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Abstract In this study, we propose new distance measures for dual hesitant fuzzy sets
(DHFSs) in terms of the mean, standard deviation of dual hesitant fuzzy elements (DHFEs),
respectively, which overcome some drawbacks of the existing distancemeasures.Meanwhile,
we extend DHFS to its higher order type and refer to it as the higher order dual hesitant fuzzy
set (HODHFS). HODHFS is the actual extension of DHFS that enables us to define the mem-
bership and non-membership of a given element in terms of several possible generalized type
of fuzzy sets (G-Type FSs). The rationale behind HODHFS can be seen in the case that the
decision makers are not satisfied by providing exact values for the membership degrees and
the non-membership degrees. To indicate HODHFSs have a good performance in decision
making, we introduce several distance measures for HODHFSs based on our proposed new
distance for dual hesitant fuzzy sets. Finally, we practice our proposed measures for HOD-
HFSs in multi-attribute decision making illustrating their applicability and availability.

Keywords DHFS · Mean · Standard deviation · HODHFS · Distance measure

Mathematics Subject Classification 03E72 · 90B50

1 Introduction

When peoplemake a decision, they are usually hesitant and irresolute for one thing or another
which makes it difficult to reach a final agreement, that is, there usually exists a hesitation or
uncertainty about the degree. Zhu et al. (2012) introduced the definition of DHFS, which is an
extension of hesitant fuzzy set (Torra 2010; Torra andNarukawa 2009).DHFSs can better deal

Communicated by Rosana Sueli da Motta Jafelice.

B Xianjiu Huang
xjhuangxwen@163.com

Jianjian Chen
18770084953@163.com

1 Department of Mathematics, Nanchang University, Nanchang 330031, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-017-0423-3&domain=pdf


Distance measures for higher order dual hesitant fuzzy sets 1785

with the situations that permit both themembership and the non-membership of an element to
a given set having a few different values, which can reflect the human’s hesitance of not only
membership degrees, but also non-membership degrees. Then, a growing number of studies
focus on DHFSs. Ye (2014) proposed a correlation coefficient between DHFSs as a new
extension of existing correlation coefficients for hesitant fuzzy sets and intuitionistic fuzzy
sets and apply it tomultiple attribute decisionmaking under dual hesitant fuzzy environments.
Wang et al. (2014) first investigated a variety of distance measures and the corresponding
similarity measures for dual hesitant fuzzy sets, based on which they presented a TOPSIS
approach for the weapon selection problem. After that, Singh (2015) proposed some distance
measures based on the geometric distancemodel, the set-theoretic approach, and thematching
functions.However, these existing distancemeasures for dual hesitant fuzzy sets do not satisfy
such fundamental properties as triangle inequality which was stressed by Zhou and Wang
et al. (2002) and Singh (2015). Moreover, the existing distance measures only took into
account the difference between the membership and non-membership values, but ignored
the validity of the values of the hesitant fuzzy elements. Besides, a fatal weakness is that
researchers extended the short dual hesitant fuzzy element by adding some values until the
membership degrees and non-membership degrees of DHFSs have the same length, which
would make the results inaccurate. To overcome such drawbacks, in this paper, we propose
some new distance measures by the mean, standard deviation of DHFEs.

In recent years, some extensions of the DHFSs have been developed such as dual hes-
itant fuzzy rough sets (Zhang et al. 2015) and typical dual hesitant fuzzy sets (Farhadinia
2015). However, DHFSs have their inherent drawbacks, because they express the member-
ship degrees or non-membership degrees of an element to a given set only by crisp numbers.
In many practical decision-making problems, the information provided by decision mak-
ers might often be described by fuzzy sets instead of crisp numbers or by other fuzzy set
extensions instead of intuitionistic fuzzy sets. This makes decision makers uncomfortable to
provide exact crisp values or just intuitionistic fuzzy sets for the membership degrees and
non-membership degrees. The HODHFS is fit for the situation where the decision makers
have a hesitation among several possible membership and non-membership for an element.
And it is the actual extension of DHFS encompassing not only fuzzy sets, intuitionistic fuzzy
sets, interval-valued fuzzy sets, interval-valued intuitionistic fuzzy sets and hesitant fuzzy
sets, but also the recent extension of DHFSs, called dual interval-valued hesitant fuzzy sets
(Farhadinia 2014). Based on the proposed new distance measures for dual hesitant fuzzy
sets, we introduce several distance measures for HODHFSs as a way to indicating a good
performance in decision making of HODHFSs.

The remainder of the paper is organized as follows: in Sect. 2,we review somebasic notions
of dual hesitant fuzzy sets, based on which we give some drawbacks about the information
measures for them. In Sect. 3, some new distance measures for dual hesitant fuzzy sets are
proposed in terms of the mean, standard deviation of dual hesitant fuzzy element. In Sect. 4,
we extend DHFS to its higher order type and refer to it as HODHFS, and we also developed
a series of distance measures for HODHFSs. In Sect. 5, we apply the proposed distance mea-
sures for HODHFSs tomulti-attribute decisionmaking. Section 6 is a conclusion of the paper.

2 Preliminaries

In this section, we carry out a brief introduction to some distance measures for DHFSs as a
basis of the main body of the paper, and then we point out some drawbacks of the existing
distance measures. Let us start by recalling distance measures for DHFS.
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2.1 Distance measures for dual hesitant fuzzy sets

Definition 1 (Farhadinia 2014) Let X be a nonempty set. A metric d on X is called distance
measure if for any x, y, z ∈ X , the following properties hold:

(i) (Nonnegative) d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y;
(ii) (Symmetric) d(x, y) = d(y, x);
(iii) (Triangle inequality) d(x, y) ≤ d(x, z) + d(z, y).

Zhu et al. (2012) defined a DHFS, which is an extension of the hesitant fuzzy set, in terms
of two functions that return two sets of membership values and non-membership values,
respectively, for each element in the domain as follows.

Definition 2 (Zhu et al. 2012) Let X be a fixed set, then a DHFS D on X is defined as

D = {〈x, h(x), g(x)〉|x ∈ X}, (1)

where h(x) and g(x) are two sets of some values in [0, 1], denoting the possible membership
degrees and non-membership degrees of the element x ∈ X to the set D, respectively,
with the conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ + + η+ ≤ 1, where γ ∈ h(x), η ∈ g(x),
γ + ∈ h+(x) = ∪γ∈h(x) max{γ }, and η+ ∈ g+(x) = ∪η∈g(x) max{η} for x ∈ X . For
convenience, the pair e(x) = {〈h(x), g(x)〉} is called a DHFE denoted by all e = {〈h, g〉}.

From the above definition, we can see that DHFS consists of two parts, that is, the mem-
bership hesitancy function and the non-membership hesitancy function, supporting a more
exemplary and flexible access to assign values for each element in the domain, and can handle
two kinds of hesitancy in this situation. The existing sets, including fuzzy sets, intuitionis-
tic fuzzy sets, hesitant fuzzy sets, and fuzzy multisets, can be regarded as special cases of
DHFSs.

Distance and similarity measures have attracted plenty of attention in the last few decades
due to the fact that they can be applied to many areas such as approximate reasoning (Wang
et al. 2002), image processing (Pal and King 1981), medical diagnosis (Szmidt and Kacprzyk
2001) and decisionmaking (Xu 2005; Yager 1988). A distancemeasure is used for estimating
the degree of distance between two sets in the fuzzy set theory, which has received much
attention from researchers (Buckley and Hayashi 1993; Candan et al. 2000; Liu and Entropy
1992; Turksen and Zhong 1988). Among them, the most widely used distance measures
(Diamond and Kloeden 1994; Kacprzyk 1997; Turksen and Zhong 1988) are the Hamming
distance, Euclidean distance, and Hausdorff metric. Later on, the distance and similarity
measures about other extensions of fuzzy sets have also been developed (Grzegorzewski
2004; Li and Cheng 2002; Li et al. 2007, 2015a, b; Liang and Shi 2003; Xu 2007, 2010), but
there is little research on DHFSs. Consequently, it is very necessary to develop some distance
measures under dual hesitant fuzzy environment. Wang et al. (2014) first address this issue
by putting forward the axioms for distance measures.

Definition 3 (Wang et al. 2014) Let A and B be two DHFSs on X = {x1, x2, . . . , xn}, then
the distance measure between A and B is defined as d(A, B), which satisfies the following
properties:

1. 0 ≤ d(A, B) ≤ 1;
2. d(A, B) = 0 if and only if A = B;
3. d(A, B) = d(B, A).
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Practically, in most of the cases, the number of values in membership degrees and non-
membership degrees may not be equal, i.e., l(h A(xi )) 	= l(h B(xi )) and m(gA(xi )) 	=
m(gB(xi )). Let lxi = max{l(h A(xi )), l(h B(xi ))} and mxi = max{m(gA(xi )), m(gB(xi ))}
for each xi ∈ X . To find the distance measure between DHFSs, one should extend the shorter
one until the membership degrees and non-membership degrees of both DHFSs have the
same length. To extend the shorter one, the best way is to add the same value several times
in it. In fact, we can extend the shorter one by adding any value in it. The selection of this
value mainly depends on the decision makers’ risk preferences. Optimists anticipate desir-
able outcomes and may add the maximum value of the membership degrees and minimum
value of non-membership degrees, while pessimists expect unfavorable outcomes and may
add the minimum of value the membership degrees and maximum value of non-membership
degrees.

On the basis of Definition 3, Wang et al. (2014) defined the dual hesitant normalized
Hamming distance as follows:

Definition 4 Let A = {〈xi , h A(xi ), gA(xi )〉|xi ∈ X} and B = {〈xi , h B(xi ), gB(xi )〉|xi ∈
X} are two dual hesitant fuzzy sets on X = {x1, x2, . . . , xn}. Then, the normalized Hamming
distance between A and B is defined as

d1,λ(A, B) =
n∑

i=1
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where λ > 0, l = lxi + mxi , lxi = max{lA(xi ), lB(xi )} and mxi = max{m A(xi ), m B(xi )},
lA(xi ), lB(xi ) and m A(xi ), m B(xi ) are the numbers of values of h A(xi ), h B(xi ) and gA(xi ),
gB(xi ), respectively, ψ
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If some situations cannot allow to extend the shorter one by adding any elements in it to
the same length, the following distance measure (Wang et al. 2014) is given:
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where λ > 0.
In many practical situations, the weight of each element xi ∈ X should be taken into

account. Thus, the weighted distance measure (Wang et al. 2014) for DHFSs is given as
follows:

dw,λ(A, B) =
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where λ > 0.
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To compare the DHFEs, Zhu et al. (2012) give the following comparison law:

Definition 5 (Zhu et al. 2012) Let ei = {ςei , ζei }(i = 1, 2) be any two DHFEs, sei =
1

l(ςei )

ψ∈ςei

ψ − 1
m(ζei )


φ∈ζei
φ(i = 1, 2) the score function of ei (i = 1, 2) and pei =

1
l(ςei )


ψ∈ςei
ψ + 1

m(ζei )

φ∈ζei

φ (i = 1, 2) the accuracy function of ei (i = 1, 2), where l(ςei )

and m(ζei ) be the number of elements in ςei and ζei , respectively, then

(i) if se1 > se2 , then e1 is superior to e2, denoted by e1 
 e2;
(ii) if se1 = se2 , then

1. if pe1 = pe2 , then e1 is equivalent to e2, denoted by e1 ∼ e2;
2. if pe1 > pe2 , then e1 is superior than to e2, denoted by e1 
 e2.

Based on the comparison law, the following concepts are given by Singh (2015):

Definition 6 (Singh 2015) DHFS A = {A(x)|x ∈ X} is said to be dual hesitant fuzzy subset
of DHFS B = {B(x)|x ∈ X}, denoted by A ⊆ B, if sA(x) < sB(x) for any x ∈ X , and DHFS
A is said to be equal to DHFS B, denoted by A = B, if sA(x) = sB(x) and pA(x) = pB(x) for
any x ∈ X .

Definition 7 (Singh 2015) Let A = {h A, gA} and B = {h B , gB} be two DHFSs on X =
{x1, x2, . . . , xn}, then the distance measure between A and B is defined as d(A, B), which
satisfies the following properties:

(P1) 0 ≤ d(A, B) ≤ 1;
(P2) d(A, B) = 0 if and only if A = B;
(P3) d(A, B) = d(B, A);
(P4) LetC be any DHFS, if A ⊆ B ⊆ C , then d(A, B) ≤ d(A, C) and d(B, C) ≤ d(A, C).

Then the dual hesitant normalized Hamming distance (Singh 2015):
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and a dual hesitant normalized Euclidean distance (Singh 2015):
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and a further generalized into a generalized dual hesitant normalized distance (Singh 2015):
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where λ > 0. ψ
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membership degrees and non-membership degrees of A and B, respectively.
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Assume that for x ∈ X , letwi (i = 1, 2, . . . , n)with
∑n

i=1 wi = 1and zi (i = 1, 2, . . . , n)

with
∑n

i=1 zi = 1 be the weights assigned to membership degrees and non-membership
degrees, respectively. Thus,the generalized dual hesitant weighted distance:
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precisely, if λ = 1, then we get a dual hesitant weighted Hamming distance:
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if λ = 2, then we get a dual hesitant weighted Euclidean distance:
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2.2 Analysis on distance measures for DHFSs

Apparently, (1)–(3) in Definition 3 are the same as (P1)–(P3) in Definition 7 for DHFSs, but
(P4) in Definition 7 is different from Definition 3. However, in the metric space theory, a
metric space consists of two objects: a nonempty set X and a metric distance d on X . Hence,
the metric distance is a fundamental element of metric space. Then, when a new distance
measure is proposed, it should satisfy the three properties in Definition 1. Thus, distance
measures of hesitant fuzzy sets should also satisfy the property of triangle inequality. It
means that (i), (ii), (iii) in Definition 1 can be seen as the basic conditions for distance
measures of DHFSs. To analyze the drawbacks of dual hesitant fuzzy sets, we modify this
axiomatic definition as follows:

Definition 8 Let M, N and O be three DHFSs on X , then d is called a distance measure for
DHFSs if it possesses the following properties:

(d1) 0 ≤ d(M, N ) ≤ 1;
(d2) d(M, N ) = 0 if and only if M = N ;
(d3) d(M, N ) = d(N , M);
(d4) d(M, N ) ≤ d(M, O) + d(O, N );
(d5) if M ⊆ N ⊆ O , then d(M, N ) ≤ d(M, O) and d(N , O) ≤ d(M, O).
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Besides, since the existing distance measures only depend on the values of DHFEs, we
call them value-based distance measures for DHFSs. The main characteristic of the value-
based distance measures is that only the difference between the values of the elements is
considered, the distance measures are not precise as they do not consider the volatility of
the values of a DHFE. In fact, DHFS focuses on the hesitance of providing the membership
and non-membership values, and such hesitance is characterized by both the differences
between the values and the volatility of their own values of the elements. So, ignoring the
influence of the difference between the volatility of their own values of the elements will
lead to unreasonable results.

On the other hand, we find that most of the value-based distance measures for DHFSs
(Singh 2015;Wang et al. 2014) (except d2,λ inWang et al. 2014) have been defined depending
on the assumptions: where (A1) all the elements in each HFE are rearranged in increasing
(or decreasing) order and (A2) the number of values in different HFEs must be indifferent,
that is, the different HFEs must have the same length, but d2,λ in Wang et al. (2014) are free
to the assumptions.

According to the above analysis, we give some concrete drawbacks by some examples in
the following. As d1,1, d2,1, ddnh are special cases of d1,λ, d2,λ, ddgn , respectively, and dw,λ,
ddgw are a generalization of d1,λ, ddgn , respectively, we only focus on analyzing ddnh , ddne,
d1,1 and d2,1.

1. The drawbacks of ddnh , ddne and d1,1.

(i) The first drawback is that these distance measures do not satisfy the property (d4) in
Definition 8.

Example 1 Let X = {x}, M = {〈x, {0.1}, {0.8, 0.5}〉}; N = {〈x, {0.8, 0.4}, {0.1}〉}, and
O = {〈x, {0.8, 0.4, 0.3, 0.35}, {0.1, 0.2, 0.15, 0.05}〉}. Suppose we extend the shorter one
by adding the minimum value, then we have

ddnh(M, N ) = 0.525, ddnh(M, O) = 0.40625, ddnh(O, N ) = 0.04375.
Hence, ddnh(M, N ) > ddnh(M, O) + ddnh(O, N ).
Similarly, ddne(M, N ) = 0.5545, ddne(M, O) = 0.4370, ddne(O, N ) = 0.0586.
Hence, ddne(M, N ) > ddne(M, O) + ddne(O, N ).
d1,1(M, N ) = 0.525, d1,1(M, O) = 0.40625, d1,1(O, N ) = 0.04375.
Hence, d1,1(M, N ) > d1,1(M, O) + d1,1(O, N ).

(ii) The second drawback is that we only compare two DHFSs when we extend the shorter
DHFEs. Hence, for shorter DHFEs, when we calculate the distance measures between
two DHFSs, the numbers of the adding values of DHFEs are different. Then, we actually
calculate the distance measures in spaces with different dimensions. It means that we
apply different information to obtain distance measures. Apparently, such results are
usually incomparable.Moreover, this drawback will lead to the previous two drawbacks.

Example 2 Let X = {x}, M(x) = {〈{0.4, 0.3}, {0.5, 0.4}〉}, N (x) = {〈{0.6, 0.4, 0.3}, {0.2,
0.4}〉} and O(x) = {〈{0.6, 0.5}, {0.2, 0.4, 0.3}〉}. When we calculate d(M, N ) and d(M, O),
M(x) is extended as {〈{0.4, 0.3, 0.3}, {0.5, 0.4}〉} and {〈{0.4, 0.3}, {0.5, 0.4, 0.4}〉}, respec-
tively. Thus, we can see that these two extended measures are not equal. So, its meaningless
to compare such distance measures.

(iii) The third drawback is that it is not accurate, when we extend the shorter one until the
membership degrees and non-membership degrees of bothDHFSs have the same length.
The number of values in membership degrees and non-membership degrees may not be
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equal, and we always do not know whether the decision makers are optimistic or not.
In fact, the scholars often extend the shorter one by adding any value in it, what has a
great effect on the results.

Example 3 Let X = {x}, M(x) = {〈{0.4, 0.2}, {0.5, 0.4}〉}. We can extend M(x) as

1. {〈{0.4, 0.2, 0.2}, {0.5, 0.4, 0.4}〉};
2. {〈{0.4, 0.2, 0.4}, {0.5, 0.4, 0.5}〉}.
Obviously, the different extensions lead to different results of the distance measures.

2. The common drawbacks of ddnh , ddne, d1,1 and d2,1.

(iv) The fourth drawback is that these distance measures do not satisfy the property (d5)
in Definition 8.

Example 4 Let X = {x}, M = {〈x, {0.6}, {0.2}〉}; N = {〈x, {0.4, 0.5}, {0.1, 0.2}〉}, and
O = {〈x, {0.6}, {0.4, 0.3}〉}, then O < N < M . Suppose we extend the shorter one by
adding the minimum value, then we have

ddnh(M, O) = 0.075, ddnh(N , O) = 0.175.
Hence, ddnh(M, O) < ddnh(N , O).
Similarly, ddne(M, O) = 0.1118, ddne(N , O) = 0.1803.
Hence, ddne(M, O) < ddne(N , O).
d1,1(M, O) = 0.1, d1,1(N , O) = 0.175.
Hence, d1,1(M, O) < d1,1(N , O).
d2,1(M, O) = 0.075, d2,1(N , O) = 0.175.
Hence, d2,1(M, O) < d2,1(N , O).

Remark 1 Although Singh (2015) pointed out that the distance measures should satisfy the
property (d5) in Definition 8, Example 4 shows that the dual hesitant normalized Hamming
distance and the dual hesitant normalized Euclidean distance presented by him do not satisfy
this property.

(v) The fifth drawback is that the formulas of the distance measures are not precise as they
do not consider the volatility of the values of a DHFE in DHFSs.

Example 5 Let X = {x}, M(x) = {〈{0.5}, {0.3}〉}, N (x) = {〈{0.4, 0.6}, {0.3}〉}, O(x) =
{〈{0.3, 0.7}, {0.3}〉} and P(x) = {〈{0.3}, {0.3}〉}. Then we have

ddnh(M, N ) = 0.2, ddnh(M, P) = 0.2.
Hence, ddnh(M, N ) = ddnh(M, P).
Similarly, ddne(M, N ) = 0.2236, ddne(M, P) = 0.2236.
Hence, ddne(M, N ) = ddne(M, P).
d1,1(M, N ) = 0.2, d1,1(M, P) = 0.2.
Hence, d1,1(M, N ) = d1,1(M, P).
d2,1(M, N ) = 0, d2,1(M, O) = 0.
Hence, d2,1(M, N ) = d2,1(M, O).

As N (x) 	= P(x) 	= O(x), we think d(M, N ) 	= d(M, O) 	= d(M, P). The value-based
existing distance measures only consider the values of DHFEs but ignore the volatility of
DHFEs, which make the measures between DHFFs inaccurate.
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3 New distance measures for DHFSs

To overcome some drawbacks analyzed in Sect. 2.2, we will provide a series of new distance
measures for DHFSs. Before proposing the new distance, we introduce a new concept as
follows:

Definition 9 Let e = {〈ς, ζ 〉} be any DHFE. Denote

Em(e) =
∑

ψ∈ς ψ

l(ψ)
; (11)

En(e) =
∑

φ∈ζ φ

m(φ)
; (12)

Sm(e) =
√∑

ψ∈ς (ψ − Em)2

l(ψ)
; (13)

Sn(e) =
√∑

φ∈ζ (φ − En)2

m(φ)
, (14)

where ψ and φ are the values of ς and ζ , respectively; l(ψ) and m(φ) are the number of
elements ψ and φ. We call Em(e) and En(e) the mean of membership degrees and non-
membership degrees of the DHFE e, respectively, Sm(e) and Sn(e) the standard deviation of
membership degrees and non-membership degrees of the DHFE e, respectively.

For any DHFE e, Em(e), En(e) reflect the values of the membership degrees and non-
membership degrees. When e = {〈{1}, {0}〉}, it indicates that the decision maker can
determine the precise value of the membership degrees and non-membership degrees without
any question, namely there is not any volatility for decision maker to determine the value of
the DHFE. When e = {〈{0}, {1}〉}, it means that the decision maker gives the opposite eval-
uation. Sm(e), Sn(e) reflects the degree of volatility for decision maker when they determine
the values for the DHFE e. The larger the values of Sm(e) and Sn(e) are, the more volatile
the data will be given by the decision maker. When Sm(e) = Sn(e) = 0, l(ψ) = m(φ) = 1,
namely there is not any volatility for decision maker to determine the value of the DHFE e.

For convenience, we also give the notes as follows:
Let D1 and D2 be any DHFSs on X = {x1, x2, . . . , xn}, then the mean distance of the

membership of a DHFE between D1 and D2 is

Em(xi ) = |Em(D1(xi )) − Em(D2(xi ))|, (15)

the mean distance of the non-membership of a DHFE between D1 and D2 is

En(xi ) = |En(D1(xi )) − En(D2(xi ))|, (16)

the standard deviation distance of the membership of a DHFE between D1 and D2 is

Sm(xi ) = |Sm(D1(xi )) − Sm(D2(xi ))|, (17)

the standard deviation distance of the non-membership of a DHFE between D1 and D2 is

Sn(xi ) = |Sn(D1(xi )) − Sn(D2(xi ))|. (18)

Based on the Definition 9, we present the new distance measures for DHFSs.
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Definition 10 Let D1 and D2 be two DHFSs on X = {x1, x2, . . . , xn}, then the new nor-
malized Hamming distance between D1 and D2 is defined as

ddh(D1, D2) = 1

2n

n∑

i=1

(
Em(xi ) + En(xi )

2
+ Sm(xi ) + Sn(xi )

2

)
, (19)

the new normalized Euclidean distance between D1 and D2 is defined as

dde(D1, D2) =
[

1

2n

n∑

i=1

(
E2

m(xi ) + E2
n(xi )

2
+ S2

m(xi ) + S2
n (xi )

2

)] 1
2

, (20)

the new normalized generalized distance between D1 and D2 is defined as

ddg(D1, D2) =
[

1

2n

n∑

i=1

(
Eλ

m(xi ) + Eλ
n (xi )

2
+ Sλ

m(xi ) + Sλ
n (xi )

2

)] 1
λ

, (21)

where λ ≥ 1, Em(xi ) and En(xi ) are the mean distance of the membership degrees and non-
membership degrees between D1 and D2 satisfying (15) and (16), respectively; Sm(xi ) and
Sn(xi ) are the standard deviation distance of the membership degrees and non-membership
degrees between D1 and D2 satisfying (17) and (18), respectively.

Next, we give an example to show the computational process of the new distance.

Example 6 Let X = {x1, x2}, M = {〈x1, {0.8, 0.6}, {0.2}〉, 〈x2, {0.1}, {0.4, 0.8}〉}, N (x) =
{〈x2, {0.4, 0.5}, {0.1, 0.2}〉, 〈x2, {0.2, 0.4}, {0.4, 0.6}〉}. Then,

for M , we have

Em(M(x1)) = 0.6 + 0.8

2
= 0.7, En(M(x1)) = 0.2,

Sm(M(x1)) =
√

(0.8 − 0.7)2 + (0.6 − 0.7)2

2
= 0.1, Sn(M(x1)) = 0;

Em(M(x2)) = 0.1, En(M(x2)) = 0.4 + 0.8

2
= 0.6,

Sm(M(x2)) = 0, Sn(M(x2)) =
√

(0.4 − 0.6)2 + (0.8 − 0.6)2

2
= 0.2.

For N , we have

Em(N (x1)) = 0.4 + 0.5

2
= 0.45, En(N (x1)) = 0.1 + 0.2

2
= 0.15,

Sm(N (x1)) =
√

(0.5 − 0.45)2 + (0.4 − 0.45)2

2
= 0.05,

Sn(N (x1)) =
√

(0.2 − 0.15)2 + (0.1 − 0.15)2

2
= 0.05;

Em(N (x2)) = 0.2 + 0.4

2
= 0.3, En(N (x2)) = 0.4 + 0.6

2
= 0.5,

Sm(N (x2)) =
√

(0.2 − 0.3)2 + (0.4 − 0.3)2

2
= 0.1,
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Sn(N (x2)) =
√

(0.4 − 0.5)2 + (0.6 − 0.5)2

2
= 0.1;

therefore,

ddg(M, N ) =
[

1

2n

n∑

i=1

(
Eλ

m(xi ) + Eλ
n (xi )

2
+ Sλ

m(xi ) + Sλ
n (xi )

2

)] 1
λ

=
[

1

2 × 2

( |0.7 − 0.45|λ + |0.2 − 0.15|λ
2

+ |0.1 − 0.05|λ + |0 − 0.05|λ
2

+ |0.1 − 0.3|λ + |0.6 − 0.5|λ
2

+ |0.2 − 0.1|λ + |0 − 0.1|λ
2

)] 1
λ

=
[
1

4

(
0.15λ + 0.05λ

2
+ 0.05λ + 0.2λ + 0.1λ

2
+ 0.1λ

)] 1
λ

.

If we take into account the preferences of the influences of mean and standard deviation
of DHFE, then we have the new normalized Hamming distance with preference as follows:

ddph(D1, D2) = 1

n

n∑

i=1

(
α

Em(xi ) + En(xi )

2
+ β

Sm(xi ) + Sn(xi )

2

)
, (22)

the new normalized Euclidean distance with preference between D1 and D2 is defined as

ddpe(D1, D2) =
[
1

n

n∑

i=1

(
α

E2
m(xi ) + E2

n(xi )

2
+ β

S2
m(xi ) + S2

n (xi )

2

)] 1
2

, (23)

the new normalized generalized distance with preference between D1 and D2 is defined as

ddpg(D1, D2) =
[
1

n

n∑

i=1

(
α

Eλ
m(xi ) + Eλ

n (xi )

2
+ β

Sλ
m(xi ) + Sλ

n (xi )

2

)] 1
λ

, (24)

where α + β = 1.
If we not only consider the different preferences of the influences of mean and standard

deviation of dual hesitant fuzzy element, but also notice the weight of each element x ∈ X ,
then the weighted distance with preference is shown as follows:

Definition 11 Let D1 and D2 be twoDHFSs on X = {x1, x2, . . . , xn}, then the newweighted
normalized Hamming distance with preference between D1 and D2 is defined as

dwdph(D1, D2) =
n∑

i=1

wi

(
α

Em(xi ) + En(xi )

2
+ β

Sm(xi ) + Sn(xi )

2

)
, (25)

the new weighted normalized Euclidean distance with preference between D1 and D2 is
defined as

dwdpe(D1, D2) =
[

n∑

i=1

wi

(
α

E2
m(xi ) + E2

n(xi )

2
+ β

S2
m(xi ) + S2

n (xi )

2

)] 1
2

, (26)
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the new weighted normalized generalized distance with preference between D1 and D2 is
defined as

dwdpg(D1, D2) =
[

n∑

i=1

wi

(
α

Eλ
m(xi ) + Eλ

n (xi )

2
+ β

Sλ
m(xi ) + Sλ

n (xi )

2

)] 1
λ

, (27)

where α + β = 1 and 0 ≤ α, β ≤ 1, λ ≥ 1, wi is the weight of xi ∈ X , 0 ≤ wi ≤ 1,∑n
i=1 wi = 1, Em(xi ) and En(xi ) are the mean distance of the membership degrees and non-

membership degrees between D1 and D2 satisfying (15) and (16), respectively; Sm(xi ) and
Sn(xi ) are the standard deviation distance of the membership degrees and non-membership
degrees between D1 and D2 satisfying (17) and (18), respectively.

Remark 2 To ensure that the distance measures of dwdph , dwdpe and dwdpg satisfy the con-
dition (d5) in Definition 8, the parameter λ should satisfy λ ≥ 1.

Remark 3 If w1 = w2 = · · · = wn = 1
n , then dwdph , dwdpe and dwdpg are reduced to ddph ,

ddpe and ddpg , respectively. If α = β = 1
2 , then ddph , ddpe and ddpg are reduced to ddh , dde

and ddg , respectively.

To prove the Theorem 1, we give the following lemma:

Lemma 1 (Kuang 2004) Let (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Rn, and 1 ≤ λ ≤ +∞.
Then

(
n∑

k=1

|ak + bk |λ
) 1

λ

≤
(

n∑

k=1

|ak |λ
) 1

λ

+
(

n∑

k=1

|bk |λ
) 1

λ

. (28)

Theorem 1 The distance measures dwdph, dwdpe and dwdpg satisfy the properties (d1)–(d4)
in Definition 8.

Proof As dwdph and dwdpe are special cases of dwdpg , we only give the proof of dwdpg .

Assume that D1, D2 and D3 are three DHFSs.

(d1) Based on Definition 9, we can obtain 0 ≤ Em(d), En(d), Sm(d), Sn(d) ≤ 1, then

0 ≤ Em(xi ), En(xi ), Sm(xi ), Sn(xi ) ≤ 1. So we have 0 ≤ ∑n
i=1 wi (α

Eλ
m (xi )+Eλ

n (xi )

2 +
β

Sλ
m (xi )+Sλ

n (xi )

2 ) ≤ 1 for λ ≥ 1, 0 ≤ wi ≤ 1,
∑n

i=1 wi = 1, hence 0 ≤ dwdpg ≤ 1.
(d2) Obviously, if D1 = D2, then dwdpg(D1, D2) = 0; on the other hand, if

dwdpg(D1, D2) = 0, for any xi ∈ X , we have Em(xi ) = 0 and En(xi ) = 0,
then for any xi ∈ X , Em(D1(xi )) = Em(D2(xi )) and En(D1(xi )) = En(D2(xi )).
Thus, s(D1(xi )) = Em(D1(xi )) − En(D1(xi )) = Em(D2(xi )) − En(D2(xi )) =
s(D2(xi )) and p(D1(xi )) = Em(D1(xi ))+ En(D1(xi )) = Em(D2(xi ))+ En(D2(xi ))

= p(D2(xi )) for any xi ∈ X , from the Definition 2.6, we obtain D1 = D2.
(d3) From (15)–(18) and (27), we can easily obtain that dwdpg(D1, D2) = dwdpg(D1, D2).
(d4) Based on Lemma 1 and (27), we can obtain dwdpg(D1, D2) ≤ dwdpg(D1, D3) +

dwdpg(D3, D2).

Remark 4 Since the property (d5) inDefinition 8 only depends upon the values of theDHFEs,
and has no relation to the volatility of the DHFEs, then the distance measures do not satisfy
this property.
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Compared to the distance measures given by Singh (2015) and Wang et al. (2014), the
new distance has the following advantages:

1. The new distance measures for DHFSs consider the mean, standard deviation of DHFEs,
which is anotherway to calculate distancemeasures by its own characteristics of elements
of a DHFS.

2. As a distance measure, the new distance for DHFSs, which avoids the drawback (v), is
more accurate than Farhadinia (2014, 2015)’s as it not only considers the differences
between the values of the elements, but also includes the volatility of their own values of
the elements.

3. The new distance measures depend on the length of DHFEs.We do not need to extend the
shorter one until the membership degrees and non-membership degrees of both DHFSs,
which can reduce error of adding different values (see Example 3) and overcome the
drawbacks (i), (ii) and (iii).

4. As a basic condition for distancemeasures inDefinition 1, we think the triangle inequality
is important to the distance measures of DHFSs. Since we give the analysis on distance
measures for DHFSs in Sect. 2.2, the distance measures proposed by Singh (2015) and
Wang et al. (2014) only meet the properties d1, d2 and d3. But our new distance can not
only meet all basic condition in Definition 1, but also reflect the distance characteristics
of DHFS: 0 ≤ d ≤ 1.

4 Distance measures for higher order dual hesitant fuzzy sets

This section contains two parts: one is developed to describe the basic definitions of fuzzy
set and its new generalization which are referred to as the HODHFS. In fact, the HODHFS
is a generalization of DHFS, which is introduced in Sect. 2; the other is to give the distance
measures for HODHFSs based on the distance measures for DHFSs proposed in Sect. 3.

4.1 Higher order dual hesitant fuzzy set

An ordinary fuzzy set A in X is defined (Zadeh 1965) as A = {〈x, A(x)〉|x ∈ X}, where
A : X → [0, 1] and the real value A(x) represents the degree of membership of x in A.

Definition 12 (Klir and Yuan 1995) Let X be a fixed set. A generalized type of fuzzy set on
X is defined as

Ã = {〈x, Ã(x)〉|x ∈ X}, (29)

where Ã : X → ψ([0, 1]). Here, ψ([0, 1]) denotes a family of crisp or fuzzy sets that can
be defined within the universal set [0, 1].

It is noteworthy that most of the existing extensions of ordinary FS are special cases of
G-Type FS, for instance (Klir and Yuan 1995).

– if ψ([0, 1]) = [0, 1], then the Ã reduces to an ordinary FS;
– if ψ([0, 1]) = ε([0, 1]) denoting the set of all closed intervals, then the G-Type FS Ã

reduces to an IVFS;
– if ψ([0, 1]) = F([0, 1]) denoting the set of all ordinary FSs, then the G-Type FS Ã

reduces to a T2FS;
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– if ψ([0, 1]) = L denoting a partially ordered Lattice, then the G-Type FS Ã reduces to
a L-FS.

Based on G-Type FS and DHFS given in Sect. 2, the concept of HODHFS is introduced
here to let the membership degrees and non-membership degrees of an element to a given
set be expressed by several possible G-Type FSs.

Definition 13 Let X be a fixed set. A HODHFS on X = {x1, x2, . . . , xn} is defined as

D̃ = {〈x, h̃(x), g̃(x)〉|x ∈ X}, (30)

where h̃(x) and g̃(x) are twoG-Type FSs, denoting the possiblemembership degrees and non-
membership degrees of the element x ∈ X to the set D̃, respectively, with the conditions:
0 ≤ γ, η ≤ 1 and 0 ≤ γ + + η+ ≤ 1, where γ ∈ h(x), η ∈ g(x), γ + ∈ h+(x) =
∪γ∈h(x) max{γ }, and η+ ∈ g+(x) = ∪η∈g(x) max{η} for x ∈ X . For convenience, the pair
d̃(x) = {h̃(x), g̃(x)} is called a higher order dual hesitant fuzzy element (HODHFE) denoted
by d̃ = {h̃, g̃}. In this regards, the HODHFS D̃ is also represented as

D̃ = {〈x, {h̃(1)(x), . . . , h̃(l(x))(x)}, {g̃(1)(x), . . . , g̃(m(x))(x)}〉|x ∈ X},

where all h̃(1)(x), . . . , h̃(l(x))(x), g̃(1)(x), . . . , g̃(m(x))(x) are G-Type FSs on X .

As can be seen fromDefinition 13, an HODHFS D̃ expresses the membership degrees and
non-membership degrees of an element by several possible G-Type FSs instead of several
real numbers between 0 and 1 in DHFS. When in many real-world situations assigning exact
values to the membership degrees and non-membership degrees do not describe properly the
imprecise or uncertain decision information, it seems to be useful for the decision makers to
rely on HODHFSs for expressing uncertainty of an element.

Example 7 Let X = {x1, x2}, {h̃(x1), g̃(x1)} = {{[0.3, 0.4], [0.3, 0.35]}, {[0.3, 0.4]}},
and {h̃(x2), g̃(x2)} = {{[0.4, 0.6], [0.3, 0.4]}, {[0.1, 0.3], [0.2, 0.3]}} are the HODHFE
of xi (i = 1, 2, 3) to a set D̃, respectively, where G-Type FSs are interval-valued
fuzzy set (Turksen and Zhong 1988). Then D̃ can be considered as a HODHFS,
i.e., D̃ = {〈x1, {[0.3, 0.4], [0.3, 0.35]}, {[0.3, 0.4]}〉, 〈x2, {[0.4, 0.6], [0.3, 0.4]}, {[0.1, 0.3],
[0.2, 0.3]}〉}.

The example shows that the notion of dual interval-valued hesitant fuzzy set (Farhadinia
2014) are special cases of HOHFSs. A HODHFS D̃ = {〈x, h̃(x), g̃(x)〉|x ∈ X} reduces to
an dual interval-valued hesitant fuzzy set, when all G-Type FSs h̃(1)(x), . . . , h̃(l(x))(x), g̃(1)

(x), . . . , g̃(m(x))(x) for any x ∈ X are considered as closed intervals of real numbers in [0,
1].

And a simple description of the relationship between HODHFS and the existing sets is
given as follows.

123



1798 J. Chen et al.

HODHFS =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fuzzy set, if h̃ = {μα ∈ [0, 1]}, g̃ = ∅;
intuitionistic fuzzy set, if h̃ = {μα ∈ [0, 1]},

g̃ = {να ∈ [0, 1]}, μα + να ≤ 1;
interval-valued fuzzy set, if h̃ = {[μ−, μ+] ⊂ [0, 1]}, g̃ = ∅;
interval-valued intuitionistic fuzzy set, if h̃ = {[μ−, μ+] ⊂ [0, 1]},

g̃ = {[ν−, ν+] ⊂ [0, 1]},
μ+ + ν+ ≤ 1;

hesitant fuzzy set, if h̃ = {∪i=1,2,...,nγi |γi ∈ [0, 1]},
g̃ = ∅;

interval-valued hesitant fuzzy set, if h̃ = {{[γ i−, γ i+]}|[γ i−, γ i+] ⊂ [0, 1]},
g̃ = ∅, i = 1, 2, . . . , n;

dual hesitant fuzzy set, if h̃ = {∪i=1,2,...,nγi |γi ∈ [0, 1]},
g̃ = {∪i=1,2,...,nηi |ηi ∈ [0, 1]}, γ + η ≤ 1;

dual interval-valued hesitant fuzzy set, if h̃ = {{[γ i−, γ i+]}|[γ i−, γ i+] ⊂ [0, 1]},
g̃ = {{[ηi−, ηi+]}|[γ i−, γ i+] ⊂ [0, 1]},
i = 1, 2, . . . , n, γ i− + ηi+ ≤ 1.

(31)

Furthermore, among the generalization of ordinary fuzzy set (type-1 fuzzy set), the most
widely used extensions are the following: type-2 fuzzy sets whose membership degrees are
also fuzzy, that is, instead of being crisp values in [0, 1], the membership degrees are fuzzy
sets; intuitionistic fuzzy sets extend fuzzy sets by a hesitancy function, thus the membership
takes the form of an interval; the triangular fuzzy numbers extend fuzzy sets to describe the
imprecise or uncertain membership degrees of an element to a given set. Thus, we can also
get the concepts of type-2 DHFS, intuitionistic DHFS, etc. This implies that HODHFSs are
more useful than DHFSs to deal with decision making, clustering, pattern recognition, image
processing, etc., when experts have a hesitation among several possible membership degrees
and non-membership degrees for an element.

4.2 Distance measures for HODHFSs

In this part, we apply our new information measures for DHFS to introducing distance
measures for HODHFSs. In the following, we first give the axiomatic definition of distance
measures for HOHFSs based on the analysis on distance measures for DHFS.

Definition 14 Let D̃1 = {〈x, h̃1(x), g̃1(x)〉|x ∈ X}, D̃2 = {〈x, h̃2(x), g̃2(x)〉|x ∈ X} and
D̃3 = {〈x, h̃3(x), g̃3(x)〉|x ∈ X}, be three HODHFSs on X . Then d is called a distance
measure for HODHFSs if it possesses the following properties:

(D1) 0 ≤ d(D̃1, D̃2) ≤ 1;
(D2) d(D̃1, D̃2) = 0 if and only if D̃1 = D̃2;
(D3) d(D̃1, D̃2) = d(D̃2, D̃1);
(D4) d(D̃1, D̃2) ≤ d(D̃1, D̃3) + d(D̃3, D̃2).

As we have introduced HODHFEs of an HODHFS D̃ = {〈x, h̃(x), g̃(x)〉|x ∈ X},
we pay our attention to the representation of HODHFS D̃ based on its HODHFEs
〈h̃(x1), g̃(x1)〉, . . . , 〈h̃(xn), g̃(xn)〉, i.e.,

D̃ =
⋃

〈h̃,g̃〉∈D̃

{〈h̃, g̃〉} = {〈h̃(x1), g̃(x1)〉, . . . , 〈h̃(xn), g̃(xn)〉},

which is of fundamental importance in the study of information measures within the next
part of the paper.

Hereafter, the definition of distance measure for HODHFSs is given as follows.
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Definition 15 Let D̃1 and D̃2 be two HODHFSs on X = {x1, x2, . . . , xn}. Then the distance
measure for HODHFSs is defined as

d(D̃1, D̃2) = 1

n

n∑

i=1

(
α

Ẽm(xi ) + Ẽn(xi )

2
+ β

S̃m(xi ) + S̃n(xi )

2

)
, (32)

where α + β = 1, and for each xi ∈ X ,

Ẽm(xi ) = |Em(D̃1(xi )) − Em(D̃2(xi ))|, Ẽn(xi ) = |En(D̃1(xi )) − En(D̃2(xi ))|, (33)
S̃m(xi ) = |Sm(D̃1(xi )) − Sm(D̃2(xi ))|, S̃n(xi ) = |Sn(D̃1(xi )) − Sn(D̃2(xi ))|, (34)

Em(., .) and En(., .) are the mean of membership degrees and non-membership degrees,
respectively; Sm(., .) and Sn(., .) are the standard deviation of membership degrees and non-
membership degrees, respectively.

As themembership degrees andnon-membership degrees areG-TypeFSs, Em(., .), En(., .)

and Sm(., .), Sn(., .) are the mean and the standard deviation of G-Type FSs, respectively.

Theorem 2 Let Em(., .), En(., .) and Sm(., .), Sn(., .) be the means and standard deviations
of G-Type FSs which satisfy the requirements (D1)–(D4) listed in Definition 14. Then d(.,.)
given by (32) is a distance measure for HODHFSs.

Proof Based on Theorem 1 and Definition 15, we can easily get the theorem.

Motivated by the generalized idea provided byYager (1988), we further extend d(.,.) given
by (32) into the generalized HODHFSs distance:

dλ(D̃1, D̃2) =
[
1

n

n∑

i=1

(
α

Ẽλ
m(xi ) + Ẽλ

n (xi )

2
+ β

S̃λ
m(xi ) + S̃λ

n (xi )

2

)] 1
λ

.

In most of the real-world applications, the elements in the universe of discourse may have
a different importance. This impulses us to consider the weight of each element xi ∈ X .
Assume that the weight of xi ∈ X is wi (i = 1, . . . , n), and wi ∈ [0, 1] with∑n

i=1 wi = 1.
Then, we get the generalized weighted distance for HODHFSs as follows:

dw,λ(D̃1, D̃2) =
[

n∑

i=1

wi

(
α

Ẽλ
m(xi ) + Ẽλ

n (xi )

2
+ β

S̃λ
m(xi ) + S̃λ

n (xi )

2

)] 1
λ

.

where λ ≥ 1, Ẽm(xi ), Ẽn(xi ) and S̃m(xi ), S̃n(xi ) satisfy (33) and (34), respectively.

5 Applications

In what follows, we demonstrate the practicality and effectiveness of the proposed distance
measures applied to higher order dual hesitant fuzzy multi-attribute decision-making prob-
lems which can be shown in the following examples.

(i) Notice that an HODHFS reduces to a DHFS, if the G-Type FSs is reduces to the special
case of anordinaryFS.Nowweconsider aweapon selection problem inwhich alternatives
are theweaponpackages to be selected and criteria are those attributes under consideration
(Wang et al. 2014).
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Table 1 Higher order dual hesitant fuzzy decision matrix (Dual hesitant fuzzy decision matrix)

G1 G2 G3 G4

A1 {{0.5, 0.4, 0.3}, {0.4, 0.2}} {{0.6, 0.5}, {0.3, 0.2, 0.1}} {{0.8, 0.7, 0.6}, {0.2, 0.1, 0}} {{0.7}, {0.2}}
A2 {{0.8, 0.7, 0.6}, {0.2, 0.1}} {{0.7, 0.6}, {0.3, 0.2, 0.1}} {{0.7, 0.6, 0.5}, {0.3, 0.2, 0.1}} {{0.6}, {0.3}}
A3 {{0.4, 0.3, 0.2}, {0.6, 0.4}} {{0.6, 0.5}, {0.4, 0.2, 0.1}} {{0.5, 0.4, 0.3}, {0.4, 0.2, 0.1}} {{0.9}, {0.1}}
A4 {{0.4, 0.3, 0.1}, {0.6, 0.5}} {{0.8, 0.7}, {0.2, 0.1, 0}} {{0.6, 0.5, 0.4}, {0.3, 0.2, 0.1}} {{0.7}, {0.3}}

Example 8 (Wang et al. 2014) A computer center desires to select a new information system
to improve work productivity. After preliminary screening, four alternatives Ai (1, 2, 3, 4)
have remained in the candidate list. There are four attributes G j (1, 2, 3, 4) that need to be
considered and the weight vector of the attributes isw = {0.15, 0.25, 0.15, 0.45}. One expert
evaluates the weapon packages with respect to the attributes, and constructs the following
dual fuzzy decision matrix R (Table 1).

Then, TOPSIS steps can be outlined as follows:

Step 1. Construct the decision matrix R: (see Wang et al. 2014).

R =

⎡

⎢⎢⎣

{{0.5, 0.4, 0.3}, {0.4, 0.2}} {{0.6, 0.5}, {0.3, 0.2, 0.1}} {{0.8, 0.7, 0.6}, {0.2, 0.1, 0}} {{0.7}, {0.2}}
{{0.8, 0.7, 0.6}, {0.2, 0.1}} {{0.7, 0.6}, {0.3, 0.2, 0.1}} {{0.7, 0.6, 0.5}, {0.3, 0.2, 0.1}} {{0.6}, {0.3}}
{{0.4, 0.3, 0.2}, {0.6, 0.4}} {{0.6, 0.5}, {0.4, 0.2, 0.1}} {{0.5, 0.4, 0.3}, {0.4, 0.2, 0.1}} {{0.9}, {0.1}}
{{0.4, 0.3, 0.1}, {0.6, 0.5}} {{0.8, 0.7}, {0.2, 0.1, 0}} {{0.6, 0.5, 0.4}, {0.3, 0.2, 0.1}} {{0.7}, {0.3}}

⎤

⎥⎥⎦

(35)

Step 2. Construct the weighted decision matrix: (see Wang et al. 2014).

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{ {0.0987, 0.0738, 0.0521},
{0.8716, 0.0.7855}

} { {0.2047, 0.1591},
{0.7401, 0.6687, 0.5623}

} { {0.2145, 0.1652, 0.1284},
{0.7855, 0.7080, 0}

} { {0.4183},
{0.4847}

}

{ {0.2145, 0.1652, 0.1284},
{0.7855, 0.7080}

} { {0.2599, 0.2047},
{0.7401, 0.6687, 0.5623}

} { {0.1652, 0.1284, 0.0988},
{0.8348, 0.7855, 0.7080}

} { {0.3379},
{0.5817}

}

{ {0.0738, 0.0521, 0.0329},
{0.9262, 0.8716}

} { {0.2047, 0.1591},
{0.7953, 0.6687, 0.5623}

} { {0.1284, 0.0738, 0.0521},
{0.8716, 0.7855, 0.7080}

} { {0.6452},
{0.3548}

}

{ {0.0738, 0.0521, 0.0157},
{0.9262, 0.9013}

} { {0.3313, 0.2599},
{0.6687, 0.5623, 0}

} { {0.1284, 0.0988, 0.0738},
{0.8348, 0.7855, 0.7080}

} { {0.4183},
{0.5817}

}

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(36)

Step 3. Determine the positive ideal and the negative ideal solutions: (seeWang et al. 2014).

A+ =
[{

maxi {γi1},
mini {ηi1}

} {
maxi {γi2},
mini {ηi2}

} {
maxi {γi3},
mini {ηi3}

} {
maxi {γi4},
mini {ηi4}

}]

=
[{

0.2145,
0.7080

} {
3313,
0

} {
0.2145,

0

} {
0.6452,
0.3548

}]

A− =
[{

mini {γi1},
maxi {ηi1}

} {
mini {γi2},
maxi {ηi2}

} { {mini {γi3},
maxi {ηi3}

} {
mini {γi4},
maxi {ηi4}

}]

=
[{

0.0157,
0.9262

} {
0.1591,
0.7953

} {
0.0521,
0.8716

} {
0.3379,
0.5817

}]

Step 4. Measure the distance of alternatives to the positive ideal and the negative ideal points:

S+
i =

4∑

j=1

d(vi j , A+
j ); S−

i =
4∑

j=1

d(vi j , A−
j );
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Fig. 1 The results of Ci

where i = 1, . . . , 4, A+
j ∈ A+, A−

j ∈ A−, vi j = {γi j , ηi j } and vi j ∈ V .

Here we can use (24) and vi j , A+
j and A−

j are related in step 2 and step 3 in the study
by Wang et al. (2014).

Step 5. Calculate the relative closeness to the ideal solution.

Ci = S−
i

S+
i + S−

i

.

Step 6. Rating of each alternative.

As a comparison to the example in Wang et al. (2014), we consider different value of λ. We
choose λ = [1, 20], as its result is typical. Furthermore, it is possible to analyze how different
values of the attitudinal characters α and β change the results as α and β reflect the different
preferences of the influences of mean and standard deviation of dual hesitant fuzzy element.
Then we give three figures as follows:

From Fig. 1, if α = 0.1, β = 0.9, we can find that the ranking of the four alternatives is
A1 
 A4 
 A3 
 A2 and the best choice is A1.

From Fig. 2, if α = 0.5, β = 0.5, we can find that,

1. when λ ∈ [1, 1.6088], the ranking of the four alternatives is A1 
 A3 
 A2 
 A4 and
the best choice is A1;

2. when λ ∈ (1.6088, 20], the ranking of the four alternatives is A1 
 A3 
 A4 
 A2 and
the best choice is A1.

From Fig. 3, if α = 0.9, β = 0.1, we can find that,

1. when λ ∈ [1, 5.4231], the ranking of the four alternatives is A1 
 A3 
 A2 
 A4 and
the best choice is A1;

2. when λ ∈ (5.4231, 20], the ranking of the four alternatives is A1 
 A3 
 A4 
 A2 and
the best choice is A1.

As can be seen from the results, the proposed distance measures can provide the decision
makerswithmore choices as the different values of the parameterα (orβ) are given according
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Fig. 2 The results of Ci

Fig. 3 The results of Ci

to the decision makers’ attitudes. Compared to the results in Wang et al. (2014), the ranking
of the four alternatives is different although the best choice is always A1. It implies that our
proposed distance measures are applicable and available.

On the other hand, optimists often focus on the size of the values but ignore the volatility
of the values, while pessimists expect no volatility and, therefore, they focus on the volatility
of the values. So, the values of the parameter α (or β) can be treated as the optimistic or
pessimistic levels. According to Figs. 1, 2 and 3, we conclude that the decision makers who
have a positive perception of the prospects could choose a larger value for the parameter
α, whereas the decision makers who are pessimistic could choose a smaller value for the
parameter α.

Now, we analyze how different values of the parameter λ change the results of Ci (i =
1, 2, 3, 4) from Figs. 1, 2 and 3. When λ is assigned different values between 0 and 20,
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Table 2 Higher order dual hesitant fuzzy decisionmatrix (dual interval-valued hesitant fuzzy decisionmatrix)

G1 G2

A1 {{[0.5, 0.4], [0.3, 0.1]}, {[0.3, 0.2]}} {{[0.6, 0.5]}, {[0.1, 0]}}
A2 {{[0.8, 0.7], [0.6, 0.4]}, {{[0.1, 0]}} {{[0.7, 0.6]}, {[0.3, 0.2]}}
A3 {{[0.4, 0.3]}, {{[0.6, 0.4]}} {{[0.6, 0.5]}, {[0.4, 0.1]}}
A4 {{[0.4, 0.3], [0.1, 0]}, {{[0.6, 0.5]}} {{[0.8, 0.7]}, {[0.2, 0.1]}}

G3 G4

A1 {{[0.7, 0.5]}, {[0.2, 0.1], [0.3, 0]}} {{[0.4, 0.4]}, {[0.2, 0.1]}}
A2 {{[0.8, 0.7], [0.6, 0.4}, {[0.2, 0.1]}} {{[0.6, 0.6]}, {[0.3, 0.2]}}
A3 {{[0.5, 0.4], [0.3, 0.3]}, {[0.4, 0.1]}} {{[0.9, 0.8]}, {[0.1, 0]}}
A4 {{[0.6, 0.2], [0.5, 0.4]}, {[0.3, 0.2]}} {{[0.7, 0.4]}, {[0.3, 0]}}

Fig. 1 demonstrates that all of the values obtained with Ci (i = 1, 2, 3, 4) decrease, but
the values obtained with Ci (i = 1, 2, 3, 4) in Figs. 2 and 3 do not always decrease, which
come to a conclusion that the monotonicity of Ci (i = 1, 2, 3, 4) is related to α (or β). For
example, with the increase of λ, when α = 0.1, C4 is decreasing but when α = 0.9, C4 is
increasing. The reason for this result is that the different preferences of the mean and standard
deviation have a great influence on the value of dwdpg , which is used to calculate the values
of Ci (i = 1, 2, 3, 4). But when λ (λ ≥ 1) continues to increase, we find that the values of
Ci (i = 1, 2, 3, 4) tend to be stable regardless of the size of α (or β). In fact, it is easy to
prove that the limits of Ci (i = 1, 2, 3, 4) exist and have nothing to do with the parameter α

(or β).

(ii) As discussed previously in Sect. 4, it is difficult for the decision makers to provide exact
values for the membership degrees and of non-membership degrees an element to a given
set like those values considered in the form of DHFEs in Zhu et al. (2012). One way to
overcome this difficulty is to describe the membership degrees and non-membership
degrees by a HODHFE in which the membership degrees and non-membership degrees
are considered as fuzzy sets. Next, we examine again the problem discussed in the
example, but with a higher order hesitant fuzzy decision matrix in which G-Type FSs are
in the form of closed intervals.

Example 9 Consider the multi-attribute decision-making problem in Example 8. Suppose
that all possible evaluations for an alternative under the attributes are contained in a HOHFS.
The results evaluated by the decision makers are the elements of a higher order dual hesitant
fuzzy decision matrix, shown as follows (Table 2).

We let the full HODHFS D̃∗ = {〈x, {[1, 1]}, {[0, 0]}〉|x ∈ X} be the ideal alternative.
Using the generalized weighted distance for HODHFSs to calculate the deviations between
each alternative and the ideal alternative D̃∗, the rankingof all alternatives canbeobtained. For
example, the deviation between the alternative D̃i and the ideal alternative D̃∗ is calculated
as follows:

dw,λ(D̃i , D̃∗) =
⎡

⎣
n∑

j=1

w j

(
α

Ẽλ
m(xi j ) + Ẽλ

n (xi j )

2
+ β

S̃λ
m(xi j ) + S̃λ

n (xi j )

2

)⎤

⎦

1
λ

.
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Table 3 Results of dλ,w(D̃i , D̃∗)

A1 A2 A3 A4 Rankings

λ = 4 0.4015 0.2786 0.3651 0.4091 A2 
 A3 
 A1 
 A4

λ = 6 0.4600 0.3064 0.4285 0.4860 A2 
 A3 
 A1 
 A4

λ = 8 0.4955 0.3235 0.4685 0.5401 A2 
 A3 
 A1 
 A4

λ = 10 0.5199 0.3350 0.4961 0.5800 A2 
 A3 
 A1 
 A4

λ = 20 0.5800 0.3622 0.5622 0.6789 A2 
 A3 
 A1 
 A4

where

Ẽm(xi j ) = |Em(D̃i (xi j )) − Em(D̃∗(xi j ))|, Ẽn(xi j ) = |En(D̃i (xi j )) − En(D̃∗(xi j ))|,
S̃m(xi j ) = |Sm(D̃i (xi j )) − Sm(D̃∗(xi j ))|, S̃n(xi j ) = |Sn(D̃i (xi j )) − Sn(D̃∗(xi j ))|.
As a special case of G-Type FSs, the mean of a set of closed interval {[ak, bk]}(k =

1, 2, . . . , n) is defined as

E(∪[ak, bk]) = 1

n

n∑

k=1

ak + bk

2
;

and the variance of the set of closed interval is defined as

S(∪[ak, bk]) =
√√√√1

n

n∑

k=1

(
ak + bk − 2E(∪[ak, bk])

2

)2

.

For convenience, we choose α = β = 0.5. Then, the deviation between the other alterna-
tives D̃i (i = 1, 2, 3, 4) and the ideal alternative D̃∗ are obtained as (Table 3)

As the parameter λ changes, we obtain different results. From the results, we can see that
the rankings obtained by the distance measures dλ,w(D̃i , D̃∗) and the arguments are kept
fixed. The decision makers can choose the value of λ according to their preferences.

Furthermore, it is possible to analyze how different values of the attitudinal character λ

change the results. To obtain the more specific results, we give an image which can reflect
the changes of results with λ shown in Fig. 4.

From Fig. 4, we can find that,

1. when λ ∈ [1, 1.3060], the ranking of the four alternatives is A3 
 A2 
 A1 
 A4;
2. when λ ∈ (1.3060, 20], the ranking of the four alternatives is A2 
 A3 
 A1 
 A4.

6 Conclusion

In this study, we first review some distance measures of DHFSs and give some drawbacks
about the information measures, based on which we propose some new distance measures for
DHFSs in terms of the mean, standard deviation of dual hesitant fuzzy element, respectively.
Meanwhile, we extend the DHFS to its higher order type and refer to it as the HODHFS.
HODHFS is the actual extension of DHFS encompassing not only fuzzy sets, intuitionistic
fuzzy sets, Type-2 fuzzy sets, hesitant fuzzy sets, but also the recent extension ofDHFS, called
interval-valued hesitant fuzzy sets. The rationale behindHODHFS can be seen in the case that
the decision makers are not satisfied by providing exact values for the membership degrees
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Fig. 4 The results of di

and the non-membership degrees. And we also developed a series of distance measures
for HODHFSs and employed them to solve the higher order hesitant fuzzy multi-attribute
decision-making problems. In the future, we may consider the study of aggregation operators
in the higher order dual hesitant fuzzy set for handling multiple attribute decision making
with higher order dual hesitant fuzzy information.
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