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Abstract In this paper, we develop a Bernstein dual-Petrov–Galerkin method for the numer-
ical simulation of a two-dimensional fractional diffusion equation. A spectral discretization
is applied by introducing suitable combinations of dual Bernstein polynomials as the test
functions and the Bernstein polynomials as the trial ones. We derive the exact sparse oper-
ational matrix of differentiation for the dual Bernstein basis which provides a matrix-based
approach for the spatial discretization. It is shown that the method leads to banded linear
systems that can be solved efficiently. The stability and convergence of the proposed method
is discussed. Finally, some numerical examples are provided to support the theoretical claims
and to show the accuracy and efficiency of the method.

Keywords Fractional PDEs · Bernstein polynomials · 2D subdiffusion ·
Dual-Petrov–Galerkin · Dual Bernstein basis · Operational matrix

Mathematics Subject Classification 41A10 · 65M22 · 35R11 · 76M22

Communicated by José Tenreiro Machado.

B M. Jani
mostafa.jani@gmail.com

S. Javadi
javadi@khu.ac.ir

E. Babolian
babolian@khu.ac.ir

D. Bhatta
dambaru.bhatta@utrgv.edu

1 Department of Mathematics, Faculty of Mathematical Sciences and Computer,
Kharazmi University, Tehran, Iran

2 School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley,
1201 West University Drive, Edinburg, TX, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-017-0455-8&domain=pdf


2336 M. Jani et al.

1 Introduction

Bernstein polynomial basis plays an important role in computer graphics for geometric mod-
eling, curve and surface approximation. Some interesting features have been investigated for
this basis in the last decades; for instance, it is proven to be an optimal stable basis among
nonnegative bases in a sense described in Farouki and Goodman (1996). Also, it provides
some optimal shape-preserving features (Carnicer and Pena 1993). We refer to Farin et al.
(2002), Farouki and Rajan (1988), Farouki (1991) for detailed properties and applications in
computer-aided geometric design (CAGD).

Bernstein basis has also been used for the numerical solution of differential, integral,
integro-differential and fractional differential equations; see e.g., Behiry (2014), Javadi et al.
(2016a), Javadi et al. (2016b), Maleknejad et al. (2012), Saadatmandi (2014) and the refer-
ences therein. However, it is not orthogonal and so leads to dense linear systems when using
in numerical methods. Some numerical approaches implement the orthogonalized Bernstein
basis. However, aswewill see in the next section, it fails to keep some interesting properties of
the Bernstein basis. Another approach uses the dual Bernstein polynomials (DBP) introduced
by Juttler (1998). To the best of our knowledge, the DBP basis has been only discussed from
the CAGD point of view (see the works of Lewanowicz and Wozny e.g. Lewanowicz and
Wozny 2011,Wozny and Lewanowicz 2009). So, it is of interest to explore some new aspects
of this basis to facilitate the numerical methods for differential equations that are based on
Bernstein polynomials and to present a method for time fractional diffusion equation in two
dimensions.

Fractional partial differential equations (FPDEs) have been widely used for the descrip-
tion of some important physical phenomena in many applied fields including viscoelastic
materials, control systems, polymer, electrical circuits, continuum and statistical mechanics;
see, for instance Dabiri and Butcher (2017), Goychuk (2009), Metzler and Klafter (2004),
Moghaddam and Machado (2017), 2016 and the references therein. The subdiffusion equa-
tion is a FPDE describing the behavior of anomalous diffusive systems with the probability
density of particles diffusing proportional to the mean square displacement χ2(t) ∝ tα with
0 < α < 1 (Gao et al. 2012). Anomalous diffusion equations have been used for model-
ing transport dynamics, especially the continuous time random walk, the contamination in
porous media, viscoelastic diffusion, etc (Gao et al. 2012, 2015; Goychuk 2009; Metzler
and Klafter 2004; Wang andWang 2016). For the numerical solution of the one-dimensional
problem, we refer to Jin et al. (2016), Ren et al. (2013), Stokes et al. (2015), Zhou and
Gong (2016) and the references therein. Some classic numerical methods for PDEs have
been developed for the simulation of two-dimensional subdiffusion equation, for example
the finite difference schemes (Gao et al. 2015; Pang and Sun 2016; Ren et al. 2013), meshless
methods (Shirzadi et al. 2012; Yang et al. 2015), finite element method (Zhao et al. 2016)
and alternating direction implicit methods (Zhang 2011; Zhang et al. 2012).

In this paper, deriving some new aspects of DBPs, we present suitable combinations
of these functions to develop a dual-Petrov–Galerkin method for solving the following 2D
subdiffusion equation (Wang andWang 2016; Yang et al. 2015; Yang and Zhang 2014; Zhang
2011; Zhang et al. 2012; Zhao et al. 2016).

Dα
t u (x, y, t) = κΔu (x, y, t) + S (x, y, t) , (x, y, t) ∈ Ω × (0, T ] , (1.1)

with the following initial and boundary conditions:

u (x, y, 0) = g (x, y) , (x, y) ∈ Ω, (1.2)

u (x, y, t) = 0, (x, y, t) ∈ ∂Ω × (0, T ] , (1.3)
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where Ω = (0, 1)2 ⊂ R
2, Δ is the Laplacian operator, T > 0, κ is the diffusion coefficient

and S is the source function. Here, Dα
t u denotes the Caputo fractional derivative of order α,

0 < α < 1, with respect to t defined as

Dα
t u (x, t) = 1

Γ (1 − α)

∫ t

0

1

(t − s) α

∂u (x, s)

∂s
ds, 0 < α < 1. (1.4)

The main contribution of our work is the development of an accurate Bernstein dual-
Petrov–Galerkin method and the application for the numerical simulation of the 2D
subdiffusion equation. It is shown that the method leads to sparse linear systems. To give
a matrix approach of the method, we present some results concerning the DBPs including
a recurrence formula for the derivative, constructing a new basis using DBPs, deriving the
operational matrix of differentiation and also providing the transformation matrices between
the DBPs and the new basis.

The paper is organized as follows: Sect. 2 presents some new aspects ofDBPs and provides
modal basis functions and the associated transformationmatrices between the bases. Section 3
is devoted to the Bernstein spectral formulation of the subdiffusion problem (1.1)–(1.3)
and the stability and convergence results are discussed in Sect. 4. Numerical examples are
provided in Sect. 5. The paper ends with some concluding remarks in Sect. 6.

2 Bernstein polynomials and DBPs

The Bernstein polynomials with degree N on the unit interval are defined by

φi (x) =
(
N

i

)
xi (1 − x) N−i , 0 ≤ i ≤ N .

The set {φi (x) : i = 0, . . . , N } forms a basis forPN , with the space of polynomials of degree
not exceeding N .

These polynomials possess end-point interpolation property, i.e.,

φi (0) = δi,0, φi (1) = δi,N , 0 ≤ i ≤ N , N > 0. (2.1)

Also, the summation is one and the integral over the unit interval is constant, namely

N∑
i=0

φi (x) ≡ 1,
∫ 1

0
φi (x) = 1

N + 1
, i = 0, 1, . . . , N . (2.2)

The derivative enjoys the three-term recurrence relation (Jani et al. 2017)

φ′
i (x) = (N − i + 1) φi−1 (x) − (N − 2i) φi (x) − (i + 1) φi+1 (x) , 0 ≤ i ≤ N , (2.3)

where we adopt the convention that φi (x) ≡ 0 for i < 0 and i > N .
As we mentioned in the preceding section, the Bernstein basis is not orthogonal. The

corresponding orthogonalized basis, obtained e.g., by the Gram–Schmidt process fails to
keep some interesting aspects of the original basis. We will not consider this basis in the
present work. Instead, we turn to the dual basis.

The DBPs are defined as

ψ̃i (x) =
N∑
j=0

ci, jφ j (x) , (2.4)
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with the coefficients given by

ci, j = (−1)i+ j

(N
i

)(N
j

)
min(i, j)∑
r=0

(2r + 1)

(
N + r + 1

N − i

)(
N − r

N − i

)(
N + r + 1

N − j

)(
N − r

N − j

)
. (2.5)

It is verified that they satisfy the biorthogonal system (Juttler 1998, Theorem 3)

∫ 1

0
φi (x) ψ̃ j (x) dx = δi j , 0 ≤ i, j ≤ N . (2.6)

It is worth noting that less than a quarter of the entries of transformation matrix between the
Bernstein and dual Bernstein basis C = [ci, j ], are to be computed directly by (2.5), for it is
bisymmetric, i.e., symmetric about both of the main diagonal and antidiagonal.

Another property which is used later is that the sum of the entries for each row (column)
is equal to the order of the matrix, i.e.,

N∑
i=0

ci, j =
N∑
j=0

ci, j = N + 1. (2.7)

In the next lemma, we present some properties of the DBPs.

Lemma 1 Let N be a nonnegative integer. The following statements hold.

(i) For all x ∈ [0, 1], ψ̃N−i (x) = ψ̃i (1 − x), 0 ≤ i ≤ N.
(ii) For all x ∈ [0, 1],∑N

i=0 ψ̃i (x) = N + 1.

(iii) The basis functions have the same definite integral, i.e.,
∫ 1
0 ψ̃i (x) dx = 1, 0 ≤ i ≤ N.

Proof The first statement is an immediate consequence of the similar formula for Bernstein
polynomials, i.e., φN−i (x) = φi (1 − x). From (2.4), (2.7) and (2.2), we have

N∑
i=0

ψ̃i (x) =
N∑
i=0

N∑
j=0

ci, jφ j (x)

=
N∑
j=0

φ j (x)
N∑
i=0

ci, j = N + 1.

Statement (iii) is also verified similarly. �	

The property (i) implies that ψ̃i , for
[ N
2

]+ 1 ≤ i ≤ N , need not to be computed directly
by (2.4)–(2.5). It especially gives ψ̃i (0) = ψ̃N−i (1).

2.1 Modal basis functions

One may choose a suitable compact combinations of orthogonal polynomials as the trial and
test basis for the Galerkin and Petrov–Galerkin methods for BVPs in such a way leading
to sparse linear systems for some special problems (see e.g., Goubet and Shen 2007; Yuan
et al. 2008). Here, we use this idea for the non-orthogonal Bernstein polynomials to present a
simple and accurate dual-Petrov–Galerkin spectral method for two-dimensional subdiffusion
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equation. Following Shen et al. (2007, 2011, Section 1.3), wewill refer to such basis functions
as the modal basis functions.

Proposition 1 Let N ≥ 2 be an integer, {ψ̃i : 0 ≤ i ≤ N } be the dual Bernstein basis and
P
0
N = {u ∈ PN : u(0) = 0, u(1) = 0}. Set

ψi (x) = ψ̃i (x) + ai ψ̃i+1 (x) + bi ψ̃i+2 (x) , (2.8)

for 0 ≤ i ≤ N − 2, where

ai = 2i + 4

N − i + 1
,

bi = (i + 2)(i + 3)

(N − i)(N − i + 1)
. (2.9)

Then, the polynomials ψ̃i (x) vanish at 0 and 1, so the set {ψi (x)}N−2
i=0 forms a basis for P0

N .

Proof By (2.4) and (2.1), we have

ψ̃i (0) =
N∑
j=0

ci, jφ j (0) = ci,0 = (−1)i (N + 1)

(
N + 1

i + 1

)
. (2.10)

From Lemma 1, we infer that

ψ̃i (1) = ψ̃N−i (0) = (−1)N−i (N + 1)

(
N + 1

i

)
. (2.11)

By (2.10) and (2.11), we obtain

ψi (0) = (−1)i (N + 1)

((
N + 1

i + 1

)
− ai

(
N + 1

i + 2

)
+ bi

(
N + 1

i + 3

))
= 0,

ψi (1) = (−1)N−i (N + 1)

((
N + 1

N − i + 1

)
− ai

(
N + 1

N − i

)
+ bi

(
N + 1

N − i − 1

))
= 0,

for 0 ≤ i ≤ N −2. It is easy to see that {ψi (x)}N−2
i=0 is linearly independent. Since dimP

0
N =

N − 1, this set is a basis for P0
N . This completes the proof. �	

Figure 1 illustrates the DBPs and the modal basis functions for 6 ≤ N ≤ 8. It is seen that
the modal basis functions have less values than the corresponding dual functions on the unit
interval, expecting less round-off errors.

2.2 Transformation matrices and the operational matrix for derivatives

For N ≥ 2, consider the (N + 1)-vector �̃ and the (N − 1)-vector � consisting of dual
functions given by (2.4) and the modal basis functions given by (2.8), respectively:

�̃(·) = [ψ̃i (·) : 0 ≤ i ≤ N ]T, (2.12)

�(·) = [ψi (·) : 0 ≤ i ≤ N − 2]T. (2.13)

For simplicity, we ignore the dependence of the vectors on the variable. First, note that

� = G�̃, (2.14)
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Fig. 1 Graphs of DBPs {ψ̃i (x), 0 ≤ i ≤ N } (top) and the modal basis functions {ψi (x), 0 ≤ i ≤ N − 2}
(bottom)

where G = [gi, j ] is an (N − 1) × (N + 1) matrix with three diagonals as

gi, j =

⎧⎪⎨
⎪⎩
1, i − j = 0,

ai , j = i + 1,

bi , j = i + 2,

0 ≤ i ≤ N − 1, 0 ≤ j ≤ N .

To derive a formula for the derivative of themodal basis functions, we first prove the following
result.

Lemma 2 The operational matrix for derivative of the DBPs, P satisfies

�̃
′ = P�̃, (2.15)

where the matrix P = [pi, j : 0 ≤ i, j ≤ N ] is given by

pi, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(−1)i (N + 1)
(N+1
i+1

)+ Nδi,0 + δi,1, j = 0,

−pN−i,0 j = N ,

i, j = i − 1, j �= 0,

N − 2i, j = i, j �= 0, N ,

−N + i, j = i + 1, j �= N .

Proof The DBPs �̃ is a basis for PN , so we expand ψ̃ ′
i (x) for 0 ≤ i ≤ N as

ψ̃ ′
i (x) =

N∑
j=0

pi, j ψ̃ j (x).

123



Bernstein dual-Petrov–Galerkin method: application to... 2341

Integration by parts and (2.3) imply that

pi, j =
∫ 1

0
ψ̃ ′
i (x) φ j (x) dx

= ψ̃i (1) δ j,N − ψ̃i (0) δ j,0 −
∫ 1

0
ψ̃i (x)

(
(N − j + 1)φ j−1(x)

−(N − 2 j)φ j (x) − ( j + 1)φ j+1(x)
)
dx .

The biorthogonality (2.6) gives

pi, j = ψ̃i (1) δ j,N − ψ̃i (0) δ j,0 − (
(N − j + 1)δi, j−1 − (N − 2 j)δi, j − ( j + 1)δi, j+1

)
.

Now, the result is proved by considering (2.10) and (2.11). �	

Remark 1 The matrix P is a sparse matrix of order N + 1 with pi, j = 0 for |i − j | > 1,
j �= 0, N ; for instance, see the matrix given below.

Corollary 1 Set αi,0 = −(−1)i (N + 1)
(N+1
i+1

) + Nδi,0 + δi,1 for 0 ≤ i ≤ N . Then, from
(2.15), we infer that the following five-term recurrence relation is deduced:

ψ̃ ′
i (x) = αi,0ψ̃0 (x) + (1 − δi,1)iψ̃i−1 (x) + (1 − δi,0)(1 − δi,N ) (N − 2i) ψ̃i (x)

− (1 − δi,N−1) (N − i) ψ̃i+1 (x) − αN−i,0ψ̃N (x) ,

where we set ψ̃i ≡ 0 for i < 0 and i > N .

We derive the transformation matrices that map the Bernstein and Chebyshev coefficients.
Now,we derive the transformationmatrix thatmaps the derivative ofmodal basis functions

to DBPs. This facilitates the use of the Galerkin method in the next section. In the following,
(p, q) − band matrix stands for a matrix with p and q nonzero diagonals below and above
the main diagonal, respectively.

Lemma 3 Let the vectors � and �̃ be defined as in (2.12) and (2.13), respectively. Then,

� ′ = Q�̃,

where Q is an (N − 1) × (N + 1) , (1, 3) − band matrix given by Q = GP.

Proof Combining (2.14) with (2.15) implies Q = GP. To prove that Q is a (1, 3) − band
matrix, it is sufficient to show that qi,0 = 0 for i > 1 and qi,N = 0 for i < N − 2,

qi,0 = (GP)i,0 = pi,0 + ai pi+1,0 + bi pi+2,0

= −
(
ψ̃i (0) + ai ψ̃i+1 (0) + bi ψ̃i+2 (0)

)
= −ψi (0) = 0,

and for i < N − 2, by (1)

qi,N = pi,N + ai pi+1,N + bi pi+2,N = ψ̃N−i (0) + ai ψ̃N−i−1 (0) + bi ψ̃N−i−2 (0)

= ψ̃i (1) + ai ψ̃i+1 (1) + bi ψ̃i+2 (1) = ψi (1) = 0.

Note thatψi ’s vanish at the boundary values according toProposition 1.Theproof is complete.
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To see the sparsity of the transformation matrices, P, G and Q for N = 6 are shown in
the following

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4
7

1
7 0 0 0 0

0 1 1 2
5 0 0 0

0 0 1 8
5 1 0 0

0 0 0 1 5
2

5
2 0

0 0 0 0 1 4 7

⎤
⎥⎥⎥⎥⎥⎥⎦

, P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−43 −6 0 0 0 0 7
148 4 −5 0 0 0 −49

−245 2 2 −4 0 0 147
245 0 3 0 −3 0 −245

−147 0 0 4 −2 −2 245
49 0 0 0 5 −4 −148
−7 0 0 0 0 6 43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

46
7 − 24

7 − 18
7 − 4

7 0 0 0

1 6 − 9
5 −4 − 6

5 0 0

0 2 34
5 0 − 34

5 −2 0

0 0 3 10 9
2 −15 − 5

2

0 0 0 4 18 24 −46

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3 Variational formulation of the problem (1.1) and the spectral
discretization

In this section, at first the problem (1.1)–(1.3) is discretized in time. Thenwe develop amatrix
approach Bernstein dual-Petrov–Galerkin method using the results of the previous section.

3.1 Time discretization

Consider the subdiffusion Eq. (1.1) at t = tk+1, k ≥ 0 as

Dα
t u (x, y, tk+1) = κΔu (x, y, tk+1) + S (x, y, tk+1) . (3.1)

Let uk be an approximation of u at t = tk = kτ for k = 0, 1, . . . , M, where τ = T
M is the

time step length. The time fractional derivative can be approximated by definition (1.4) and
using forward difference for the derivative inside as

Dα
t u (x, y, tk+1) = μ

⎛
⎝uk+1 − (1 − b1)u

k −
k−1∑
j=1

(b j − b j+1)u
k− j − bku

0

⎞
⎠

+ rk+1
τ , k ≥ 1, (3.2)

where μ = 1
ταΓ (2−α)

and b j = ( j + 1)1−α − j1−α for k ≥ 0 and 0 ≤ j ≤ k. The error is
bounded by ∣∣∣rk+1

τ

∣∣∣ ≤ c̃uτ
2−α, (3.3)

where the coefficient c̃u depends only on u (Deng 2008). The time discretization (3.2) is
referred to as L1 approximation (see e.g., Deng 2008; Ramezani et al. 2015). Substituting
from (3.2) into (3.1) and multiplying both sides by ταΓ (2 − α) and dropping (x, y), the
following time-discrete scheme is obtained:
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uk+1 − α0Δuk+1 = f k+1, k ≥ 0,

f k+1 := (1 − b1)u
k +

k−1∑
j=1

(b j − b j+1)u
k− j + bku

0 + 1

μ
Sk+1, (3.4)

with α0 = k
μ
and u0 = g is given by the initial condition (1.2) with the error

rk+1 ≤ ταΓ (2 − α)

∣∣∣rk+1
τ

∣∣∣ ≤ c̃uτ
2. (3.5)

For k = 0, it reads as

u1 − α0κΔu1 = (1 − b1)u
1 + b1u

0 + 1

μ
S1. (3.6)

The boundary conditions for the semidiscrete problem is uk+1 = 0 on ∂Ω .

3.2 Weak and spectral formulation

Consider the problem (3.4) with Ω = I 2, I = (0, 1) and the homogeneous Dirichlet
boundary conditions uk+1|∂Ω = 0. We seek an approximate solution in the Sobolev space
H1
0 (Ω) = {u ∈ H1(Ω), u = 0, on∂Ω}. A weak formulation of the problem (3.4) is to find

uk+1 ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω):

(uk+1, v) + α0(∇uk+1,∇v) =
⎛
⎝(1 − b1)u

k +
k−1∑
j=1

(b j − b j+1)u
k− j + bku

0 + 1

μ
Sk+1, v

⎞
⎠.

(3.7)

Let PN be the space of polynomials over I with degree not exceeding N and (P0
N )2 = {v ∈

(PN )2 : v = 0, on ∂Ω}.
The Galerkin formulation of the (3.7) is to find uk+1

N ∈ (P0
N )2 such that ∀vN ∈ (P0

N )2:
(
uk+1
N , vN

)
+ α0

(
∇uk+1

N ,∇vN

)

=
⎛
⎝(1 − b1)u

k
N +

k−1∑
j=1

(b j − b j+1)u
k− j
N + bku

0
N + 1

μ
IN S

k+1, vN

⎞
⎠ , (3.8)

with ( f, g) being the standard inner product and IN an interpolation operator.

3.2.1 Bernstein dual-Petrov–Galerkin method

Since dim P
0
N = N − 1, and due to (2.1), we choose a basis for it by removing the first and

last Bernstein polynomials of degree N , i.e.,

� = [φi (x) : 1 ≤ i ≤ N − 1]T . (3.9)

Using (2.3), it is easy to verify that

�′ = D� + d, (3.10)

where D = tridiag(N − i + 1, 2i − N ,−(i + 1)) is a tridiagonal matrix of order N − 1 and
d = N [φ0, 0, . . . , 0,−φN ]T is an (N − 1)-vector.
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Assuming Nx = Ny = N ,we use the tensor product of the basis functions ofPN
0 as a basis

for two-dimensional case,
{
φi (x)φ j (y) : 1 ≤ i, j ≤ N − 1

}
and consider an approximate

solution of (3.4) as

uk+1
N =

N−1∑
i, j=1

ûk+1
i, j φi (x)φ j (y) = �T (x) Uk+1� (y) , (x, y) ∈ Ω, (3.11)

where � (·) = [φi (·) : 1 ≤ i ≤ N − 1]T and Uk+1 = [ûk+1
i, j ]. Let us use the following

notations.

ai, j =
∫
I
φ′
j (x)ψ

′
i (x)dx, A = [ai, j ],

bi, j =
∫
I
φ j (x)ψi (x)dx, B = [bi, j ],

f k+1
i, j =

∫
Ω

IN f k+1(x, y)ψ j (x)ψi (y)dΩ, (3.12)

for 1 ≤ j ≤ N − 1, 0 ≤ i ≤ N − 2.
Taking the test functions of (3.8) as v = ψl(x)ψm(y) for l,m = 0, 1, . . . , N − 2, it is

seen that the spectral form (3.8) is equivalent to the following linear system:

μα
τ BUk+1BT + κ

(
AUk+1BT + BUk+1AT

)
= Fk+1, k ≥ 0,

which can be equivalently written as a Sylvester equation, but it requires computing the
inverse of B. Although B has only three nonzero diagonals, it can be shown that its inverse is
a dense matrix and so we avoid transforming to the Sylvester equation. Instead, we use the
equivalent tensor product form:(

μα
τ B ⊗ B + κ (B ⊗ A + A ⊗ B)

)
uk+1 = fk+1, (3.13)

with f = [ f1,0,..., fq,0; f1,1..., fq,1; . . . ; f1,q−1,..., fq,q−1
]T

, q = N − 1. It is worth noting
that the coefficient matrix of the linear system (3.13) is the same for all time steps, so it is to
be evaluated just once for all k ≥ 0.

In terms of the trial vector (3.9), and test vector (2.13), we may write

A =
∫
I
� ′�′T dx, B =

∫
I
��T.

To facilitate the computations, inwhat follows, thesematrices are related to the transformation
matrices introduced in Sect. 2.2. First, note that by the biorthogonality (2.6), we have

∫
I
�̃�Tdx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=: Ĩ. (3.14)

Now from (2.14), and writing G as G = [g0, g1, . . . , gN ], we get

B =
∫
I

G�̃�Tdx = GĨ = [g1, g2, . . . , gN−1].
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So B is a tridiagonal matrix whose entries are given by

bi, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, j = i + 1,

ai , j = i,

bi , j = i − 1,

0, otherwise,

(3.15)

where ai s and bi s are easily computed by (2.9). On the other hand, from Lemma 3, the
Bernstein operational matrix of differentiation (3.10) and (3.14), we obtain

A =
∫
I

Q�̃(�TDT + dT)dx

= QĨDT + N [q0, 0, . . . , 0, qN ]
= [q1, . . . , qN−1]DT + N [q0, 0, . . . , 0, qN ], (3.16)

where Q = [q0, q1, . . . , qN ] is a (1, 3) − band matrix introduced Lemma 3. Hence, QĨ is a
pentadiagonal matrix and A is the product of a pentadiagonal and a tridiagonal matrix plus
a sparse matrix. From Lemma 3 and (3.16), it is seen that A is a seven-diagonal matrix.

Notice that the solution of linear system (3.13) requires thematricesA andB. A is obtained
by a sparse matrix–matrix multiplication (3.16) and entries of B are given by (3.15).

Remark 2 Since the coefficient matrix of the linear system (3.13) remains intact for a fixed
τ , only the RHS vector needs to be computed for different time steps, k = 0, 1, . . . up to
a desired time. So it is efficient to use a band-LU factorization for solving the system. It is
remarkable that for a (2p + 1)-band matrix, the LU-factorization can be done with O(Np2)
flops and backward substitutions require O(Np) flops Golub and Ortega (1992, Section 4.3).

4 Stability and convergence analysis

For the error analysis, we assume the problem (1.1) to be homogeneous, S = 0.
For α ≥ 0, the bilinear form a (u, v) = (∇u,∇v) + α(u, v) in (3.8) is continuous and

coercive in H1
0 (Ω) × H1

0 (Ω). The existence and uniqueness of the solution for both the
weak form (3.8) and the Galerkin form (3.8) is guarantied by the well-known Lax–Milgram
lemma.

We define the following inner product and the associated energy norm on H1
0 (Ω):

(u, v) =
∫

Ω

uvdΩ, (u, v)1, = (u, v) + α0(∇u,∇v), ‖u‖1 = (u, u)
1
2
1 . (4.1)

Theorem 1 The weak form (3.7) is unconditionally stable:

‖uk‖1 ≤ ‖u0‖, k = 1, . . . , M. (4.2)

Proof Let v = u1 in (3.7). Then,

(u1, u1) + α0(∇u1,∇u1) = (u0, u1),

giving (4.2) for k = 1, by the definition (4.1), the Schwarz inequality and the inequality
‖v‖ ≤ ‖v‖1. By mathematical induction, assume (4.2) holds for k = 0, . . . , n. Let v = un+1

in (3.7), i.e.,
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(un+1, un+1) + α0(∇un+1,∇un+1)

= (1 − b1)(u
n, un+1) +

n−1∑
j=1

(b j − b j+1)(u
n− j , un+1) + bn(u

0, un+1).

It is easy to see that the RHS coefficients in (3.4) are positive. So we obtain

‖un+1‖1 ≤ (1 − b1)‖un‖ +
n−1∑
j=1

(b j − b j+1)‖un− j‖ + bn‖u0‖

≤
⎛
⎝(1 − b1) +

n−1∑
j=1

(b j − b j+1) + bn

⎞
⎠ ‖u0‖ = ‖u0‖.

So the proof is done. �	
Theorem 2 Let u be the solution of the equation (1.1) with conditions (1.2)–(1.3) and uk be
the solution of the the semidiscrete problem (3.4). Then,

‖u(tk) − uk‖1 ≤ cu
1 − α

T ατ 2−α, 0 < α < 1, (4.3)

‖u(tk) − uk‖1 ≤ cuT τ, as α → 1. (4.4)

Proof The idea of the proof comes from Lin and Chuanju (2007). We first prove

‖u(tk) − uk‖1 ≤ cu
bk−1

τ 2, k = 1, . . . , M. (4.5)

By (1.1) and (3.6), we have

(e1, v) + α0(∇e1,∇v) = (e0, v) + (r1, v), ∀ v ∈ H1
0 (Ω),

in which ek := u(tk) − uk . For v = e1 and by using e0 = 0, ‖v‖ ≤ ‖v‖1 and (3.5), we get

‖e1‖1 ≤ cuτ
2, (4.6)

i.e., (4.5) holds for k = 1. By induction, assume (4.5) holds for k ≤ n. Using (1.1) and (3.4),
we get

(en+1, v) + α1(∇en+1,∇v)

= (1 − b1)(e
n, v) +

n−1∑
j=1

(b j − b j+1)(e
n− j , v) + bn(e

0, v) + (rn+1, v), ∀ v ∈ H1
0 (Ω).

For v = en+1, it reads as

‖en+1‖21 ≤ (1 − b1)‖en‖‖en+1‖1 +
n−1∑
j=1

(b j − b j+1)‖en− j‖‖en+1‖1 + ‖rn+1‖‖en+1‖1,

⇒ ‖en+1‖1 ≤ (1 − b1)
cu

bn−1
τ 2 +

n−1∑
j=1

(b j − b j+1)
cu

bn− j−1
τ 2 + cuτ

2

≤
⎛
⎝(1 − b1) +

n−1∑
j=1

(b j − b j+1) + bn

⎞
⎠ cu

bn
τ 2 = cu

bn
τ 2,

proving (4.5) for k = n + 1 that completes the proof of (4.5).
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Consider f (t) = t1−α , then there exists aξ, k − 1 < ξ < k ≤ M such that

bk−1τ
−α = (kτ)1−α − (τ (k − 1))1−α

τ
= (1 − α)(ξτ)−α

≥ (1 − α)(kτ)−α ≥ (1 − α)(T )−α,

which gives
cu
bk−1

τ 2 ≤ cu
1 − α

T ατ 2−α. (4.7)

Now using this along with (4.5) proves (4.3).
To derive (4.4), we first prove

‖u(tk) − uk‖1 ≤ cukτ
2, k = 1, . . . , M. (4.8)

By (4.6), the inequality (4.8) holds for k = 1. Assume that (4.8) holds for k = 1, . . . , n, n ≤
M − 1. Then, from (1.1), (3.4) and (3.5), we obtain

‖en+1‖1 ≤ (1 − b1)‖en‖ +
n−1∑
j=1

(b j − b j+1)‖en− j‖ + ‖rn+1‖

≤
⎛
⎝(1 − b1)

n

n + 1
+

n−1∑
j=1

(b j − b j+1)
n − j

n + 1
+ 1

(n + 1)

⎞
⎠ cu(n + 1)τ 2

≤
(

(1 − b1)
n

n + 1
+ (b1 − bn)

n

n + 1
− (b1 − bn)

1

n + 1
+ 1

(n + 1)

)
cu(n + 1)τ 2

=
(
1 − bn

n

n + 1
− (b1 − bn)

1

n + 1

)
cu(n + 1)τ 2 ≤ cu(n + 1)τ 2.

So (4.8) holds for k = n + 1. From kτ ≤ T and (4.8), we get (4.4). �	
4.1 Convergence of the full discretization scheme

Let π1,0
N be the H1-orthogonal projection operator from H1

0 (Ω) into (P0
N )2 associated with

the energy norm ‖ · ‖1 defined in (4.1). Due to the equivalence of this norm with the standard
H1 norm, we have the following error estimation Lin and Chuanju (2007, Relation (4.3))∥∥∥u − π

1,0
N u

∥∥∥
1

≤ cN 1−m‖u‖m, u ∈ Hm
0 (Ω) ∩ H1

0 (Ω), m ≥ 1. (4.9)

The idea of the proof for the following result comes from the paper (Lin and Chuanju
2007).

Theorem 3 Let uk, k = 0, . . . , M be the solution of the variational formulation (3.7) and
ukN be the solution of the scheme (3.8), assuming u0 = π

1,0
N u0 and uk ∈ Hm(Ω) ∩ H1

0 (Ω)

for some m > 1. Then,∥∥∥uk − ukN

∥∥∥
1

≤ c

1 − α
τ−αN 1−m max

0≤ j≤k
‖u j‖m, 0 < α < 1,

∥∥∥uk − ukN

∥∥∥
1

≤ cN 1−m
k∑
j=0

‖u j‖m, α → 1, (4.10)

for k = 1, . . . , M, where c depends only on T α .
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Proof We have (uk+1 − π
1,0
N uk+1, vN )1 = 0, ∀vN ∈ (P0

N )2 by the projection operator. By
definition of the norm (4.1), we get

(
π
1,0
N uk+1, vN

)
+ α1

(
∇π

1,0
N uk+1,∇vN

)

=
(
uk+1, vN

)
+ α1

(
∇uk+1,∇vN

)
, ∀ vN ∈ (P0

N

)2
.

By the weak form (3.7), the RHS of the above equation is replaced as
(
π
1,0
N uk+1, vN

)
+ α1

(
∇π

1,0
N uk+1,∇vN

)
= (1 − b1)

(
uk, vN

)

+
k−1∑
j=1

(b j − b j+1)(u
k− j , vN ) + bk(u

0, vN ), ∀ vN ∈ (P0
N

)2
. (4.11)

Subtracting (4.11) from (3.8), we have

(
ẽk+1
N , vN

)
+ α1

(
∂ ẽk+1

N

∂x
,
∂vN

∂x

)

= (1 − b1)
(
ekN , vN

)
+

k−1∑
j=1

(b j − b j+1)
(
ek− j
N , vN

)
+ bk

(
e0N , vN

)
, ∀ vN ∈ (P0

N

)2
,

where ek+1
N = uk+1 − uk+1

N and ẽk+1
N = π

1,0
N uk+1 − uk+1

N . Let vN = ẽk+1
N , then

∥∥∥ẽk+1
N

∥∥∥
1

≤ (1 − b1)
∥∥∥ekN

∥∥∥+
k−1∑
j=1

(b j − b j+1)

∥∥∥ek− j
N

∥∥∥+ bk
∥∥e0N

∥∥ .

With ‖ek+1
N ‖1 ≤ ‖ẽk+1

N ‖1 + ‖uk+1 − π
1,0
N uk+1‖1, we obtain

∥∥∥ek+1
N

∥∥∥
1

≤ (1 − b1)
∥∥∥ekN

∥∥∥+
k−1∑
j=1

(b j − b j+1)

∥∥∥ek− j
N

∥∥∥+ bk
∥∥e0N

∥∥+ cN 1−m‖uk+1‖.

As in the proof of Theorem 2, it is first proved by induction that:

∥∥∥ek+1
N

∥∥∥
1

≤ 1

bk−1
max
0≤ j≤k

∥∥∥u j − π
1,0
N u j

∥∥∥
1
, 0 < α < 1,

∥∥∥ek+1
N

∥∥∥
1

≤
k∑
j=0

∥∥∥u j − π
1,0
N u j

∥∥∥
1
, α → 1,

for 0 ≤ k ≤ M. Then, by using (4.7) and the projection error (4.9) the desired result is
derived. �	

The following theorem is obtained by the triangle inequality ||u(·, tk)−ukN ||1 ≤ ||u(·, tk)−
uk ||1 + ||uk − ukN ||1 along with the inequalities (4.3) and (4.10).

Theorem 4 Let u be the solution of the problem (1.1)with the initial and boundary conditions
given by (1.2)–(1.3) and ukN be the solution of the scheme (3.8). Then, assuming u0N = π

1,0
N u0

and u ∈ Hm(Ω) ∩ H1
0,(Ω), we have
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∥∥∥u(tk) − ukN

∥∥∥
1

≤ CT α

1 − α

(
cuτ

2−α + cτ−αN 1−m sup
0<t<T

‖u(x, t)‖m
)

, k ≤ M, 0 < α < 1,

∥∥∥u(tk) − ukN

∥∥∥
1

≤T α

(
cuτ + cτ−1N 1−m sup

0<t<T
‖u(x, t)‖m

)
, k ≤ M, α → 1. (4.12)

The constants C and c are independent of τ , T , N .

It is seen that the method has the so-called spectral convergence in space and the order of
convergence O(τ 2−α) in time.

5 Numerical examples

Here, some numerical experiments are provided to show the accuracy of the proposedmethod.
For the computations, we use Maple 18 on a laptop with CPU core i3 1.9 GHz and RAM 4
runningWindows 8.1 platform. To compute the errors, we use the discrete L2 and L∞ errors
defined as

L2 ≈
⎛
⎝ 1

N 2

N−1∑
i, j=0

∣∣u(xi , y j , tm) − umN (xi , y j )
∣∣2
⎞
⎠

1/2

,

L∞ ≈ max
0≤i, j≤N

∣∣u(xi , y j , tm) − umN (xi , y j )
∣∣,

respectively, where u is the exact solution of the problem (1.1)–(1.3), umN is the approximation

solution (3.11) at t = tm = mτ, xi = i
N , y j = j

N and N = 100. Also, the convergence
rates in space and time are, respectively, computed by

rateNi =
log E(Ni ,τ )

E(Ni−1,τ )

log Ni−1
Ni

, rateτi =
log E(N ,τi )

E(N ,τi−1)

log τi
τi−1

,

where E(h, τ ) is the error with h = 1/N , where N stands for the dimension of basis and τ

is the time-step size. However, as it is common in the literature, we will show the spectral
convergence of the proposed method by logarithmic scaled error plots.

It is worth mentioning that as we derived the operational matrices in Sect. 2.2 with special
structures, and the proposed method finally leads to the linear system (3.13) that is sparse
and banded. To see the sparsity and bandedness, the nonzero entries of the coefficinet matrix
of (3.13) are depicted in Fig. 2 using the sparsematrixplot command of Maple. It is seen that
the density decreases rapidly as N increases.

Example 1 Consider the problem (1.1) with κ = 1 and the exact solution u(x, y, t) =
sin (πx) sin (πy)t2. Table 1 shows the convergence of themethod in space for τ = Δt = 0.01
for fractional orders α = 0.25, 0.50, 0.75. Nx and Ny stand for the number of basis in the x
and y direction. Figure 3 demonstrates the logarithmic scale error plot in terms of H1-norm
for α = 1/2 for some ts. It is seen that the method preserves the spectral convergence at
different time rows t < 1 and t > 1. Table 2 reports the convergence in time by considering
Nx = Ny = N = 8 as τ decreases at time rows t = 0.1 and t = 1. It verifies the O(τ 2−α)

temporal rate of convergence.
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Fig. 2 The coefficient matrix of the linear system (3.13)

Table 1 Convergence in space at t = 1 for Example 1

Nx = Ny α = 0.25 α = 0.5 α = 0.75

L∞ H1 L∞ H1 L∞ H1

2 7.53E−02 2.81E−01 7.52E−02 2.81E−01 7.49E−02 2.81E−01

4 1.74E−03 8.91E−03 1.72E−03 8.91E−03 1.63E−03 8.91E−03

6 1.78E−05 1.34E−04 3.01E−05 1.43E−04 9.98E−05 2.86E−04

8 3.67E−06 8.75E−06 2.25E−05 5.15E−05 2.79E−06 2.54E−04

Example 2 To see whether the method works for the case in which there is no source term,
consider the problem (1.1)–(1.3) with the initial condition u(x, y, 0) = x(x − 1) sin (2πy),
κ = 1 and no source term (Yang and Zhang 2014).
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Fig. 3 Convergence of the
spectral method (3.13) in space
with τ = 0.001

Table 2 Error and temporal rate of convergence at t = 1 for Example 1

M α = 0.25 α = 0.5 α = 0.75

t = 0.1 t = 1 t = 0.1 t = 1 t = 0.1 t = 1

H1 Rate H1 Rate H1 Rate H1 Rate H1 Rate H1 Rate

10 2.90E−04 4.21E−04 1.16E−03 1.55E−03 3.27E−03 4.46E−03

20 9.93E−05 1.55 1.32E−04 1.67 4.60E−04 1.33 5.61E−04 1.47 1.54E−03 1.09 1.89E−03 1.24

40 3.27E−05 1.60 4.12E−05 1.68 1.73E−04 1.41 2.01E−04 1.48 6.87E−04 1.16 7.95E−04 1.25

80 1.05E−05 1.64 1.27E−05 1.70 6.35E−05 1.45 7.18E−05 1.49 2.97E−04 1.21 3.35E−04 1.25

160 3.31E−06 1.67 4.05E−06 1.65 2.30E−05 1.47 2.56E−05 1.49 1.26E−04 1.24 1.41E−04 1.25

Fig. 4 Convergence in space for
some fractional orders with
τ = 0.01

The spectral convergence in space is seen from Fig. 4 in which the time step length is
considered to be τ = 0.01. The solution with Nx = Ny = 10 is treated as the exact solution.
The errors are reported at t = 1 with the H1-norm.
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The numerical examples present the spectral convergence in space and fixed convergence
of O(τ 2−α) in time, confirming the theoretical claims. It should be noted that we have used
the eight-point Gauss–Legendre quadrature rule to perform the integrals (3.12) in the right
hand side of the linear system (3.13).

6 Conclusion

In this paper, some new aspects of the dual Bernstein polynomials have been discussed. A
suitable compact combinations of these polynomials has been derived for developing a dual-
Petrov–Galerkin variational formulation for the numerical simulation of the two-dimensional
subdiffusion equation. It is shown that the method leads to sparse linear systems. The illus-
trated numerical examples have been provided to show the accuracy of the method. It is
important to note that the transformation matrices and the operational matrix for differentia-
tion of dual Bernstein polynomials that have been obtained in this work can be used similarly
for developing Bernstein-based dual-Petrov–Galerkin Galerkin methods for other fractional
partial differential equations on bounded domains.
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