approximation, left ε = 10−2, and right ε = 10−3

3.2 A nonlinear test problem

Finally, we consider a small nonlinear perturbation of the scalar linear test problem. Indeed,
we are interesting in approximating the value x(1) of the solution x(t) of the problem:

εz′(t) = −z(t) + 10−2 · z2(t),
z(0) = 1,

whose explicit solution is

z(t) = 100

1 + 99e
1
ε
t
.

We consider the trapezoid method

zn+1 = zn + h

2
( f (zn) + f (zn+1)). (6)

This method averages the Euler and backward Euler methods, advancing the approximate
solution at each step along a line whose slope is the arithmetic mean of the derivatives at its
endpoints.

We consider a discretization of N = 100 points in [0, 1]. In Fig. 3, we plot the approxi-
mation using a classical implementation of the (implicit) trapezoid method, that is, solving
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Fig. 4 New implementation of the trapezoid method, nonlinear test problem, ‘circle’-original, ‘asterisk’-
approximation, left ε = 10−2, and right ε = 10−3
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Fig. 5 New implementation of the trapezoid method, nonlinear test problem, ‘circle’-original, ‘asterisk’-
approximation, and ε = 10−5

the associated nonlinear equation using Newton’s method. The method gives a bad approxi-
mation when the stiffness of the problem increases. We observe some oscillations near t = 0
where the algorithm is not able to find good initial guess for Newton’s method. However,
looking at Figs. 4 and 5, we see that our method, starting with

z0(t) = z(0) = 1

and taking Tol = 10−4 in the stopping criterion of our iterative approach, converges in all
the cases.
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