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Abstract This paper presents a computational algorithm for solving optimal control prob-
lems based on state-control parameterization. Here, an optimal control problem is converted
to an optimization problem, which can then be solved more easily. In fact, we introduce state-
control parameterization technique by Chebyshev wavelets with unknown coefficients. By
this method, the optimal trajectory, optimal control and performance index can be obtained
approximately. Finally, some illustrative examples are presented to show the efficiency and
reliability of the presented method.
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1 Introduction

The optimization theory is divided into four major parts, including mathematical program-
ming (static and one player), optimal control (dynamic and one player), game theory (static
andmany players), and differential game (dynamic andmany players) (Basar 1995).An appli-
cable branch of optimization theory is control theory that dealswithminimizing (maximizing)
a specified cost functional and at the same time satisfying some constraints. Twomajor meth-
ods are used for solving optimal control problems: Indirect methods (Pontryagin’s maximum
principle, Bellman’s dynamic programming) that is based on converting the original optimal
control problem into a two-point boundary value problem and direct methods (parameteri-
zation, discretization) that is based on converting the original optimal control problem into
nonlinear optimization problem. Although indirect method has some advantages such as
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existence and uniqueness of results, it also has some disadvantages such as non-existence of
the analytical solutions of optimal control problems inmany cases. Therefore, direct methods
are converted to an attractive field for researchers of mathematical science. Also, in recent
years, different direct numerical methods and efficient algorithms based on using orthogonal
polynomials have been used to solve optimal control problems. One of these orthogonal poly-
nomials is wavelet which has good property for approximating functions with discontinuities
or sharp changes. Chen and Hsiao (1997) used Haar wavelet orthogonal functions and their
integration matrices to optimize dynamic systems to solve lumped and distributed parameter
systems. Razzaghi and Yousefi (2001) used Legendre wavelets for solving optimal control
problems. Babolian and Babolian and Fattahzadeh (2007) obtained numerical solution of
differential equations using operational matrix of integration of Chebyshev wavelets basis.
Ghasemi and Tavassoli Kajani (2011) presented a solution of time-varying delay systems by
Chebyshev wavelets.

This paper proposes a new numerical method based on state-control parameterization via
Chebyshev wavelet for solving general optimal control problems. We choose state-control
parameterization because there is no need to integrate the system state equation as in control
parameterization. Also, the approximated optimal solutions of state and control variables are
obtained at the same time. In comparison with other works that use the power of Chebyshev
wavelet to construct operational matrix of integration (Abu Haya 2011; Babolian and Fat-
tahzadeh 2007) to convert a differential equation into an algebraic one, our proposed method
does not require operational matrix. This paper is organized as follows: First, we present
the basic formulation of optimal control problems. Then, we describe Chebyshev wavelet
and use them to approximate state and control variables. A mathematical description of pro-
posed state-control parameterization method is presented and by reporting some examples
we compare our method with other methods that have been introduced for solving these
examples.

2 Mathematical formulation of general optimal control problems

Consider the following system of differential equation on a fixed interval [0, t f ],
ẋ = f (t, x(t), u(t)), (1)

where x(t) ∈ R
l is the state vector, u(t) ∈ R

q is piecewise from class of admissible controls
U . The function f : R1 × R

l × R
q → R

l is a vector function which is continuous and has
continuous first partial derivative with respect to x . The above equation is called the equation
of motion and the initial condition for (1) is:

x(0) = x0, (2)

where x0 is a given vector in R
l .

Along with this process, we have a cost functional of the form:

J (t, x, u) = ψ
(
t f , x(t f )

) +
∫ t f

0
L (t, x(t), u(t)) dt. (3)

Here, L(t, x, u) is the running cost, and ψ(t, x) is the terminal cost. The minimization of
J (t, x, u) over all controls u(t) ∈ U together with constraints (1) and (2) is called an optimal
control problem and the pair (x, u)which achieves this minimum is called an optimal control
solution. In fact, the optimization problemwith performance index as in equation (3) is called
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a Bolza problem. There are two other equivalent optimization problems, which are called
Lagrange andMayer problems (Fleming and Rishel 1975).

3 Chebyshev wavelets

In this section, a new state-control parameterization using Chebyshev wavelets, to derive a
robust method for solving optimal control problems numerically is introduced. We briefly
describeChebyshevwavelet polynomials that used in the next section. By dilation and transla-
tion of a single function that called themother wavelet, a family ofwavelets can be constituted
(Babolian and Fattahzadeh 2007).

φab(t) = |a| −1
2 φ

(
t − b

a

)
, a, b ∈ R, a �= 0,

One applicable families of wavelets are Chebyshev wavelet φnm(t) = φ(k,m, n, t) that are
defined on the interval [0, 1) by following formulae:

φnm =
{

αm2
k
2√

π
Tm(2k+1t − 2n + 1), n−1

2k
≤ t ≤ n

2k
,

0, O.W.

where k = 1, 2, . . .,n = 1, 2, 3, . . . , 2k , m = 0, 1, 2, . . . , M − 1 is the order of Chebyshev
polynomials and,

αm =
{√

2, m = 0,
2, m = 1, 2, . . . .

Here, Tm(t) are the well known Chebyshev polynomials satisfying the following recursive
formulae:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T0(t) = 1,
T1(t) = t,
...

Tm+1(t) = 2tTm(t) − Tm−1(t).

4 Proposed state-control parameterization method and main results

In this section, we describe our proposed state-control parameterization method for solving
general optimal control problems. Let Q ⊂ PC1([0, t f ]) be set of all piecewise-continuous
functions that satisfy initial condition (2). The performance index is function of x(.) and u(.)

and problem (1)–(3) may be interpreted as a minimization of J on set Q. Let Q2k M−1 ⊂ Q
be the class of combinations of Chebyshev wavelet polynomials of degree up to (M−1). The
basic idea is to approximate the state and control variables by a finite series of Chebyshev
wavelets as follows:

X̂(t) =
2k∑

n=1

M−1∑

m=0

anmφnm(t), (4)

Û (t) =
2k∑

n=1

M−1∑

m=0

cnmφnm(t). (5)
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We define,

φ(t) = [φ10(t), . . . , φ1M−1(t), φ20(t), . . . , φ2M−1(t), . . . , φ2k0(t), . . . , φ2k M−1(t)],
α = [a10, . . . , a1M−1, a20, . . . , a2M−1, . . . , a2k0, . . . , a2k M−1],
γ = [c10, . . . , c1M−1, c20, . . . , c2M−1, . . . , c2k0, . . . , c2k M−1].

The interval [0, t f ] can be converted into 2k following subintervals:
[
0,

1

2k
t f

]
,

[
1

2k
t f ,

2

2k
t f

]
, . . . ,

[
2k − 1

2k
t f , t f

]
.

In fact, Q2k M−1 ⊂ Q is the class of combinations of Chebyshev wavelet functions involved
2k polynomials and every polynomial of degree at most (M − 1). Thus, the state variable (4)
and the control variable (5) can be written as following:

X̂(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂1(t) = ∑M−1
m=0 a1mφ1m(t), 0 ≤ t ≤ 1

2k
t f ,

x̂2(t) = ∑M−1
m=0 a2mφ2m(t), 1

2k
t f ≤ t ≤ 2

2k
t f ,

...

x̂2k (t) = ∑M−1
m=0 a2kmφ2km(t), 2k−1

2k
t f ≤ t ≤ t f ,

(6)

Û (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

û1(t) = ∑M−1
m=0 c1mφ1m(t), 0 ≤ t ≤ 1

2k
t f ,

û2(t) = ∑M−1
m=0 c2mφ2m(t), 1

2k
t f ≤ t ≤ 2

2k
t f ,

...

û2k (t) = ∑M−1
m=0 c2kmφ2km(t), 2k−1

2k
t f ≤ t ≤ t f ,

(7)

By substituting (6) and (7) into performance index (3), we have

Ĵ (a10, . . . , a2k M−1, c10, . . . , c2k M−1) = ψ(t f , X̂(t f )) +
∫ t f

0
L

(
t, X̂(t), Û (t)

)
dt,

or

Ĵ =ψ(t f , x̂2k (t f ))+
(

∫ 1
2k

t f
0 L

(
t, x̂1(t), û1(t)

)
dt + · · ·+∫ t f

2k−1
2k

t f
L(t, x̂2k (t), û2k (t))dt

)

.

(8)

Also, after substituting (6) and (7) in (1) it is converted to:

˙̂X = f (t, X̂(t), Û (t)),

or
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̂x1 = f (t, x̂1(t), û1(t)),˙̂x2 = f (t, x̂2(t), û2(t)),
...
˙̂x2k = f (t, x̂2k (t), û2k (t)),

(9)

and the initial condition (2) is replaced by equality constraint as follows:

x̂(0) =
2k∑

n=1

M−1∑

m=0

anmφnm(t)
∣∣∣
t=0

= x̂0. (10)
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Furthermore,wemust add some constraints to get the continuity of the state variables between
the different sections. (2k − 1) points exist for which the continuity of state variables have
to be ensured. These points are:

ti = i

2k
, i = 1, 2, . . . , 2k − 1.

So there are (2k − 1) equality constraints that must be satisfied. These constraints can be
shown by the following system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑M−1
m=0 a1mφ1m(t)

∣
∣
∣t=t1 = ∑M−1

m=0 a2mφ2m(t)
∣
∣
∣
t=t1

,

∑M−1
m=0 a2mφ2m(t)

∣
∣
∣t=t2 = ∑M−1

m=0 a3mφ3m(t)
∣
∣
∣
t=t2

,

...
∑M−1

m=0 a2k−1mφ2k−1m(t)
∣
∣
∣t=t2k−1

= ∑M−1
m=0 a2kmφ2km(t)

∣
∣
∣
t=t2k−1

.

(11)

By this process, minimization of problem (8) subject to constraints (9)–(11) can be written
as following optimization problem:

Min Ĵ (α, γ ), (12)

Subject to:

P[α, γ ]T = Q, (13)

where,

[α, γ ]T = [a10, a11, . . . , a1M−1, a20, a21, . . . , a2M−1, . . . , a2k0, a2k1, . . . , a2k M−1,

c10, c11, . . . , c1M−1, c20, c21, . . . , c2M−1, . . . , c2k0, c2k1, . . . , c2k M−1].
In fact, the optimal control problem (1)–(3) is converted to optimization problem (12)–(13)
and now the optimal values of vector [α∗, γ ∗] can be obtained using a standard quadratic
programming method. The above results are summarized in the following algorithm which
the main idea is to convert the optimal control into an optimization problem.

Algorithm:
Input: Optimal control problem (1)–(3).
Output: The approximated optimal trajectory, approximated optimal control and approx-

imated performance index J .
Step 0: Choose k and M .
Step 1: Approximate the state and control variable by (M−1)th Chebyshev wavelet series

from equation (6) and (7).
Step 2: Find an expression of Ĵ from equation (8).
Step 3: Determine the set of equality constraints, by (9)–(11) and find matrix P.
Step 4: Determine the optimal parameters [α∗, γ ∗] by solving optimization problem (12)–

(13) and substitute these parameters into equations (6), (7) and (8) to find the approximated
optimal trajectory, approximated optimal control and approximated performance index J ,
respectively.

Step 5: Increase k or M to get better approximation of trajectory, control and performance
index.
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5 Convergence analysis

The following theorem and lemma ensure the convergence analysis of proposed method.

Theorem 1 Let f ∈ C([a, b],R). Then there is a sequence of polynomials Pn(x) that
converges uniformly to f (x) on [a, b].
Proof See Rudin (1976). 	

Lemma 1 Ifβ2k M−1 = infQ2k M−1

J , for k and M form 1, 2, 3, . . .where Q2k M−1 be a subset

of Q consisting of all piecewise-continuous functions involving 2k polynomials and every
polynomials of degree at most (M − 1), Then limk,M−→∞(β2k M−1) = β where β = infQ J .

Proof If we define,

β2k M−1 = min
(α2k M−1,γ2k M−1)∈R2k+1M

J (α2k M−1, γ2k M−1),

then,

β2k M−1 = J (α∗
2k M−1, γ

∗
2k M−1),

where,

(α∗
2k M−1, γ

∗
2k M−1) ∈ Argmin{J (α2k M−1, γ2k M−1) : (α2k M−1, γ2k M−1) ∈ R

2k+1M }.
Now, let (x∗

2k M−1
(t), u∗

2k M−1
(t)) ∈ Argmin{J (x(t), u(t)) : (x(t), u(t)) ∈ Q2k M−1}, then,

J (x∗
2k M−1(t), u

∗
2k M−1(t)) = min

(x(t),u(t))∈Q2k M−1

J (x(t), u(t)),

in which Q2k M−1 is a class of combinations of piecewise-continuous Chebyshev wavelet
functions involving 2k polynomials and every polynomials of degree at most (M − 1), so,

β2k M−1 = J (x∗
2k M−1(t), u

∗
2k M−1(t)).

Furthermore, according to Q2k M−1 ⊂ Q2k M , we have

min
(x(t),u(t))∈Q2k M

J (x(t), u(t)) ≤ min
(x(t),u(t))∈Q2k M−1

J (x(t), u(t)).

Thus,wewill haveβ2k M ≤ β2k M−1,whichmeansβ2k M−1 is a non-increasing sequence.Also,
this sequence is upper bounded, and therefore is convergent. Now, the proof is complete, that
is,

lim
k,M−→∞(β2k M−1) = min

(x(t),u(t))∈Q J (x(t), u(t)).

	


6 Numerical examples

In this section, for illustrating the efficiency of our proposed method, four examples are
considered. The first example consist of a linear time invariant system via one state variable
and the second consist of a linear time invariant system via two state variables. Another
example which consist of a time-varying linear system is considered and the optimal state
and control is obtained. Also, the optimal control of a linear time invariant singular system
is obtained in fourth example.
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Example 1 (Feldbaum problem) (El-Gindy 1995; Fleming and Rishel 1975; Saberi Nik et al.
2012; Yousefi et al. 2010) Find the optimal control u(t) which minimizes:

J = 1

2

∫ 1

0

(
x2(t) + u2(t)

)
dt, (14)

Subject to:

ẋ(t) = −x(t) + u(t), (15)

x(0) = 1. (16)

The exact solutions of state and control variables in this problem are (Saberi Nik et al. 2012):

x∗(t) = cosh(
√
2t) + β sinh(

√
2t),

u∗(t) = (1 + √
2β) cosh(

√
2t) + (

√
2 + β) sinh(

√
2t),

where,

β = −cosh(
√
2) + √

2 sinh(
√
2)√

2 cosh(
√
2) + sinh(

√
2)

� −0.98.

We solved this problem for k = 1 and M = 3. The state and control variables can be
approximated as following:

X̂(t) =
{
x̂1(t) = ∑2

m=0 a1mφ1m(t), 0 ≤ t ≤ 1,
x̂2(t) = ∑2

m=0 a2mφ2m(t), 1 ≤ t ≤ 2,
(17)

Û (t) =
{
û1(t) = ∑2

m=0 c1mφ1m(t), 0 ≤ t ≤ 1,
û2(t) = ∑2

m=0 c2mφ2m(t), 1 ≤ t ≤ 2,
(18)

where,

φ(t) = [φ10(t), φ11(t), φ12(t), φ20(t), φ21(t), φ22(t)],
α(t) = [a10, a11, a12, a20, a21, a22],
γ (t) = [c10, c11, c12, c20, c21, c22].

By substituting (17) and (18) into (14), the approximated performance index Ĵ can be inter-
preted as:

Ĵ = 1

2

(∫ 1/2

0

(
x21 (t) + u21(t)

)
dt +

∫ 1

1/2

(
x22 (t) + u22(t)

)
dt

)
, (19)

and by substituting (17) and (18) into (15) the following equality constraints can be obtained:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4.787a11 − 23.936a12 + 1.128a10 − 1.128c10 + 1.595c11 − 1.595c12 = 0,
76.596a12 + 6.383a11 − 6.383c11 + 25.532c12 = 0,
51.064a12 − 51.064c12 = 0,
1.595a21 − 49.468a22 + 1.128a20 − 1.128c20 + 4.787c21 − 27.128c22 = 0,
25.532a22 + 6.383a21 − 6.383c21 + 76.596c22 = 0,
51.064a22 − 51.064c22 = 0.

(20)

There is only one point which the continuity of state variable must be satisfied. This point
is:

t1 = 1

2
.
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Table 1 Estimated values
of J using proposed method

Chebyshev wavelet with different M and k J

M = 3, k = 1 0.1930101957

M = 3, k = 2 0.1929158637

M = 3, k = 3 0.1929097128

M = 4, k = 3 0.1929092981

Table 2 Comparison between
different methods for J value

Research name J Deviation error

Exact value 0.1929092981 0

El-Gindy (1995) 0.192909298 3.0e−9

Fakharian et al. (2010) 0.203602923 1.1e−2

Abu Haya (2011) 0.1929093208 2.2e−8

Kafash et al. (2013) 0.192914197 4.9e−6

Saberi Nik et al. (2012) 0.193415452 5.1e−4

Our proposed method 0.1929092981 0

So there are one equality constraint x̂1(t)|t= 1
2

= x̂2(t)|t= 1
2
given by:

1.128a10 + 1.595a11 + 1.595a12 − 1.128a20 + 1.595a21 − 1.595a22 = 0. (21)

Also, from initial condition (16), another constraint x̂1(t)
∣∣∣
t=0

= 1 is produced that can be

shown as:

1.128a10 − 1.595a11 + 1.595a12 = 1. (22)

Minimization of (19) subject to constraints (20)–(22) yield value 0.1930101957 for Ĵ . The
optimal approximated trajectory X̂(t) can be obtained as:

X̂(t) =
{
x̂1(t) = 0.999999999 − 1.34207331t + 0.718358564t2, 0 ≤ t ≤ 1

2 ,

x̂2(t) = 0.923289329 − 1.01771319t + 0.376481015t2, 1
2 ≤ t ≤ 1,

and the optimal approximated control Û (t) can be obtained as:

Û (t) =
{
û1(t) = −0.342073313 + 0.094643817t + 0.718358564t2, 0 ≤ t ≤ 1

2 ,

û2(t) = −0.094423867 − 0.264751165t + 0.376481015t2, 1
2 ≤ t ≤ 1.

In Table 1, we present the obtained results for J with our proposed method for different
M and k. In Table 2, a comparison between our proposed method and different methods
that have been introduced for solving this problem is done. Also, Fig. 1 shows the obtained
solutions of control variable for cases M = 3, k = 1 and M = 4, k = 3 compared with the
exact solution and the error function |u∗(t) − u(t)| for M = 4, k = 3.

As seen from the results reported in Table 1, by increasing k or M we can get better
solutions for performance index J . Specially, for case k = 3, M = 4 it precisely coincide
with the exact solution. Also, Table 2 shows that our solution is good compared with the
method presented by Abu Haya (2011), Fakharian et al. (2010), Kafash et al. (2013) and
Saberi Nik et al. (2012).
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Fig. 1 Left Graphs of approximate solutions of u(t) for different values of M and k as compared with the
exact solution. Right Plot of error function |u∗(t) − u(t)|

Table 3 Estimated values of J
using proposed method

Chebyshev wavelet with
different M and k

J

M = 4, k = 3 0.06976824049

M = 5, k = 3 0.06936942407

M = 6, k = 3 0.06936106066

Example 2 (Abu Haya 2011; Hsieh 1965; Jaddu 1998; Neuman and Sen 1973; Vlassen-
broeck and Van Doreen 1988) Find an optimal controller u(t) that minimizes the following
performance index:

J =
∫ 1

0

(
x2(t) + y2(t) + 0.005u2(t)

)
dt,

Subject to:

ẋ(t) = y(t),

ẏ(t) = −y(t) + u(t),

x(0) = 0,

y(0) = −1.

We used our proposed method for solving this example and reported the obtained results for
J in cases M = 4, k = 3, M = 5, k = 3 and M = 6, k = 3 in Table 3. In Table 4, we
present a comparison between different methods that have been introduced for solving this
problem and our proposed method. Also, the approximated solutions of control variable by
different M and k is plotted in Fig. 2.

FromTable 4, it can be seen that our proposedmethod already offers a very precise solution
which is better than the results reported in Abu Haya (2011), Hsieh (1965), Jaddu (1998),
Majdalawi (2010), Neuman and Sen (1973) and Vlassenbroeck and Van Doreen (1988).
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Table 4 Comparison between different methods for J value

Research name J Deviation error

Exact value 0.06936094 0

Hsieh (1965) 0.0702 8.4e−4

Neuman and Sen (1973) 0.06989 5.3e−4

Vlassenbroeck and Van Doreen (1988) 0.069368 7.1e−6

Jaddu (1998) 0.0693689 7.96e−6

Majdalawi (2010) 0.0693668896 7.9562e−6

Abu Haya (2011) 0.0693859107 2.49e−5

Our proposed method 0.06936106066 1.20e−7

Fig. 2 Plot of control variable
u(t) for different M and k

Example 3 (Abu Haya 2011; Elnagar 1997) Find the optimal control u(t)which minimizes:

J = 1

2

∫ 1

0

(
x2(t) + u2(t)

)
dt.

Subject to:

ẋ(t) = t x(t) + u(t),

x(0) = 1.

We solved this problem in cases M = 4, k = 1, M = 4, k = 2 and M = 5, k = 2 and
presented the obtained results for J with our proposed method in Table 5. The approximated
solutions of control variable in this cases is plotted in Fig. 3. Also, in Table 6, a compari-
son between different methods that have been introduced for solving this problem and our
proposed method is reported.
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Table 5 Estimated values
of J using proposed method

Chebyshev wavelet with different M and k J

M = 4, k = 1 0.4843781050

M = 4, k = 2 0.4842765960

M = 5, k = 2 0.4842677529

Table 6 Comparison between
different methods for J value

Research name J

Elnagar (1997) 0.48427022

Jaddu (1998) 0.4842676003

Abu Haya (2011) 0.4842678105

Our proposed method 0.4842677529

Fig. 3 Plot of control variable
u(t) for different M and k

Example 4 (Alirezaei et al. 2012; Dziurla and Newcomb 1979) Consider the following sin-
gular system:

(
1 0
0 0

)(
ẋ(t)
ẏ(t)

)
=

(
0 1
1 0

)(
x(t)
y(t)

)
+

(
0

−1

)
u(t),

(
x(0)
y(0)

)
=

(
− 1√

2
1

)

,

with the performance index:

J =
∫ 2

0

(
x2(t) + y2(t) + u2(t)

)
dt.
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Table 7 The exact and
approximated values of x(t)

t Our proposed method Exact

0.125 −0.5933422361 −0.5934

0.375 −0.4187545455 −0.4188

0.625 −0.2970591333 −0.2971

0.875 −0.2128928768 −0.2129

1.125 −0.1556146475 −0.1556

1.375 −0.1179922743 −0.1180

1.625 −0.09527430714 −0.0953

1.875 −0.08459026026 −0.0846

Table 8 The exact and
approximated values of y(t)

t Our proposed method Exact

0.125 0.8301822087 0.8309

0.375 0.5799753658 0.5804

0.625 0.4033239368 0.4033

0.875 0.2770792749 0.2771

1.125 0.1859004665 0.1859

1.375 0.1181967115 0.1182

1.625 0.06544212907 0.0654

1.875 0.02092206181 0.0209

Fig. 4 Left Graphs of approximate solutions of u(t) for different values of M and k as compared with the
exact solution. Right Plot of error function |u∗(t) − u(t)|

The system has the following exact solution (Dziurla and Newcomb 1979):

x∗(t) = u∗(t) = −
√
2

2(1 + e4
√
2)

(e
√
2t + e−√

2(t−4)),

y∗(t) = − 1

1 + e4
√
2
(e

√
2t − e−√

2(t−4)).
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We solved this problem and presented the obtained results of x(t) and y(t)with our proposed
method and the exact solutions of these variables in Tables 7 and 8, respectively. Also, the
obtained solutions of control variable for M = 3, k = 1 and M = 7, k = 2 compared with
the exact solutions and the error function |u∗(t) − u(t)| for M = 7, N = 2 is plotted in
Fig. 4.

7 Conclusion

In this paper, a new algorithm using the state-control parameterization method directly has
been presented. TheChebyshevwavelets were used as new orthogonal polynomials to param-
eterize the state and control variables.An examplewith one state variable and another example
with two state variables were solved. Also, for illustrating the efficiency of our proposed
method, two examples consist of linear time-varying system and linear time invariant sin-
gular system were considered and their solutions were computed. The obtained solutions
showed that our proposed method gives comparable results with other similar works. Thus,
an advantage of proposed method is producing an accurate approximation of the exact solu-
tion. Also, it does not require to compute operational matrix of derivative or operational
matrix of integration for converting the control problem to an optimization problem.
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