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Abstract We study the numerical approximation of a homogeneous Fredholm integral equa-
tion of second kind associated with the Karhunen–Loève expansion of Gaussian random
fields. We develop, validate, and discuss an algorithm based on the Galerkin method with
two-dimensional Haar wavelets as basis functions. The shape functions are constructed from
the orthogonal decomposition of tensor-product spaces of one-dimensional Haar functions,
and a recursive algorithm is employed to compute the matrix of the discrete eigenvalue
system without the explicit calculation of integrals, allowing the implementation of a fast
and efficient algorithm that provides considerable reduction in CPU time, when compared
with classical Galerkin methods. Numerical experiments confirm the convergence rate of the
method and assess the approximation error and the sparsity of the eigenvalue systemwhen the
wavelet expansion is truncated. We illustrate the numerical solution of a diffusion problem
with random input data with the present method. In this problem, accuracy was retained after
dropping the coefficients below a threshold value that was numerically determined. A similar
method with scaling functions rather than wavelet functions does not need a discrete wavelet
transform and leads to eigenvalue systems with better conditioning but lower sparsity.
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1 Introduction

A large class of random processes, stationary or non-stationary, can be expressed in terms
of deterministic orthogonal functions and uncorrelated random variables through Karhunen–
Loève (K–L) expansion (Karhunen 1946; Loève 1955). This representation is obtained from
the eigenvalues and eigenfunctions of a homogeneous Fredholm integral equation of the
second kind whose kernel is given by the covariance function of the random process. Once
these eigenpairs are found, the K–L expansion is constructed, roughly speaking, from a linear
combination of the eigenfunctions whose weights are independent and identically distributed
random variables. This approach has been pioneered by Ghanem and Spanos (1991) and is
widely used for modeling uncertainty in problems of elasticity, heat and mass transfer, fluid
mechanics, and acoustics (Azevedo et al. 2012; Motamed et al. 2013; Zhang and Lu 2004).

The numerical solution of the Fredholm integral equation becomes more involving in
two-dimensional domains. Several methods have been proposed in literature in this case,
such as Nyström/collocation methods (Liang and Lin 2010; Xie and Lin 2009), finite ele-
ment methods (Frauenfelder et al. 2005; Oliveira and Azevedo 2014), and wavelet Galerkin
methods (Babolian et al. 2011; Derili et al. 2012).

The practical use of K–L expansion depends of an accurate and efficient computation
of eigenpairs. In this sense, one promising technique that has been explored in the one-
dimensional case is the Galerkin method with Haar wavelets using the pyramid algorithm
(Mallat 1989) to compute the entries of the discrete eigenvalue problem. This method has
been shown to be superior to Galerkin methods with polynomial and trigonometric basis
functions (Phoon et al. 2002). In this study, we extend the work carried out in Phoon et al.
(2002), Stefanou and Papadrakakis (2007) by constructing a 2D Haar wavelet basis for
the computation of the eigenpairs of covariance functions with a two-dimensional domain.
Rather than the tensor-product basis employed in Babolian et al. (2011), Derili et al. (2012),
we consider the non-standard form (Beylkin et al. 1991, eq. (2.14)) (see also Proppe 2012),
which is constructed from the orthogonal decomposition of the tensor-product space. Such
a basis is suitable to the pyramid algorithm. Moreover, the non-standard form increases the
sparsity of the matrix representation of the kernel (Beylkin et al. 1991, Figs. 2–3 and 9–10).
In addition to the detailed extension from 1D to 2D, we compare the Galerkin methods with
Haar wavelets and Haar scaling functions (the latter is equivalent to the piecewise-constant
finite element method Azevedo and Oliveira 2012; Frauenfelder et al. 2005) in terms of
stability and efficiency.

The paper is organized in the following way. In Sect. 2, we introduce the K–L expansion
and review the one-dimensional Haar functions and the Galerkin method. In Sect. 3, we
construct the two-dimensional Haar wavelet basis and the discrete wavelet transform of two-
dimensional covariance kernels. In Sect. 4, we carry out several numerical tests to probe the
accuracy and the efficiency of the method: we evaluate the approximation error of the eigen-
values as well as the eigenfunctions (by means of the ensemble variance of K–L expansion
Stefanou and Papadrakakis 2007); we investigate the effect of neglecting matrix coefficients
below a prescribed threshold value (Stefanou and Papadrakakis 2007) in the approximation
error and sparsity of the eigenvalue system; we consider the five-spot problem on stationary
and heterogeneous media, in which the approximate eigenpairs are employed in a truncated
K–L expansion of the log hydraulic conductivity field; and we contrast the computational
cost and numerical conditioning of the bases with Haar wavelets and Haar scaling functions.

The following notations will be employed throughout this work. The index i is used for
eigenvalues and eigenfunctions, as in (1); the indices k and l are used formatrices and vectors,
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as in (10); the index j is used for wavelet scaling and the indices n andm are used for wavelet
translations, as in (12); and the index s is used to identify elements of a direct sum, as in (15).

2 Preliminary concepts

Let us first describe the Fredholm eigenvalue problem in a general setting. Let D be a
compact subset of Rd , d = 1, 2, 3. We consider the Hilbert space L2(D) of real-valued
functions equipped with the usual inner product

〈u, v〉 =
∫
D
u(x)v(x) dx.

Let C : D × D → R be a symmetric and nonnegative-definite covariance kernel, i.e., for
any finite subset D̃ ⊂ D and for any function u : D̃ → R,∑

x, y∈D̃
C(x, y)u(x)u( y) ≥ 0.

We have that C admits the spectral decomposition

C(x, y) =
∞∑
i=1

λi ui (x)ui ( y), (1)

where the nonnegative, monotonically decreasing eigenvalues λi and the orthonormal eigen-
functions ui (i ≥ 1) are the solutions of the homogeneous Fredholm integral equation∫

D
C(x, y)u( y) d y = λu(x), x ∈ D. (2)

Furthermore, let Y : D × � → R be a second-order random field with expectation

E [Y (x;ω)] =
∫

�

Y (x, ω) dμ

and two-point covariance

C(x, y) = E [(Y (x;ω) − E [Y (x;ω)])(Y ( y;ω) − E [Y ( y;ω)])],

where � represents the set of outcomes and μ is a probability measure. If the covariance
kernel C(x, y) satisfies the above assumptions, then Y can be written as

Y (x;ω) = E [Y (x;ω)] +
∞∑
i=1

√
λi ui (x)ξi (ω),

in that ξi (ω) are independent and identically distributed random variables (Loève 1978). This
representation is known as the Karhunen–Loève (K–L) expansion. On the other hand, the
truncated K–L expansion is given as

Y (x;ω) ≈ YM (x; ξ(ω)) = E [Y (x;ω)] +
M∑
i=1

√
λi ui (x)ξi (ω), (3)

where M is known as the stochastic dimension of the truncated field. Choosing a large
value for M demands a higher computational effort to compute and store the eigenfunctions,
whereas choosing a small value forM may lead to an inaccurate representation of the random
field.
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2.1 1D Haar functions

The Haar system of orthonormal functions is built from the scaling function φ(t) and the
mother wavelet ψ(t) defined as

φ(t) =
{
1 0 ≤ t < 1,

0 otherwise,
ψ(t) =

⎧⎪⎨
⎪⎩
1 0 ≤ t < 1/2,

−1 1/2 ≤ t < 1,

0 otherwise.

These functions satisfy the refinement equations

φ(x) = φ(2x) + φ(2x − 1), ψ(x) = φ(2x) − φ(2x − 1). (4)

From φ and ψ we define the functions φ j,n(x) = 2 j/2φ(2 j x − n) and ψ j,n(x) =
2 j/2ψ(2 j x − n), where the integers j and n denote the scaling and translation parameters,
respectively. Using the refinement equations (4), we obtain

φ j,n(x) = 2−1/2(φ j+1,2n(x) + φ j+1,2n+1(x)),

ψ j,n(x) = 2−1/2(φ j+1,2n(x) − φ j+1,2n+1(x)).
(5)

The vector spaces Vj spanned by {φ j,n(t)}n∈Z satisfy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ . . . , (6)

constituting a multi-resolution analysis, whereas the vector spaces Wj spanned by
{ψ j,n(t)}n∈Z serve as orthogonal complements between consecutive levels j and j + 1,
i.e.,

Vj+1 = Vj ⊕ Wj , j ∈ Z. (7)

In particular, the following orthogonality relations hold:

〈φ j,n, ψ j,n〉 = 0, 〈φ j,n, ψ j,m〉 = 〈ψ j,n, ψ j,m〉 = 0 ∀ n,m ∈ Z, n = m.

2.2 Variational formulation and Galerkin approximation

Let us consider the variational formulation of the Fredholm integral equation (2): find λi ∈ R

and ui (x) ∈ L2(D) (i = 1, 2, . . .) such that

a(ui , v) = λi 〈ui , v〉 ∀ v ∈ L2(D),

a(u, v) =
∫
D

∫
D
C(x, y)u( y)v(x) d y dx.

(8)

Let Wh be a finite-dimensional subspace of L2(D) with dimWh = N . The Galerkin
approximation to (8) in Wh consists of finding λhi ∈ R and uhi ∈ Wh (1 ≤ i ≤ N ) such that

a(uhi , vh) = λhi 〈uhi , vh〉 ∀ vh ∈ Wh . (9)

Given a basis {v1, . . . , vN } ⊂ L2(D) for Wh , let us write the approximate eigenfunction
uhi as follows:

uhi (x) =
N∑

k=1

uk,ivk(x), 1 ≤ i ≤ N .
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It follows from formulation (9) that ui = [u1,i , . . . , uN ,i ]T satisfies the generalized eigen-
value problem Cui = λhi Wui , where the matrices C and W are defined by the coefficients

Ck,l = a(vl , vk), Wk,l = 〈vl , vk〉, 1 ≤ k, l ≤ N . (10)

If the basis functions v1, . . . , vN are orthonormal, the problem reduces to the standard
eigenvalue problem Cui = λhi ui .

Given J > 0, we have from (6) and (7) the relation VJ = V0 ⊕W0 ⊕W1 ⊕· · ·⊕WJ−2 ⊕
WJ−1. If we restrict to a bounded domain, then spaces Vj andWj become finite dimensional.
In particular, for D = [0, 1] we have

V0 = span{φ0}, Wj = span{ψ j,n}2 j−1
n=0 .

This motivates the choices N = 2J and Wh = VJ = span{v1, v2, . . . , vN }, where
v1(x) = φ0(x) and vk(x) = ψ j,n(x) for k > 1, where k = 2 j +n, with n = 0, 1, . . . , 2 j −1
and j = 0, 1, . . . , J − 1. Taking into account that the truncated K–L expansion (3) requires
at least M eigenpairs, we select N ≥ M .

3 Two-dimensional Haar basis

Following Mallat (1989), we consider the 2D multi-resolution analysis · · · ⊂ V−1 ⊂ V0 ⊂
V1 ⊂ · · · formed by the tensor-product spaces

Vj+1 = V x
j+1 ⊗ V y

j+1,

{
V x
j+1 = span{φ j+1,n(x)}n∈Z,

V y
j+1 = span{φ j+1,n(y)}n∈Z,

and the orthogonal decompositions of the spaces V x
j+1 and V y

j+1 given by (7):

Vj+1 = V x
j+1 ⊗ V y

j+1 = (V x
j ⊕ Wx

j ) ⊗ (V y
j ⊕ W y

j ) = Vj ⊕ Wj , (11)

where Wj is defined as

Wj = (V x
j ⊗ W y

j ) ⊕ (Wx
j ⊗ V y

j ) ⊕ (Wx
j ⊗ W y

j ).

Taking into account that

V x
j = span{φ j,n(x)}n∈Z, Wx

j = span{ψ j,n(x)}n∈Z,

V y
j = span{φ j,m(y)}m∈Z, W y

j = span{ψ j,m(y)}m∈Z,

we find ⎧⎪⎪⎨
⎪⎪⎩

V x
j ⊗ W y

j = span{φ j,n(x)ψ j,m(y)}n,m∈Z,

Wx
j ⊗ V y

j = span{ψ j,n(x)φ j,m(y)}n,m∈Z,

Wx
j ⊗ W y

j = span{ψ j,n(x)ψ j,m(y)}n,m∈Z.

Consequently, we obtain

Wj+1 = span{ψ(1)
j,n,m(x, y), ψ(2)

j,n,m(x, y), ψ(3)
j,n,m(x, y)}n,m∈Z,

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ
(1)
j,n,m(x, y) = φ j,n(x)ψ j,m(y),

ψ
(2)
j,n,m(x, y) = ψ j,n(x)φ j,m(y),

ψ
(3)
j,n,m(x, y) = ψ j,n(x)ψ j,m(y).

(12)
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By successively using (11), we find VJ = V0 ⊕ W0 ⊕ W1 ⊕ · · · ⊕ WJ−2 ⊕ WJ−1. Note
that V0 = span{ψ(0)

0,n,m(x, y)}n,m∈Z, with

ψ
(0)
j,n,m(x, y) = φ j,n(x)φ j,m(y). (13)

As in the 1D case, when we restrict ourselves to the domain D = [0, 1]× [0, 1], the space
VJ becomes finite dimensional. We choose

Wh = VJ = span{v1, v2, . . . , vN }, N = 22J (14)

and

v1(x, y) = φ0,0(x)φ0,0(y),

vk(x, y) = ψ
(s)
j,n,m(x, y), 2 ≤ k ≤ N , (15)

where the indices 0 ≤ j ≤ J − 1, 0 ≤ n,m ≤ 2 j − 1, and s = 1, 2, 3 are related to the
global index k as follows:

k = 22 j + 3(2 j m + n) + s (k > 1). (16)

Figure 1 illustrates the basis functions vk(x, y) for 2 ≤ k ≤ 4 and 5 ≤ k ≤ 7. These
indices correspond to j = 0 and j = 1, respectively, when n = m = 0 and 1 ≤ s ≤ 3. Note
that the basis functions are ordered in such a way that the functions which share the same
support are grouped together.

From (5), (12), and (13), we find the following refinement equations for the 2D functions:

ψ
(0)
j,n,m(x, y) = 1

2

[
ψ

(0)
j+1,2n,2m(x, y) + ψ

(0)
j+1,2n,2m+1(x, y)

+ψ
(0)
j+1,2n+1,2m(x, y) + ψ

(0)
j+1,2n+1,2m+1(x, y)

]
, (17)

ψ
(1)
j,n,m(x, y) = 1

2

[
ψ

(0)
j+1,2n,2m(x, y) − ψ

(0)
j+1,2n,2m+1(x, y)

+ψ
(0)
j+1,2n+1,2m(x, y) − ψ

(0)
j+1,2n+1,2m+1(x, y)

]
, (18)

ψ
(2)
j,n,m(x, y) = 1

2

[
ψ

(0)
j+1,2n,2m(x, y) + ψ

(0)
j+1,2n,2m+1(x, y)

−ψ
(0)
j+1,2n+1,2m(x, y) − ψ

(0)
j+1,2n+1,2m+1(x, y)

]
, (19)

ψ
(3)
j,n,m(x, y) = 1

2

[
ψ

(0)
j+1,2n,2m(x, y) − ψ

(0)
j+1,2n,2m+1(x, y)

−ψ
(0)
j+1,2n+1,2m(x, y) + ψ

(0)
j+1,2n+1,2m+1(x, y)

]
. (20)

3.1 Constructing the discrete eigenvalue system

To compute the entries Ck,l defined in (10) of the discrete eigenvalue system, let us recast
these entries in tensor form:

Csk , jk ,nk ,mk
sl , jl ,nl ,ml

= a
(
ψ

(sl )
jl ,nl ,ml

, ψ
(sk )
jk ,nk ,mk

)
. (21)
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Fig. 1 Basis functions vk (x, y) = ψ
(s)
j,n,m (x, y) for 2 ≤ k ≤ 7

These coefficients are related to Ck,l as follows:

Ck,l =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C0,0,0,0
0,0,0,0 , k = l = 1,

Csk , jk ,nk ,mk
0,0,0,0 , 2 ≤ k ≤ N , l = 1,

C0,0,0,0
sl , jl ,nl ,ml

, k = 1, 2 ≤ l ≤ N ,

Csk , jk ,nk ,mk
sl , jl ,nl ,ml

, 2 ≤ k, l ≤ N .

(22)

123



1832 J. S. Azevedo et al.

The first step is to compute C0,J,nk ,mk
0,J,nl ,ml

for 0 ≤ nk,mk, nl ,ml < 2J :

C0,J,nk ,mk
0,J,nl ,ml

=
∫
D

∫
D
C(x, y, s, t)ψ(0)

J,nl ,ml
(x, y)ψ(0)

J,nk ,mk
(s, t) dt ds dy dx

= 22J
∫
Dl

∫
Dk

C(x, y, s, t) dt ds dy dx,

where Dp = [n p2−J , (n p + 1)2−J ] × [mp2−J , (mp + 1)2−J ], p = k, l. We approximate
the integral above by the rectangle rule:

C0,J,nk ,mk
0,J,nl ,ml

≈ 2−2JC(x J,nl , x J,ml , x J,nk , x J,mk ), x J,p = 2−J
(
p + 1

2

)
. (23)

Recalling that V0 = span{ψ(0)
0,n,m(x, y)}n,m∈Z, we have that the entries in (23) define the

discrete eigenvalue system Cui = λhi ui corresponding to the Galerkin method with the
spaceWh = V0. In the following we describe a pyramid algorithm to recover the remaining
coefficients without further numerical integration.

We start using the refinement equations (17)–(20) and the bilinearity of a(·, ·) to compute,
for each 0 ≤ nl ,ml < 2J , the coefficients Csk , jk ,nk ,mk

0,J,nl ,ml
for 0 ≤ nk,mk < 2 jk , 0 ≤ sk ≤ 3,

and jk = J − 1, . . . , 0. For instance, we have from (17) that

C0,J−1,nk ,mk
0,J,nl ,ml

= 1

2

[
a(ψ

(0)
jl ,nl ,ml

, ψ
(0)
J,2nk ,2mk

) + a(ψ
(0)
jl ,nl ,ml

, ψ
(0)
J,2nk ,2mk+1)

+a(ψ
(0)
jl ,nl ,ml

, ψ
(0)
J,2nk+1,2mk

) + a(ψ
(0)
jl ,nl ,ml

, ψ
(0)
J,2nk+1,2mk+1)

]

= 1

2

[
C0,J,2nk ,2mk
0,J,nl ,ml

+ C0,J,2nk ,2mk+1
0,J,nl ,ml

+ C0,J,2nk+1,2mk
0,J,nl ,ml

+C0,J,2nk+1,2mk+1
0,J,nl ,ml

]
.

Afterwards, we let jl vary from J − 1 to 0 following the same procedure. Altogether, we
have the following algorithm:

for nk,mk, nl ,ml = 0, . . . , 2J do

Evaluate C0,J,nk ,mk
0,J,nl ,ml

;
end for
for nl ,ml = 0, . . . , 2J do

for jk = J − 1, . . . , 0 do
for nk,mk = 0, . . . , 2 jk do

C0, jk ,nk ,mk
0,J,nl ,ml

← 1

2

[
C0, jk+1,2nk ,2mk
0,J,nl ,ml

+ C0, jk+1,2nk ,2mk+1
0,J,nl ,ml

+ C0, jk+1,2nk+1,2mk
0,J,nl ,ml

+ C0, jk+1,2nk+1,2mk+1
0,J,nl ,ml

]
;

C1, jk ,nk ,mk
0,J,nl ,ml

← 1

2

[
C0, jk+1,2nk ,2mk
0,J,nl ,ml

− C0, jk+1,2nk ,2mk+1
0,J,nl ,ml

+ C0, jk+1,2nk+1,2mk
0,J,nl ,ml

− C0, jk+1,2nk+1,2mk+1
0,J,nl ,ml

]
;

C2, jk ,nk ,mk
0,J,nl ,ml

← 1

2

[
C0, jk+1,2nk ,2mk
0,J,nl ,ml

+ C0, jk+1,2nk ,2mk+1
0,J,nl ,ml
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− C0, jk+1,2nk+1,2mk
0,J,nl ,ml

− C0, jk+1,2nk+1,2mk+1
0,J,nl ,ml

]
;

C3, jk ,nk ,mk
0,J,nl ,ml

← 1

2

[
C0, jk+1,2nk ,2mk
0,J,nl ,ml

− C0, jk+1,2nk ,2mk+1
0,J,nl ,ml

− C0, jk+1,2nk+1,2mk
0,J,nl ,ml

+ C0, jk+1,2nk+1,2mk+1
0,J,nl ,ml

]
;

end for
end for

end for
for jk = J − 1, . . . , 0 do

for nk,mk = 0, . . . , 2 jk do
for sk = 0, . . . , 3 do

for jl = J − 1, . . . , 0 do
for nl ,ml = 0, . . . , 2 jl do

Csk , jk ,nk ,mk
0, jl ,nl ,ml

← 1

2

[
Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml

+ Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml+1

+ Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml

+ Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml+1

]
;

Csk , jk ,nk ,mk
1, jl ,nl ,ml

← 1

2

[
Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml

− Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml+1

+ Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml

− Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml+1

]
;

Csk , jk ,nk ,mk
2, jl ,nl ,ml

← 1

2

[
Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml

+ Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml+1

− Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml

− Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml+1

]
;

Csk , jk ,nk ,mk
3, jl ,nl ,ml

← 1

2

[
Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml

− Csk , jk ,nk ,mk
0, jl+1,2nl ,2ml+1

− Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml

+ Csk , jk ,nk ,mk
0, jl+1,2nl+1,2ml+1

]
;

end for
end for

end for
end for

end for
As pointed out in Beylkin et al. (1991), the complexity of this algorithm is O(N 2), N =

22J . Once we obtained the coefficients Ck,l in (22), we determine the eigenvalues λhi and

eigenvectors c(i)
l in (9).

Remark 1 For implementation purposes, the coefficients in (21) can be written as matrices
with the aid of global indices similarly to (16):

C0,J,nk ,mk
0,J,nl ,ml

= Ã2J mk+nk+1,2J ml+nl+1
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C0, jk ,nk ,mk
0, jl ,nl ,ml

= B̃(22 jk −1)/3+2 jk mk+nk+1,(22 jl −1)/3+2 jl ml+nl+1

Csk , jk ,nk ,mk
0, jl ,nl ,ml

= C̃22 jk +3(2 jk mk+nk )+sk ,(22 jl −1)/3+2 jl ml+nl+1

C0, jk ,nk ,mk
sl , jl ,nl ,ml

= D̃(22 jk −1)/3+2 jk mk+nk+1,22 jl +3(2 jl ml+nl )+sl

Csk , jk ,nk ,mk
sl , jl ,nl ,ml

= Ẽ22 jk +3(2 jk mk+nk )+sk ,22 jl +3(2 jl ml+nl )+sl
.

Remark 2 Let us compare the computational effort of the above algorithm with the standard
finite element method of degree p for (8). If we employed a mesh with h×h square elements
�e, h = 2−J , we would have a total of N = 22J elements. Let us denote the i-th global
shape function as Ni (x). The components of the system matrix C in (10) may be computed
as follows:

Ckl =
N∑

e,e′=1

∫
�e

∫
�e′

C(x, y)Nl( y)Nk(x) d y dx

=
N∑

e,e′=1

∫
�̂

∫
�̂

C(x(ξ), y(ξ ′))Nl( y(ξ ′))Nk(x(ξ))Je(ξ)Je′(ξ ′) dξ ′ dξ

≈
N∑

e,e′=1

n2int∑
j, j ′=1

w jw j ′C(x(ξ j ), y(ξ j ′))Nl( y(ξ j ′))Nk(x(ξ j ))Je(ξ j )Je′(ξ j ′),

where Je(ξ) is the Jacobian determinant of the transformation from element �e to the refer-
ence element �̂ = [−1, 1] × [−1, 1], nint is the number of integration points in each spatial
direction, and {ξ j , w j } are the integration points and weights of the nint × nint product

Gaussian quadrature in �̂.
In the assembly step of a standard finite element algorithm, we compute, for k, l =

1, . . . , (p + 1)2, the elemental contributions

Ce,e′
kl =

n2int∑
j, j ′=1

Ce,e′
kl ( j, j ′),

Ce,e′
kl ( j, j ′) = w jw j ′C(x(ξ j ), y(ξ j ′))N̂l(ξ j ′)N̂k(ξ j )Je(ξ j )Je′(ξ j ′),

where N̂i (ξ) is the i-th local shape function in the reference element �̂. Note that the number
of terms in the form Ce,e′

kl ( j, j ′) is n4int(p + 1)4N 2. Although this procedure is also O(N 2),
the dependence on nint and on p renders its computational cost prohibitive, as illustrated in
Table 1.

4 Numerical experiments

Let us proceed with the numerical validation of the proposed algorithm. The numerical
experiments were carried out in a dual-core notebook with 8Gb RAM and a 2.30GHz Intel
Core i5 processor.We consider the domain D = [0, 1]×[0, 1] and the exponential covariance
function

C(x, y) = C(x1, x2; y1, y2) = σ 2 exp

(
−|x1 − y1|

η
− |x2 − y2|

η

)
, (24)
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Table 1 CPU time (s) required to buildmatrixC of eigenvalue systemCui = λhi Wui for theGalerkinmethod
with Haar wavelets (Haar) and the standard finite element method (FEM) of degree p = 1. We considered the
exponential covariance function (24)

J = 3 J = 4 J = 5 J = 6

Haar 0.2280 × 100 0.2452 × 101 0.3114 × 102 0.5203 × 103

FEM

nint = 2 0.1556 × 101 0.8892 × 101 0.1531 × 103 0.3415 × 104

nint = 8 0.8495 × 101 0.1403 × 103 0.2192 × 104 0.3146 × 105

Fig. 2 Eigenvalues of the
exponential covariance function
(24) with variance σ 2 = 1 and
correlation length η = 0.1, 0.4
and 1

0 20 40 60 80 100
10−4

10−3

10−2

10−1

100

n

λ

η = 0.1
η = 0.4
η = 1

where the parameters η and σ 2 are the correlation scale and variance, respectively. The
eigenvalues and eigenfunctions of this covariance function are, respectively, λi = λ1Di1 λ1Di2
and ui (x1, x2) = u1Di1 (x)u1Di2 (x2), where

λ1Di = 2ησ

η2γ 2
i + 1

, u1Di (x) = ηγi cos(γi x) + sin(γi x)√
(η2γ 2

i + 1)L/2 + η

. (25)

Index i = i(i1, i2) is set to arrange the eigenvalues λi in decreasing order. Moreover,
parameters γ1, γ2, . . . satisfy (η2γ 2 − 1) sin(γ ) = 2ηγ cos(γ ). Since these eigenpairs are
well known (see, e.g., Ghanem and Spanos 1991), the exponential kernel (24) is a common
benchmark for Fredholm integral eigenvalue problems (Schwab and Todor 2006; Zhang and
Lu 2004), although it is not suitable for representing stationary processes due to its non-
differentiability at the origin (Spanos et al. 2007). As in Zhang and Lu (2004) we choose
σ = 1 and three different values of the correlation length (η = 0.1, 0.4 and 1). Figure 2
shows the eigenvalues λn , whose decay is faster as the correlation length η increases.

The eigenvalue problem (2) with covariance kernel (24) is discretized with the Galerkin
scheme (9) with refinement level J , i.e., with the finite-dimensional space (14), (15). Eigen-
values λhi (J ) are compared with exact solutions λi in terms of relative error (see Fig. 3),

eJ = |λi − λhi (J )|
|λi | ,
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Fig. 3 Relative errors of the 2D Haar approximation of the a first and b tenth eigenvalues of the exponential
covariance function (24) with variance σ 2 = 1 and correlation length η = 0.1, 0.4 and 1

Fig. 4 Relative error of the 2D
Haar approximation of the first
eigenfunction of the exponential
covariance function (24) with
variance σ 2 = 1 and correlation
length η = 0.1, 0.4 and 1
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for each λi (i = 1, and 10). The error curves have a decay of order O(h2), h = 2−J ,
coinciding with the estimates obtained from Oliveira and Azevedo (2014, p. 50) for two-
dimensional, piecewise-constant finite elements with reduced integration. A similar order of
convergence has also been observed in the one-dimensional case by Phoon et al. (2002).

It is worth noting that the required computational effort dramatically increases in the two-
dimensional case. At the refinement level J , the eigenvalue system has dimensions N × N
(N = 22J ) and demandsO(N 2) operations to be constructed. As J increases, memory soon
becomes an issue, and strategies to render the system matrix sparse (as discussed in Sect.
4.2) become important.

Let us study the eigenfunction error as well. For simplicity, we consider the relative error
of the first eigenfunction only (which is associated with an eigenvalue of multiplicity one).
Following Spence (1978, 1979), we consider the infinity norm. Figure 4 shows a monotone
decreasing of the error for all correlation lengths. The convergence rate was again O(h2),
h = 2−J . Such a result is consistent with the experiments reported in Spence (1978, 1979)
for Nyström method with the trapezoidal rule.
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4.1 Ensemble variance of K–L expansion

In our next experiment, similarly to the one presented by Stefanou and Papadrakakis (2007),
we evaluate the Haar approximation of the ensemble variance of the truncated process YM ,

Var(Y h
M (x)) =

M∑
i=1

λhi (u
h
i (x))2, (26)

with M ≤ N , and admitting the variance target σ 2 = 1. In Figs. 5, 6 and 7 we employ the
refinement level J = 5 and display the ensemble variance profiles along the diagonal and the
horizontal directions. The profiles along the vertical direction were identical to the horizontal
profiles and are not shown here. As shown in Figs. 6 and 7, the variance of Y h

M converges
faster to the reference variance in strongly correlated random fields, i.e., the number of terms
needed in the K–L expansion to provide the correct variance decreases with the correlation
length, consistently with the experiments in the one-dimensional case presented in Stefanou
and Papadrakakis (2007). In fact, since eigenvalues decrease faster as the correlation length
increases (Fig. 2), the final terms λhi (u

h
i (x))2 in sum (26) become less significant.
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Fig. 5 Ensemble variance of K–L expansion as a function of the stochastic dimensionM = 2− j N (1 ≤ j ≤ 5
and N = 210) for η = 0.1, along the following lines: a (x1, x2) = (x, x) and b (x1, x2) = (x, 0.5)
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Fig. 6 Ensemble variance of K–L expansion as a function of the stochastic dimensionM = 2− j N (1 ≤ j ≤ 5
and N = 210) for η = 0.4, along the following lines: a (x1, x2) = (x, x) and b (x1, x2) = (x, 0.5)
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Fig. 7 Ensemble variance of K–L expansion as a function of the stochastic dimensionM = 2− j N (1 ≤ j ≤ 5
and N = 210) for η = 1, along the following lines: a (x1, x2) = (x, x) and b (x1, x2) = (x, 0.5)

In analogy with Huang et al. (2001, Fig. 8), Fig. 8 compares the numerical ensemble
variance Y h

M at the origin with the analytical ensemble variance YM , i.e.,

Var(YM (x)) =
M∑
i=1

λi (ui (x))2. (27)

It is interesting to note that Var(Y h
M (0)) approaches the target variance more rapidly than

Var(YM (0)). We also noted that the eigenvalues obtained by Haar basis are larger than those
generated by analytical solution for each stochastic dimension M , as also reported in Phoon
et al. (2002) for the one-dimensional case.

4.2 Sparsity of the matrix

The advantage of using a basis of wavelet functions rather than scaling functions (i.e., a basis
derived from V0 ⊗ W0 ⊗ · · · ⊗ WJ−1 instead of VJ ) is the flexibility to reduce the number
of parameters in the representation of the covariance without necessarily loosing the fine
scale details. Specifically, we can render the matrix C sparse by dropping matrix coefficients
below a threshold value ε (Beylkin et al. 1991; Stefanou and Papadrakakis 2007), leading to a
truncated matrix Cε . We employ J = 5, as in the previous experiments and select M = 210.

Let us first investigate how the accuracy of the eigenfunctions is affected by truncation.
Figure 9 shows the relative change rε = |λhi (J ) − λhi (J, ε)|/|λhi (J )| (J = 5) of the first and
tenth eigenvalues of the truncated matrix Cε with respect to the eigenvalues of the full matrix
C. In particular, the threshold value ε = 10−6 provides comparatively good approximations
for these eigenvalues. For instance, the relative change of the tenth eigenvalue for η = 1,
namely 1.03 × 10−4, is 0.7% of the relative error 1.4 × 10−2 shown in Fig. 3b.

Figure 10 presents the dependence of the ensemble variance (26) on the threshold value
ε when M = N/2 (N = 210) and η = 0.1. Again the threshold value ε = 10−6 provides
sufficient accuracy. Similarly to Stefanou and Papadrakakis (2007, Fig. 1), the higher value
ε = 10−4 leads to numerical instability. Indeed, we observed that the matrix ceases to be
positive definite for this threshold value.

Now we consider the sparsity of the truncated matrix Cε . Figure 11 shows the number of
nonzero elements in Cε for bases with scaling functions and wavelets. The sensitivity of the

123



A Galerkin method with two-dimensional Haar basis functions. . . 1839

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

M

V
a
r (

Y
M
)

η = 0.1

Analytical
Numerical

(a)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

M

V
a
r (

Y
M
)

η = 0.4

Analytical
Numerical

(b)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

M

V
a
r(

Y
M
)

η = 1

Analytical
Numerical

(c)

Fig. 8 Comparison of variance convergence between analytical and numerical truncated K–L expansions
on exponential covariance model as a function of the stochastic dimension M considering the following
correlations length: a η = 0.1, b η = 0.4 and c η = 1
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Fig. 9 Relative changes caused by truncation at the threshold value ε: a λh1 and b λh10

matrix C to the threshold value ε is higher in the wavelet basis, and the matrix of the scaling
function basis becomes sparse only from ε = 10−4 onwards.

Figure 12 shows the sparsity pattern for both bases when ε = 10−6 and η = 0.1. In this
case, the wavelet basis requires about half the storage of the basis of scaling functions. One
can also notice the typical finger pattern for the wavelet basis (Beylkin et al. 1991).
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Fig. 10 Ensemble variance of K–L expansion as a function of the threshold value ε for η = 0.1 and M = 29.
Profiles along the following lines: a (x1, x2) = (x, x) and b (x1, x2) = (x, 0.5)
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Fig. 11 Number of nonzero elements in the truncated matrix: a wavelet functions b scaling functions. The
parameter nz denotes the number of nonzero entries

Fig. 12 Sparsity pattern in the truncated matrix: a wavelet functions, b scaling functions
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4.3 Example: quarter five-spot problem

We now present a steady-state diffusion problem in a randomly heterogeneous medium with
the classical quarter of a five-spot arrangement. The boundary value problem governing this
model is stated as:⎧⎨

⎩
q(x;ω) = −κ(x;ω)∇ p(x;ω), (x;ω) ∈ D × �,

∇ · q(x;ω) = f (x), (x;ω) ∈ D × �,

q(x;ω) · n(x) = 0, (x;ω) ∈ ∂D × �.

The log hydraulic conductivity Y (x;ω) = log(κ(x;ω)) is a Gaussian field with mean
zero and covariance function of exponential type (24) with variance σ 2 = 1 and correlation
length η = 0.1, 0.4, 1[L], where [L] is a consistent length unit (Zhang and Lu 2004). The
domain D = [0, L1] × [0, L2], with L1 = L2 = 1[L], has no-flow boundaries at the four
sides. The source term consists of one injection well at the lower left corner and one pumping
of source at the upper right corner, with strength 1[L3/T ] (herein [T ] is a consistent time
unit) (Fig. 13).

The reference solution was computed by the Monte Carlo method with Nr = 20,000
samples generated from a Gaussian sequential simulation (for details see Zhang 2002, p.
190). For each realization, we employed bilinear finite elements in a mesh of 2J × 2J

elements, with J = 5. The statistical moments of reference solution are computed from

μref
p (x) ≈ 1

Nr

Nr∑
i=1

pref (x; ξ (i)), σ 2,ref
p (x) ≈ 1

Nr

Nr∑
i=1

(pref (x; ξ (i)) − μref
p (x))2. (28)

Afterwards, we compute the samples pM (x; ξ (i)), 1 ≤ i ≤ 5000, in the case where
the log-conductivity is given by the truncated K–L expansion YM (x; ξ (i)) in (3), and the
eigenpairs of (2) are approximated with the Galerkin method with 2D Haar wavelet basis
functions. We evaluate the mean μp(x) and variance σ 2

p(x) of these samples as in (28). It is
important to note that the Haar basis allows other methods for quantification of uncertainty,
such as the quasi-Monte Carlo and sparse grid collocation methods (Azevedo and Oliveira
2012), but this is not the focus of study in this paper. Once these statistical moments are

x1

x2

n L
2

ΓN

D

Pumping well

L1

Injection well

Impervious
boundary

Fig. 13 Quarter of a five-spot arrangement
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Fig. 14 Profiles of statistical moments of the approximate hydraulic head for M = 2− j N ( j = 0, 1, 5 and
N = 210) and η = 0.1[L] along the diagonal: a mean and b variance
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Fig. 15 Profiles of statistical moments of the approximate hydraulic head for M = 2− j N ( j = 0, 1, 5 and
N = 210) and η = 0.4[L] along the diagonal: a mean and b variance

obtained, we graphically illustrate the quality of the approximation by plotting profiles along
the diagonal line considering M = 2−5N , 2−1N , N = 22J .

Figures 14, 15 and 16 show the mean and variance of the approximate hydraulic head
with correlation lengths η = 0.1, 0.4, and 1[L] respectively. In all cases, the mean exhibits
minimum and maximum values at the injection and production well, respectively, and the
variance shows a singular peak in vicinity of the plateau away from them. In Fig. 14 we
observed a slight discrepancy between stochastic dimensions, specially for M = 2−5N . This
can be due to the correlation length which induces loss of regularity and accuracy of the
numerical solution, because of the high variability of the media. However, the mean and
variance exhibit good agreement with the reference solution when the correlation length
increases (see Figs. 15, 16), except near the wells where strong gradients are observed.

The last experiment in this section consists of repeating the simulation in the case of
shortest correlation length (η = 0.1[L]), but computing the truncated K–L expansion from
the sparse covariance matrix associated to the threshold value ε = 10−6. As expected, the
statistical moments of this solution (Fig. 17) are qualitatively similar to the moments that
were found with the full covariance matrix (Fig. 14).
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Fig. 16 Profiles of statistical moments of the approximate hydraulic head for M = 2− j N ( j = 0, 1, 5 and
N = 210) and η = 1[L] along the diagonal: a mean and b variance
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Fig. 17 Profiles of statistical moments of the approximate hydraulic head for M = 2− j N ( j = 0, 1, 5 and
N = 210) and η = 0.1[L] along the diagonal: a mean and b variance. For the approximation of the K–L
expansion, we dropped covariance matrix coefficients below ε = 10−6

4.4 CPU time and condition number

We have seen in Sect. 3.1 that the N×N systemmatrix for the wavelet basis has an additional
cost of O(N 2) with respect to the system matrix for the basis of scaling functions. On the
other hand, Sect. 4.2 pointed out that the wavelet basis provides a sparser system, which not
only requires less computer memory, but also is more rapidly processed in iterative solvers
(see Beylkin et al. 1991). In this section we evaluate the trade-off between these aspects,
taking into account total CPU time and conditioning.

Motivated by the results from the previous sections, we employ the threshold value
ε = 10−6, which is also recommended elsewhere (Beylkin et al. 1991). In addition to the
exponential covariance (24) with correlation length η = 0.1 and η = 1, we consider the sinc
covariance defined in [0, 1] × [0, 1] by

C(x, y) = C(x1, x2; y1, y2) = sin(2c|x1 − y1|)
π |x1 − y1| · sin(2c|x2 − y2|)

π |x2 − y2| , (29)

with c = 10 and c = 30.
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Table 2 CPU time (s) of the Galerkin method with wavelet (Tψ ) and scaling function (Tψ ) bases required to
generate the eigenpairs of the exponential and sinc covariance kernels

J = 4 J = 5 J = 6 J = 7

Exp

η = 0.1

Tψ 0.4007 × 100 0.5215 × 101 0.1963 × 103 0.1036 × 105

Tφ 0.6087 × 100 0.4192 × 101 0.2187 × 103 0.1276 × 105

η = 1

Tψ 0.3434 × 100 0.5196 × 101 0.1616 × 103 0.1101 × 105

Tφ 0.5252 × 100 0.5339 × 101 0.2755 × 103 0.2028 × 105

Sinc

c = 10

Tψ 0.2980 × 100 0.5801 × 101 0.2675 × 103 0.1461 × 105

Tφ 0.3384 × 100 0.4595 × 101 0.2637 × 103 0.2009 × 105

c = 30

Tψ 0.4460 × 100 0.5502 × 101 0.2697 × 103 0.1036 × 105

Tφ 0.1973 × 101 0.4299 × 101 0.2208 × 103 0.2034 × 105

Table 2 shows the CPU times (in seconds) Tψ and Tφ for building the matrices and
finding the M = 2−1N largest eigenpairs with the bases of wavelets and scaling functions,
respectively. We employedMatlab’s built-in iterative eigenvalue solver eigs(). The efficiency
of the wavelet basis becomes apparent at J = 7, for which the total CPU time can reduce
to nearly half the time spent with the basis of scaling functions. Similar results (not shown
herein) were found with the exponential kernel and with the sinc kernel with c = 30.

In Table 3, we compute the condition numbers relative to the wavelet basis (κ(Cψ)) and
scale basis (κ(Cφ)). As noted in Stefanou et al. (2005) for both separable and Gaussian
exponential covariances, matrix truncation deteriorates the conditioning of the eigensystem.
An increase in the threshold value ε makes the conditioning worse, as seen in Sect. 4.2. We
further notice that the basis with scaling functions is generally robust under truncation.

5 Conclusions

In this paper, we studied a Galerkin method with bidimensional Haar wavelets to obtain
approximate solutions to the truncated K–L expansion.

Many aspects related to the wavelet Galerkin approximation in the one-dimensional case
(Stefanou and Papadrakakis 2007; Phoon et al. 2002) have also been observed in two dimen-
sions, specially the strong dependence of the errors on the correlation length. However, the
variation of the ensemble variance of the truncated K–L expansion cannot be completely
described only in one space dimension (see Fig. 10).

From our numerical experiments with the truncated covariance matrix, we noticed that
dropping the coefficients below the threshold value ε = 10−6 preserved the accuracy of the
method, indicating that this threshold value is sufficient to obtain statistical moments with
sufficient accuracy.
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Table 3 Condition number of the eigenvalue system resulting from theGalerkinmethodwithwavelet (κ(Cφ))
and scaling function (κ(Cψ)) bases for the exponential and sinc covariance kernels

J = 4 J = 5 J = 6 J = 7

Exp

η = 0.1

κ(Cψ) 0.4579 × 103 0.2304 × 105 0.3259 × 1010 Inf

κ(Cφ) 0.1195 × 102 0.3495 × 104 0.7659 × 107 0.5110 × 109

η = 1

κ(Cψ) 0.1673 × 106 0.5511 × 1024 Inf Inf

κ(Cφ) 0.1408 × 106 0.2280 × 107 0.3659 × 108 0.5859 × 109

Sinc

c = 10

κ(Cψ) 0.1747 × 1020 0.5080 × 1019 0.2935 × 109 0.1440 × 1026

κ(Cφ) 0.5338 × 1018 0.4537 × 1020 0.6523 × 1010 0.1926 × 1010

c = 30

κ(Cψ) 0.4000 × 101 0.7398 × 1016 0.5013 × 1010 0.4141 × 1010

κ(Cφ) 0.3997 × 101 0.9052 × 1018 0.7445 × 1019 0.1510 × 1010

Our experiments on CPU time and conditioning suggest that the basis with Haar wavelets
becomes more efficient, but less stable than the basis with Haar scaling functions for higher
refinement levels (J ≥ 6). Taking into account that bases with scaling functions are also
more flexible to handle general meshes and non-rectangular domains (Azevedo and Oliveira
2012; Frauenfelder et al. 2005), scaling functions seem to be a more appropriate choice for
multi-dimensional integral equations than wavelet functions.
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