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Abstract We solve elliptic systems of equations posed on highly heterogeneous materi-
als. Examples of this class of problems are composite structures and geological processes.
We focus on a model problem which is a second-order elliptic equation with discontinu-
ous coefficients. These coefficients represent the conductivity of a composite material. We
assume a background with a low conductivity that contains inclusions with different thermal
properties. Under this scenario, we design a multiscale finite element method to efficiently
approximate solutions. The method is based on an asymptotic expansion of the solution in
terms of the ratio between the conductivities. The resulting method constructs (locally) finite
element basis functions (one for each inclusion). These bases generate the multiscale finite
element space where the approximation of the solution is computed. Numerical experiments
show the good performance of the proposed methodology.
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1 Introduction

Many physical and engineering applications naturally require multiscale solutions. This is
especially true for problems related to metamaterials, composite materials, and porous media
flows; seeChen andLipton (2013),Berlyand andNovikov (2002),Cao et al. (2003), Li (2011),
Ozgun and Kuzuoglu (2013), Epov et al. (2015), Zhou et al. (2012). The mathematical and
numerical analysis for these problems are challenging since they are governed by elliptic
equations with high-contrast coefficients (Hou and Wu 1997; Chen and Hou 2013; Ming
and Yue 2006; Galvis and Efendiev 2010; Calo et al. 2014). For instance, in the modeling
of composite materials, their conducting or elastic properties are modeled by discontinuous
coefficients. The value of the coefficient can vary several orders of magnitude across dis-
continuities. Problems with these jumps are referred to as high-contrast problems. Similarly,
the coefficient is denoted as a high-contrast coefficient. See for instance Calo et al. (2014),
Galvis and Ki Kang (2014), Efendiev et al. (2013), Efendiev and Galvis (2012), Bourgat
(1977).

We seek to understand how the high-contrast variations in the material properties affect
the structure of the solution. In terms of the model, these variations appear in the coefficients
of the differential equations. We expand our previous work (Calo et al. 2014), where we con-
struct an asymptotic expansion to represent solutions. The asymptotic expansion is obtained
in terms of the high-contrast in the material properties. In this paper, we use this asymptotic
expansion to design numerical solutions for high-contrast problems. The asymptotic expan-
sion helps us derive elegant numerical strategies and to understand the local behavior of the
solution. In addition, the asymptotic expansion can be used to study functionals of solutions
and describe their behavior with respect to the contrast or other important parameters. The
asymptotic expansion in Calo et al. (2014) uses globally supported harmonic extensions of
subdomains indicator functions referred to as harmonic characteristic functions. We modify
the construction presented in Calo et al. (2014) to approximate the harmonic characteristic
function in the local neighborhood of each inclusion. Thus, to make practical use of the
expansion we avoid computing each characteristic function in the whole domain. This mod-
ification renders the method computationally tractable while the reduction in accuracy is not
significant. For the case of dense distributions of inclusions, we observe numerically that
the optimal size for the support of the basis functions is of the order of the representative
distance between inclusions. We perform numerical tests that show the good performance
of the proposed multiscale finite element method (MsFEM). The construction and analysis
of localized exponentially decaying basis for numerical homogenization has been seen in
Berlyand and Kolpakov (2001), Henning et al. (2014), Owhadi et al. (2014). We use a finite
element method (FEM) and assume that there is a fine-mesh that completely resolves the
geometrical configuration of the inclusions in the domain. That is, the fine-scale finite ele-
ment formulation fully captures the solution behavior. To compute the solution of the linear
system at this fine resolution is not practical, and therefore amultiscale finite element strategy
is needed to compute a coarse-scale representation that captures relevant information of the
targeted fine-scale solution. The coarse dimension in our simulations corresponds to the total
number of inclusions. Nevertheless, a coarser scale may be needed for some applications.
In this case, it is possible to use the framework of the generalized finite element method to
design and analyze a coarser scale for computations. For a detailed discussion, see Efendiev
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et al. (2013) and references therein. In some more demanding applications, an efficient itera-
tive domain decomposition method could also be designed and analyzed for these problems.
This is under investigation and will be presented elsewhere.

The problem of computing solutions of elliptic problems related to modern artificial
materials such as dispersed and/or densely packed composite materials has been considered
by some researchers recently. For instance, in Wen and Ding (2004) the computation of
effective properties of dispersed composite materials is considered. They use a classical
multiscale finite element method. We recall that the application of the classical finite element
method may lead to the presence of resonance errors due to the chosen local boundary
conditions, see Hetmaniuk (2011). In Peterseim and Carstensen (2013) the authors develop
a finite element method based on a network approximation of the conductivity for particle
composites.

The rest of the paper is organized as follows. In Sect. 2, we setup the problem. In Sect. 3,
we summarize the asymptotic expansion procedure described in Calo et al. (2014). We also
introduce the definition of harmonic characteristic functions, which help us determine the
individual terms of the expansion. In Sect. 4, we illustrate some aspects of the asymptotic
expansion using some finite element computations. Section 5 constructs multiscale finite
elements using the asymptotic expansion described in the previous sections. In particular,
we approximate the leading term of the expansion with localized harmonic characteristic
functions. We then apply this approximation to the case of dense high-contrast inclusions.
In Sect. 6, we present some numerical experiments using the methods proposed. Finally, in
Sect. 7 we draw some conclusions.

2 Problem setup

We use the notation introduced in Calo et al. (2014). We consider a second-order elliptic
problems of the form,

− div (κ(x)∇u(x)) = f (x), in D, (1)

with Dirichlet data defined by u = g on ∂D. We assume that κ(x) > 0. Here D ⊂ R
d is

the disjoint union of a background domain D0 and subdomains that represent the inclusions,
i.e., D = D0 ∪ (

⋃M
m=1 Dm). We assume that D1, . . . , DM are connected polygonal domains

(or domains with smooth boundaries). Additionally, we require that each inclusion Dm ,
m = 1, . . . , M is compactly included in the open set D \ ⋃M

�=1,��=m D�, i.e., Dm ⊂ D \
⋃M

�=1,��=m D�. Given w ∈ H1(D) we also use the notation w(m), for the restriction of w to
the domain Dm , that is,

w(m) = w
∣
∣
Dm

, m = 0, 1, . . . , M.

Let κ be defined by

κ(x) =
{

η, x ∈ Dm, m = 1, . . . , M,

1, x ∈ D0 = D \ ⋃M
m=1 Dm .

(2)

Following Calo et al. (2014), we represent the solution by an asymptotic expansion in terms
of the contrast η. We assume that η is a large parameter. The expansion reads,

uη = u0 + 1

η
u1 + 1

η2
u2 + · · · =

∞∑

j=0

η− j u j , (3)
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with coefficients {u j }∞j=0 ⊂ H1(D) and such that they satisfy the following Dirichlet bound-
ary conditions,

u0 = g on ∂D and u j = 0 on ∂D for j ≥ 1. (4)

We consider the weak formulation of (1). Find u ∈ H1(D) such that
∫

D
κ(x)∇u(x) · ∇v(x)dx =

∫

D
f (x)v(x)dx, for all v ∈ H1

0 (D). (5)

We put � = ⋃M
m=1 Dm and substitute (3) into (5) to obtain the following expression for all

v ∈ H1
0 (D),

∞∑

j=0

η− j
∫

D0

∇u j · ∇v +
∞∑

j=0

η− j+1
∫

�

∇u j · ∇v =
∫

D
f v.

We change the index in the last sum of the right-hand side, then

η

∫

�

∇u0 · ∇v +
∞∑

j=0

η− j
(∫

D0

∇u j · ∇v +
∫

�

∇u j+1 · ∇v

)

=
∫

D
f v,

for all v ∈ H1
0 (D). In brief, we obtain the following equations after matching powers of η

∫

�

∇u0 · ∇v = 0, (6)

∫

D0

∇u0 · ∇v +
M∑

m=1

∫

Dm

∇u1 · ∇v =
∫

D
f v, (7)

and for j ≥ 1,
∫

D0

∇u j · ∇v +
M∑

m=1

∫

Dm

∇u j+1 · ∇v = 0, (8)

which are valid for all v ∈ H1
0 (D).

3 Asymptotic expansion

Now we compute the terms in the asymptotic expansion (3). For more details on the con-
struction and related expansions we refer to Calo et al. (2014), Poveda et al. (2016).

First, we recall the set of constants functions inside de inclusions

Vconst =
{
v ∈ H1

0 (D), such that v
∣
∣
Dm

is constant for all m = 1, . . . , M
}

.

By the Eq. (6) we have that u0 is constant in each high-conductivity inclusion and solves the
background problem

∫

D0

∇u0 · ∇z =
∫

D
f z for all z ∈ Vconst (9)

u0 = g on ∂D. (10)
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Let δm� represent the Kronecker delta, which is equal to 1 when m = � and 0 otherwise.
For each m = 1, . . . , M we introduce the harmonic characteristic function of Dm , χDm ∈
H1
0 (D), with the condition

χDm ≡ δm�, in D�, for � = 1, . . . , M, (11)

which is equal to the harmonic extension of its boundary data to the interior of D0. We then
have,

	χDm = 0, in D0,

χDm = 0, on ∂D and ∂D�, m �= �, � = 1, 2, . . . , M (12)

χDm = 1, on ∂Dm .

The asymptotic limit u0 in (3) can be explicitly written in term of the harmonic characteristic
functions and a boundary corrector; see Calo et al. (2014). In fact, we get,

u0 = u0,0 +
M∑

m=1

cm(u0)χDm , (13)

where u0,0 ∈ H1(D), for m = 1, . . . , M , and u0,0 solves the following problem posed in
the background D0,

−	u0,0 = f, in D0, (14)

u0,0 = g, on ∂D

u0,0 = 0, on ∂Dm,m = 1, . . . , M.

u0,0 is globally supported but it is forced to vanish in all interior inclusions boundaries. The
constants in (13) solve anM dimensional linear system.Let c = (c1(u0), . . . , cM (u0)) ∈ R

M ,
then we have that

Ageomc = b, (15)

where Ageom = [am�] and b = (b1, . . . , bM ) ∈ R
M are defined by

am� =
∫

D
∇χDm · ∇χD�

, (16)

and

b� =
∫

D
f χD�

−
∫

D0

∇u0,0 · ∇χD�
, (17)

respectively. The expression
∑M

m=1 cm(u0)χDm is the Galerkin projection of u0 − u0,0 into

the space Span
{
χDm

}M
m=1.

Now for the sake of completeness, we briefly describe the next individual terms of the
asymptotic expansion. We have for j = 1, 2, . . . ,

u j = ũ j +
M∑

m=1

c j,mχDm , (18)

where the function ũ j is defined in three steps:
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1. Solve a Neumann problem in each inclusion with data from u j−1 with j = 1, 2, . . . . We

have the restriction of u j to the subdomain Dm withm = 1, . . . , M ( i.e., u j
∣
∣
Dm

= u(m)
j ),

that is

u j = ũ j + c j,m, with
∫

Dm

ũ j = 0, for all m = 1, . . . , M,

and ũ j satisfies the Neumann problem
∫

Dm

∇ũ j · ∇z =
∫

Dm

f z −
∫

∂Dm

∇u(0)
j−1 · nmz, for all z ∈ H1(Dm),

for m = 1, . . . , M . The constants c j,m will be chosen suitably.
2. Solve a Dirichlet problem in the background D0 with data ũ j in each inclusion. For

j = 1, 2, . . . , we have that u j in Dm , m = 1, . . . , M , then we find u(0)
j in D0 by solving

the Dirichlet problem
∫

D0

∇u(0)
j · ∇z = 0, for all z ∈ H1

0 (D0) (19)

u(0)
j = u j (= ũ j + c j,m), on ∂Dm, m = 1, . . . , M,

u(0)
j = 0, on ∂D.

Since c j,m are constants, we define their corresponding harmonic extension by
∑M

m=1 c j,mχDm . So we rewrite

u j = ũ j +
M∑

m=1

c j,mχDm . (20)

3. The u j+1 in Dm satisfy the following Neumann problem
∫

Dm

∇u j+1 · ∇z = −
∫

∂Dm

∇u(0)
j · n0z, for all z ∈ H1(D).

The compatibility condition is satisfied for � = 1, . . . , M , then

0 =
∫

∂D�

∇u j+1 · n� = −
∫

∂D�

∇u(0)
j · n0

= −
∫

D�

∇
(

ũ(0)
j +

M∑

m=1

c j,mχ
(0)
Dm

)

· n0

= −
∫

∂D�

∇ũ(0)
j · n0 −

M∑

m=1

c j,m

∫

∂Dm

∇χ
(0)
Dm

· n0,

where n0, n� with � = 1, . . . , M are the outward pointing unit normal vector of the
boundary ∂D0 and ∂D�, respectively. The term χ

(0)
Dm

is the restriction of χDm in the
background D0.

A detailed description of the differential problems can be found in Calo et al. (2014). The
constants {c j,m}Mm=1 in (18) are computed solving a linear system similar to the one defined
above in (15). We have that c j = (c j,1, . . . , c j,M ) is the solution of the system

Ageomc j = y j ,
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where

y j =
(

−
∫

D0

∇ũ(0)
j · ∇χD1 , . . . ,−

∫

D0

∇ũ(0)
j · ∇χDM

)

.

In Calo et al. (2014), Poveda et al. (2016) the authors prove that the expansion (3) converges
absolutely in H1(D) for η sufficiently large.

Theorem 1 Consider the problem (1) with coefficient (2). The corresponding expansion (3)
with boundary condition (4) converges absolutely in H1(D) for η sufficiently large.Moreover,
there exist positive constants C and C1 such that for every η > C, we have

∥
∥
∥
∥
∥
∥
u −

J∑

j=0

η− j u j

∥
∥
∥
∥
∥
∥
H1(D)

≤ C1
(‖ f ‖H−1(D) + ‖g‖H1/2(∂D)

) ∞∑

j=J+1

(
C

η

) j

,

for J ≥ 0.

4 An expansion

In this section, we illustrate the expansion in two dimensions. We use MatLab for the
computations. In particular, a few terms are computed numerically using the finite element
method, see for instance Johnson (2009), Hughes (2012). In particular, we solve the sequence
of problems posed in the background subdomain and in the inclusions. Our main goal is to
design efficient numerical approximations for u0 (and then for uη by using Theorem 1).

We consider D = B(0, 1) the circle with center (0, 0) and radius 1. We add 36 (identical)
circular inclusions of radius 0.07. This is illustrated in the Fig. 1a. Then, we numerically
solve the problem {−div(κ(x)∇uη(x)) = 1, in D

u(x) = x1 + x22 , on ∂D.
(21)

Figure 1 shows that the solution for η = 6 against the computed u0.
In Fig. 2, we show the two parts of u0 in (13), i.e., the combination of the harmonic char-

acteristic functions
∑M

m=1 cm(u0)χDm and the boundary corrector u0,0. The results suggest
that the boundary corrector u0 decays fast away from the boundary ∂D.

In Fig. 3, we show the second and third terms of the expansions, u1 and u2. We also show
the influence of η on the convergence of the series in Table 1. As predicted by Theorem 1, as
η grows convergence of the series expansion is accelerated. For example, problem (21) with
η = 10 requires eight terms (i.e., J = 8, in Theorem 1) in the series to achieve a relative
error of 10−8 while for η = 104 requires only two terms.

5 Approximation with localized harmonic characteristic functions

In this section, we present a computablemethod based on the asymptotic expansion described
in Sect. 3 and the insights on the structure of the solution described in Sect. 4.We assume that
D is the union of a background and multiple inclusions that are homogeneously distributed.
We only approximate the leading term u0. The remaining terms can be approximated sim-
ilarly. We describe u0 with localized harmonic characteristic functions. The computation
of the harmonic characteristic functions is computationally expensive since these are fully
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Geometry and mesh(a)

(c)

(b) Solution for h = 6

u
0
 for h = 6

Fig. 1 Circular domain with 36 identical inclusions. (a) Geometry and mesh, (b) Finite element solution of
problem (21) with η = 6, (c) Asymptotic expansion of u0 in (13) (Colour on-line)
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u
c
 for h = 6

u
0,0

 for h = 6(b)

(a)

Fig. 2 Functions uc = ∑M
m=1 cm (u0)χDm and u0,0 for problem (21) with η = 6. See (13) (Colour on-line)

Table 1 Number of terms J
needed to obtain a relative error
of 10−8 for a given value of η

η 3 6 10 102 103 104 105 106 107 108

# 25 11 8 4 3 2 2 2 1 1

global functions. That is, we approximate harmonic characteristics functions by solving a
local problem (instead of a whole background problem). For instance, we pose a problem
in a small neighborhood of each inclusion. The domain where the harmonic characteristic
functions are computed is sketched in Fig. 4. The domain marked in Fig. 4 corresponds to
the adopted neighborhood of the inclusion painted with green color. In this case, the approx-
imated (or truncated) harmonic characteristic function is set to be zero on the boundary of
the neighborhood of the selected inclusion.

To reduce the cost of computing the characteristic harmonic functions, we solve problem
(12), but restrict it to a neighborhood of the corresponding inclusion. The exact characteristic
functions are defined by (11). We define the neighborhood of the inclusion Dm by

Dm,δ = Dm ∪ {x ∈ D0 : d(x, Dm) < δ} ,
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(a) (b)

(c) (d)

u
1
 for h = 6 u

2
 for h = 6

u
1 
 restricted to inclusions u

2
 restricted to inclusions

Fig. 3 Top functions u1 and u2 for the problem (21) with η = 6. Bottom functions u1 and u2 restricted to the
inclusions for the problem (21) with η = 6 (Colour on-line)

Fig. 4 Illustration of δ-neighborhood of an inclusion. The selected inclusion is green. The δ-neighborhood
of this inclusion is given in blue color, while preserving the truncated harmonic characteristics function. We
highlight with white color the other inclusions that are within the δ-neighborhood of the selected inclusion
(Colour on-line)

and approximate the characteristic function for the δ-neighborhood solving

	χδ
m = 0, in Dm,δ,

χδ
m = 0, on ∂Dm,δ and ∂D� ∩ Dm,δ for � �= m, (22)

χδ
m = 1, on ∂Dm .
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The exact expression for u0 is given by

u0 = u0,0 +
M∑

m=1

cmχDm = u0,0 + uc, (23)

where we have introduced uc = ∑M
m=1 cm(u0)χDm . The matrix problem for uc with globally

supported basis was given in (15). We now define uδ
0, the multiscale approximation of u0,

using a similar expression

uδ
0 = uδ

0,0 +
M∑

m=1

cδ
mχδ

Dm
= uδ

0,0 + uδ
c, (24)

where uδ
c = ∑M

m=1 c
δ
mχδ

Dm
with each cδ

m computed similar to cm using an alternative matrix

problem with basis χδ
Dm

instead of χDm . This system is given by

Aδcδ = bδ.

with Aδ = [aδ
m�], with aδ

m� = ∫
Dm

∇χδ
m · ∇χδ

� , c = [cδ
0(u0), . . . , c

δ
M (u0)] and bδ = [bδ

�] =
∫
D f χδ

D�
.

We also introduce uδ
0,0, as an approximation to the boundary corrector u0,0, that solves

the problem

−	uδ
0,0 = f, in Dδ

0,

uδ
0,0 = g, on ∂D

uδ
0,0 = 0, on ∂Dδ

0 ∩ D,

where Dδ
0 is the subdomain within a distance δ from the boundary ∂D,

Dδ
0 = {x ∈ D : d(x, ∂D) < δ} .

The approximation construction hinges on the fact that uδ
0,0 satisfies homogeneous Dirichlet

boundary conditions at all neighboring inclusions. Thus, long range effects from the forcing
are heavily attenuated.

6 Numerical experiments

To show the effectiveness of the numerical methodology we describe in Sect. 5, we first
consider the problem configuration used in Sect. 4. See Fig. 1. We study the expansion which
localizes the harmonic characteristic functions. We first compare the global and the local-
ized harmonic characteristic functions. In Fig. 5, we plot the global characteristic function
(left picture) corresponding to a randomly selected inclusion. By construction this harmonic
characteristic function is zero at the boundary of all other inclusions which implies a fast
decay away from the inclusion. In addition, we plot the difference between the localized
characteristic function in (22) and the characteristic function in (11); see Fig. 5b. Here, we
use δ = 0.3 and observe that the maximum value of this absolute difference is 0.016 less
than 2%.
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Localized characteristic function Difference between global and 
localized characteristic function

(a) (b)

Fig. 5 Global versus localized characteristic functions. Here we use δ = 0.3 and obtained maximum error of
0.016 (Colour on-line)

For further comparison, we introduce the relative H1 error from u0 in (23) to its approx-
imation uδ

0 in (24). This is given by

e(u0 − uδ
0) = ‖u0 − uδ

0‖H1(D)

‖u0‖H1(D)

.

Analogously, the relative H1 error of the approximation of u0,0 is given by

e(u0,0 − uδ
0,0) = ‖u0,0 − uδ

0,0‖H1(D)

‖u0,0‖H1(D)

.

The error e
(
uc − uδ

c

)
is defined in a similar way. According to Theorem 1, the error between

the exact solution of problem (1) with coefficient (2) and u0 in (23) is of order η−1.
Table 2 and Fig. 6 show the relative errors of themultiscale method. In Table 2, we observe

that as the neighborhood size grows, the error is reduced. For instance, for δ = 0.2 the error
between the exact solution u0 and the truncated solution uδ

0 is 8%. By selecting δ = 0.3 we
obtain a relative error of the order of 4%. Numerically, we observe that an optimal value for
δ is the smallest distance that includes one layer of inclusions away from the selected one.
Therefore, this approximation is more efficient for densely packed inclusions.

We now consider an additional geometrical configuration of inclusions. We consider D =
(0, 1), the circle with center (0, 0) and radius 1, and 60 (identical) circular inclusions of
radius 0.07. We consider the problem,

{−div(κ(x)∇uη(x)) = 1, in D
u(x) = x1 + x22 , on ∂D,

(25)

In the Fig. 7 we illustrate the geometry for problem (25). Table 3 summarizes similar results
to those described above.

The problem setup and simulation of the localized harmonic characteristic functions pro-
ceeds as described in Sect. 5. In the present setup, the inclusions are clustered more tightly.
This induces a faster decay of the characteristic harmonic function for each individual inclu-
sion, see Fig. 8. Thus, as expected in Table 3 we observe a reduction in the relative error
when compared to Table 2 for a fixed value of δ. For example, δ = 0.2 induces a relative
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Table 2 Relative error in the
approximation of u0 using
locally computed basis functions
and truncated boundary condition
effect

δ e(u0 − uδ
0) e(u0,0 − uδ

0,0) e(uc − uδ
c)

0.001 0.830673 0.999907 0.555113

0.05 0.530459 0.768135 0.549068

0.10 0.336229 0.639191 0.512751

0.20 0.081500 0.261912 0.216649

0.30 0.044613 0.088706 0.048173

0.40 0.041061 0.047743 0.007886

0.50 0.033781 0.034508 0.001225

0.60 0.029269 0.029362 0.000174

0.70 0.020881 0.020888 0.000021

0.80 0.012772 0.012773 0.000003

0.90 0.006172 0.006172 0.000000

Here u0 = u0,0 + uc where uc is
combination of harmonic
characteristic functions and
uδ
0 = uδ

0,0 + uδ
c is computed by

solving uδ
0,0 on a δ-strip of the

boundary ∂D and the basis
functions on a δ-strip of the
boundary of each inclusion

Fig. 6 Relative error in the approximation of u0 given by Table 2 (Colour on-line)

Fig. 7 Geometry for the problem
(25) (Colour on-line)
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Table 3 Relative error in the
approximation of u0 when using
locally computed basis functions
and a truncated boundary
condition effect for the problem
(25) with 60 identical inclusions

δ e(u0 − uδ
0) e(u00 − uδ

0,0) e(uc − uδ
c)

0.001 0.912746 0.999972 0.408063

0.05 0.369838 0.549332 0.399472

0.10 0.181871 0.351184 0.258946

0.20 0.013781 0.020172 0.011061

0.30 0.013332 0.013433 0.000737

0.40 0.010394 0.010396 0.000057

0.50 0.009228 0.009228 0.000004

0.60 0.006102 0.006102 0.000000

0.70 0.005561 0.005561 0.000000

0.80 0.002239 0.002239 0.000000

0.90 0.001724 0.001724 0.000000

Here u0 = u0,0 + uc , where uc
is combination of harmonic
characteristic functions and
uδ
0 = uδ

0,0 + uδ
c is computed by

solving uδ
0,0 on a δ-strip of the

boundary ∂D and the basis
functions on a δ-strip of the
boundary of each inclusion

Fig. 8 Relative error in the approximation of u0 given by Table 3 (Colour on-line)

error of 1% on uδ
0 and of 2% for uδ

0,0 for the geometry show in the Fig. 7 while this value of
δ induces errors of 8 and 26% for these two variables for the geometry shown in Fig. 1a.

7 Conclusions

We consider the solution of elliptic problems modeling properties of composite materials.
Using an expansion in terms of the properties ratio presented in Calo et al. (2014), we
design a multiscale method to approximate solutions. We develop procedures that effectively
and accurately compute the first few terms in the expansion. In particular, we compute the
asymptotic limit which is an approximation of order η−1 to the solution (where η represent
the ratio between lowest and highest material property values). The expansion in Calo et al.
(2014) is written in terms of the harmonic characteristic functions that are globally supported
functions, one for each inclusion. The main idea we propose is to approximate the harmonic
characteristic functions by solving local problems around each inclusion. We use numerical
examples to compute the asymptotic limit u0 with the localized harmonic characteristic
functions. The analysis of the truncation error depends on decay properties of the harmonic
characteristic functions and is under current investigation. This method can be used in several
important engineering applications with heterogeneous coefficients such as complex flow in
porous media and complex modern materials.
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