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Abstract Hundreds of heuristics have been proposed to resolve the problems of bandwidth
and profile reductions since the 1960s. We found 132 heuristics that have been applied to
these problems in reviews of the literature. Among them, 14 were selected for which no
other simulation or comparison revealed that the heuristic could be superseded by any other
algorithm in the analyzed articles with respect to bandwidth or profile reduction. We also
considered the computational costs of the heuristics during this process. Therefore, these 14
heuristics were selected as potentially being the best low-cost methods to solve the bandwidth
and/or profile reduction problems. Results of the 14 selected heuristics are evaluated in this
work. For evaluation on the set of test problems, a metric based on the relative percentage
distance to the best possible bandwidth or profile is proposed. The most promising heuristics
for several application areas are identified. Moreover, it was found that the FNCHC and
GPS heuristics showed the best overall results in reducing the bandwidth of symmetric and
asymmetric matrices among the evaluated heuristics, respectively. In addition, the NSloan
and MPG heuristics showed the best overall results in reducing the profile of symmetric and
asymmetric matrices among the heuristics among the evaluated heuristics, respectively.

Keywords Bandwidth reduction · Profile reduction ·Combinatorial optimization · Envelope
reduction problem · Heuristics · Metaheuristics · Reordering algorithms · Sparse matrices ·
Reordering algorithms ·Renumbering ·Ordering ·Graph labeling ·Bandwidth minimization

Mathematics Subject Classification 05C78 · 05C85 · 68R05 · 90C27

Communicated by Jose Alberto Cuminato.

B Sanderson L. Gonzaga de Oliveira
sanderson@dcc.ufla.br

Júnior A. B. Bernardes
jrassis@posgrad.ufla.br

Guilherme O. Chagas
guilherme.chagas@computacao.ufla.br

1 Universidade Federal de Lavras, Lavras, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-016-0394-9&domain=pdf


An evaluation of low-cost heuristics 1413

1 Introduction

The resolution of large sparse linear systems Ax = b, in which A is a sparse matrix, is
fundamental in several science and engineering applications and is generally the part of the
simulation that requires the highest computational cost. The principal origin of the problems
with large-scale matrices arises from the discretization of elliptic or parabolic partial differ-
ential equations (PDEs) (Benzi 2002). The methods of finite elements, finite differences, and
finite volumes are some of the most common numerical problem-solving methods related to
physical phenomena that are modeled by PDEs. Large sparse linear systems are generated
when these methods are applied. In addition, large sparse linear systems are also originated
from problems that are notmodeled by PDEs, such as chemical engineering processes, design
and analysis of integrated circuits, and power system networks (Benzi 2002). A consider-
able amount of memory and a high processing cost are necessary to store and to solve these
large-scale linear systems.

Modernhierarchicalmemory architecture andpagingpolicies favor programs that consider
locality of reference into account. Thus, cache coherence (that is, a sequence of recentmemory
references is clustered locally rather than randomly in the memory address space) should be
considered important when designing a new algorithm. For the low-cost solution of large
and sparse linear systems, and to reduce the memory space required, an adequate nodal
renumbering is desirable to ensure that the corresponding coefficient matrix A will have
narrow bandwidth and small profile. Thus, a way of designing an algorithm to return a
sequence of graph verticeswith cache coherence is through the use of heuristics for bandwidth
reduction. Therefore, heuristics for bandwidth and profile reduction are used to achieve low
computational and storage costs for solving large sparse linear systems (Gonzaga de Oliveira
and Chagas 2015). In particular, the profile reduction is also important for reducing the
storage cost of applications that use the skyline data structure (Felippa 1975) to represent
large-scale matrices.

Let A = [ai j ] be an n × n symmetric matrix (corresponding to an undirected graph
G = (V, E), composed of a set of vertices V and a set of edges E). The bandwidth of
line i is βi (A) = i − min( j : (1 ≤ j < i) ai j �= 0). Bandwidth β(A) is the largest
distance between the non-null coefficient of the lower triangularmatrix and themain diagonal
considering all lines of the matrix, that is, β(A) = max((1 ≤ i ≤ n) βi (A)) = max((1 ≤
i ≤ n) (1 ≤ j < i) (i − min( j : (1 ≤ j < i)) | ai j �= 0)) (or the bandwidth of G
for a labeling S = {s(v1), s(v2), . . . , s(v|V |)} (i.e., a bijective mapping from V to the set
{1, 2, . . . , |V |}) is β(G) = max(|s(vi ) − s(v j )| : (vi , v j ) ∈ E)). The profile of A can be
defined as profile(A) = ∑n

i=1 βi (A).
On the other hand, let Au = [ai j ] be an n × n asymmetric matrix. The bandwidth of line

i is βi (A) = max(βl i (Au), βui (Au)), where βl i (Au) = i − min( j : (1 ≤ j < i) ai j �= 0)
and βui (Au) = max( j : (i < j ≤ n) ai j �= 0) − i . Bandwidth β(Au) is the largest
distance between the non-null coefficient of the lower or the upper triangular matrix and
the main diagonal, considering all lines of the matrix, that is, β(Au) = max((1 ≤ i ≤
n) βl i (Au), βui (Au)). The profile of Au can be defined as profile(Au) = ∑n

i=1(βl i (Au) +
βui (Au)).

The problems of bandwidth and profile minimizations are hard (Papadimitriou 1976; Lin
and Yuan 1994). Thus, several heuristics have been proposed to solve the bandwidth and/or
profile reductionproblems since themid-1960s.The largenumber ofmethods availablemeans
that the user has an arduous task to determine which method to employ. Various comparisons
among methods are available in the literature, but only for a few of them. Additionally, there
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have been few reviews published on this field. Cuthill (1972) performed a comparative study
among results of the heuristics known up to 1971. Gibbs et al. (1976) made comparisons
between the results of six heuristics. Benzi (2002) reviewed preconditioning techniques
for iterative solution of large sparse linear systems. This review focused on techniques to
improve performance and reliability of Krylov subspace methods. However, this review was
not strictly of heuristics for bandwidth or profile reduction (Gonzaga de Oliveira and Chagas
2015). Thus, a comparison of a large variety of heuristics proposed for bandwidth and profile
reductions is needed in the literature.

Disregarding computational costs, the Variable Neighborhood Search for bandwidth
reduction (VNS-band) heuristic (Mladenovic et al. 2010) may be the method that represents
the state of the art with respect to the problem of bandwidth reduction. Mladenovic et al.
(2010) established the VNS-band timeout at 500s to solve the problem in 113 instances of the
Harwell-Boeing sparse-matrix collection (http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing) (Duff et al. 1989a). Even with the short amount of time it takes to find the solution,
500s as theVNS-band timeout to search for better solutions can be considered high, since this
is the time that the user waits for the results. On the other hand, the heuristic based on a dual-
representation simulated annealing (DRSA-band) of Torres-Jimenez et al. (2015) obtained, in
tests conducted by these authors, results slightly better than results of the VNS-band heuristic
(Mladenovic et al. 2010) in relation to bandwidth reduction. In general, the DRSA-band is
slower than the VNS-band in the results presented by Torres-Jimenez et al. (2015). Thus, the
DRSA-band heuristic was not considered as potentially the best low-cost heuristic with sig-
nificant bandwidth reduction because its computational cost is higher than the computational
cost of the VNS-band heuristic; apart from significantly reducing the bandwidth, a heuristic
must also present low computational cost, i.e., it cannot be slow compared to other heuristics.
Many papers in this field, where these are only two examples, evaluate their heuristics on
113 instances of Harwell-Boeing dataset, where the number of rows/columns of the matrices
included in the dataset varies from 30 to 1104. Although the Harwell-Boeing sparse-matrix
collection was widely used for testing heuristics for bandwidth reduction in the literature, the
matrices in this dataset are too small by today’s standards. The results of such papers, with
the largest case only of 1104 dimensions, offer little insight as to how the tested heuristics
compare on large examples that are of more practical interest. Hence, additional datasets
including much larger matrices are covered in our evaluation.

Thus, one of the main objectives of this study is to verify whether, with a low timeout, the
VNS-band heuristic still achieves better results than the possible best low-cost heuristics for
bandwidth or profile reduction identified in systematic reviews. Therefore, the main contri-
bution of this work is the comparison of results obtained using 14 heuristics for bandwidth
and profile reductions in symmetric and asymmetric matrices (up to 100,196 vertices). These
14 heuristics were selected in systematic reviews as the possible best low-cost methods to
solve the problems (Chagas and Gonzaga de Oliveira 2015; Bernardes et al. 2015; Gonzaga
de Oliveira and Chagas 2015).

Only potential low-cost heuristics for bandwidth and profile reductions were selected in
the systematic reviews. The reason for this decision was that the local reordering of vertices
of the graph associated with the matrix of the linear system may contribute to reducing the
computational cost of an iterative solver, such as the Conjugate Gradient Method (CGM)
(Duff and Meurant 1989b). It should be noted that it is important to have an ordering which
does not lead to an increase in the number of iterations when a preconditioner is applied.
Additionally, such reduction in the execution cost is also achieved by improving the number
of cache hits (Das et al. 1992; Burgess and Giles 1997). On the other hand, the bandwidth and
profile reductions are not directly proportional to the computational cost reduction obtained
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when linear systems are solved using an iterative method. Clearly, what is to be minimized
is the total computing time including the reordering time (at least when only a single linear
system is to be solved). Thus, a reordering of vertices must be performed at low cost. To
providemore specific detail, although linear systemsof reduced order can be solved efficiently
with a multifrontal direct method, a prominent method for solving large-scale sparse linear
systems is the conjugate gradient method (Hestenes and Stiefel 1952; Lanczos 1952). One
can reduce computational costs using this method by applying a local ordering of the vertices
(Duff and Meurant 1989b) of the corresponding graph of A to improve cache hit rates. This
local ordering can be reached by applying a heuristic for bandwidth reduction (Das et al.
1992; Burgess and Giles 1997). On the other hand, an important issue is to have an ordering
which leads to a small number of iterationswhen a preconditioner is applied (and this depends
on the structure of the instance). Additionally, Benzi et al. (1999) showed that heuristics for
bandwidth reduction can have a positive effect on the computational cost of the generalized
minimal residual (GMRES) method (Saad and Schultz 1986).

The remainder of this paper is organized as follows. Section 2 explains the systematic
reviews performed to identify the potential best low-cost heuristics for bandwidth and profile
reductions. Section 3 presents how the simulations were conducted in this study. Section 4
shows the results. Finally, Sect. 5 addresses the conclusions.

2 Systematic reviews

Systematic reviews (Chagas and Gonzaga de Oliveira 2015; Bernardes et al. 2015; Gonzaga
deOliveira andChagas 2015) report 73 and 74 heuristics for bandwidth and profile reductions,
respectively, that had been published in the period of time spanning the 1960s to the present.
Most of the heuristics were considered surpassed by other heuristics in these systematic
reviews. Consequently, eight heuristics in each case were selected as potentially being the
best low-cost heuristics for bandwidth [RCM–GL (George and Liu 1981), Burgess–Lai (BL)
(Burgess andLai 1986),WBRA(Esposito et al. 1998), FNCHC(Limet al. 2003, 2004, 2007),
GGPS (Wang et al. 2009), VNS-band (Mladenovic et al. 2010), hGPHH (Koohestani and
Poli 2011), CSS-band (Kaveh and Sharafi 2012)] or profile [Snay (1976), RCM–GL (George
and Liu 1981), RCM–GL–FL (Fenves and Law 1983), Sloan (1989), MPG (Medeiros et al.
1993), NSloan (Kumfert and Pothen 1997), Sloan–MGPS (Reid and Scott 1999), Hu and
Scott (2001)] reduction.

From the heuristics identified in the systematic reviews, 17 heuristics were applied to
both bandwidth and profile reductions. In addition, the Reverse Cuthill–McKee method with
pseudo-peripheral vertex given by the George–Liu algorithm (RCM–GL) (George and Liu
1981) was selected in both systematic reviews of heuristics for bandwidth and profile reduc-
tions. Thus, 130 heuristics for bandwidth and profile reductions were identified in both
systematic reviews, and 15 heuristics were selected because no other simulation or compari-
son showed that these 15 heuristics could be superseded by any other heuristics in the articles
analyzed, in terms of bandwidth or profile reduction when the computation costs of the given
heuristic are also considered.

The Gibbs–Poole–Stockmeyer (GPS) algorithm (Gibbs et al. 1976), outperformed by
metaheuristic-based heuristics, is one of the most classic low-cost heuristics tested in the
field for both bandwidth and profile reductions. Hence, the GPS algorithm was implemented
and its results were compared with the other heuristics implemented in this computational
experiment.

123



1416 S. L. G. de Oliveira et al.

Table 1 Low-cost heuristics for bandwidth and profile reductions that were selected from systematic reviews

Bandwidth Burgess–Lai (BL) (1986), WBRA (Esposito et al. 1998), FNCHC
(Lim et al. 2003, 2004, 2007),

GGPS (Wang et al. 2009), VNS-band (Mladenovic et al. 2010),
hGPHH (Koohestani and Poli 2011), CSS-band (Kaveh and
Sharafi 2012)

Profile Snay (1976), Sloan (1989), MPG (Medeiros et al. 1993), NSloan
(Kumfert and Pothen 1997), Sloan–MGPS (Reid and Scott 1999)

Bandwidth and profile GPS (Gibbs et al. 1976), RCM–GL (George and Liu 1981)

On the other hand, Fenves and Law’s RCM–GL (RCM–GL–FL) method (Fenves and Law
1983), despite being selected in the systematic review of heuristics for profile reduction, was
not implemented in this work because it is a specific application of the RCM–GLmethod for
finite element discretizations. Additionally, although no computational costs were presented
by its authors, the Hu and Scott’s heuristic (Hu and Scott 2001) was selected for its results in
profile reductions when compared with the results shown by the heuristics that were tested
by Hu and Scott (2001). However, the Hu-Scott heuristic was not implemented here because
it was considered a high-cost heuristic, especially when performing matrix multiplications.

Another version of the VNS-band was proposed by Wang et al. (2014). This heuristic is
outperformed by the fast node centroid hill climbing (FNCHC) heuristic (Lim et al. 2007).
This is verified both in approximating the solution as well as comparing the computational
cost to present an approximate solution. One can realize this by examining the results of the
original VNS-band (Mladenovic et al. 2010) heuristic and the VNS-band proposed by Wang
et al. (2014) and comparing them with the results presented below. It should be noted that
the dataset used in the tests shown by Wang et al. (2014) is a subset of a dataset presented
below.

Thus, Table 1 shows 14 heuristics that can be considered as the most promising low-cost
heuristics to solve the problems. These 14 heuristics were implemented and tested in this
work.

3 Description of the tests

Appendix A (Appendices A–D are available at http://www.dcc.ufla.br/~sanderson/app_
coam16) shows the testing and calibration performed to compare our implementations
with the codes used by the original proposers of the 14 heuristics to ensure the codes
we implemented were comparable to the algorithms that were originally proposed. To
evaluate the bandwidth and profile reductions provided by the 14 selected heuristics, two
datasets commonly used in this field were employed. Specifically, 113 (50 symmetric and
63 asymmetric) instances of the Harwell-Boeing sparse-matrix collection (http://math.nist.
gov/MatrixMarket/data/Harwell-Boeing) (Duff et al. 1989a) and 22 (17 symmetric and 5
asymmetric) instances of the University of Florida sparse-matrix collection (http://www.
cise.ufl.edu/research/sparse/matrices/index.html) (Davis and Hu 2011) were used in this
work. These instances represent a wide spectrum of scientific and engineering applications
matrices (i.e., standard-test matrices arising from problems in linear systems, least squares,
and eigenvalue calculations) and have been employed here for comparisons and evalua-
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tions since many other researchers have employed these instances. Specifically, the 113
instances of the Harwell-Boeing sparse-matrix collection were divided into two subsets: (i)
33 instances, ranging from 30 to 237 vertices, accordingly as stated in the collection, with
each of these 33 instances (used as counter-examples to hypotheses in sparse-matrix research)
having less than 200 vertices when vertices without adjacencies were disregarded; and (ii)
80 instances, ranging from 207 to 1104 vertices. This subdivision of the 113 instances of the
Harwell-Boeing sparse-matrix collection into two sets of instances is common in the field,
for example, see Martí et al. (2001), Lim et al. (2004, 2007), Piñana et al. (2004), Rodriguez-
Tello et al. (2008), Mladenovic et al. (2010), Torres-Jimenez et al. (2015). Additionally, each
set of instances was divided into symmetric and asymmetric matrices, as shown in the tables
below.

To apply the heuristics implemented in this work in asymmetric matrices, we used the
strategy proposed by Reid and Scott (2006) to apply the heuristics in asymmetric instances.
In this strategy, the asymmetric matrix Au is added to its transpose matrix AT

u , i.e., Au + AT
u ,

thus resulting in a symmetric matrix. Subsequently, the heuristic is applied to the graph
associated with the matrix obtained and the reordering attained using the heuristic is used
to reorder the rows of the original asymmetric matrix. This strategy, according to the results
presented by Reid and Scott (2006), had the poorest results in the bandwidth reduction of
asymmetric matrices using the RCM heuristic (George 1971) when compared with the two
other strategies proposed by Reid and Scott (2006). Nevertheless, the strategy to compute
Au + AT

u was applied in our approach because it is included along with the RCM–GL
method (George and Liu 1981) in the MATLAB software (MATLAB 2016). In addition, it
is the simplest strategy and the one that presents the lowest storage and computational costs
among those proposed by Reid and Scott (2006).

Theworkstations used in the execution of the simulationswith the instances of theHarwell-
Boeing and University of Florida sparse-matrix collections contained an Intel® CoreTM

i3-2120 (3MB Cache, CPU 3.30GHz×4, 8GB of main memory DDR3 1333MHz) and
Intel® XeonTM E5620 (12MB Cache, CPU 2.40GHz×8, 24GB of main memory DDR3
1333MHz) (Intel; Santa Clara, CA, United States), respectively. The Ubuntu 14.04 LTS
64-bit operating system with Linux kernel-version 3.13.0-39-generic was used. It should be
noted that we followed the recommendations given by Johnson (2002) for this experimental
analysis of the 14 heuristics for bandwidth and profile reductions.

A metric used by some authors, where Kumfert and Pothen (1997), Mladenovic et al.
(2010), Koohestani and Poli (2011) are examples, is to add, for each heuristic, the bandwidths
or profiles obtained. A similar metric used by other authors, whereMartí et al. (2001), Piñana
et al. (2004), Lim et al. (2007), Rodriguez-Tello et al. (2008) are examples, is to calculate the
average bandwidth over the instances in each set. However, these metrics are not reasonable
when considering a set of instances with very different sizes, as is the case in the tests
presented in this paper. This is because, for example, a heuristic with very bad results in a
small instance would not be penalized appropriately.

In many works, including Burgess and Lai (1986), Medeiros et al. (1993), Esposito et al.
(1998), Mladenovic et al. (2010), Koohestani and Poli (2011), the authors compared the
results of the heuristics by counting the number of times that the heuristic obtained the
lower bandwidth or profile on the instances of the Harwell-Boeing sparse-matrix collection.
This kind of metric is also shown in the following tables. In addition, the heuristic may
be appropriately considered the best heuristic in a set when it has the best bandwidth or
profile reduction among all the heuristics in the set. One possible scenario, then, is that a
heuristic could be considered the best of the entire set if it attains the second best status
in many instances, while different heuristics are the best heuristic for different individual
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instances. Thus, to evaluate the quality of the results obtained using the heuristics tested,
for each heuristic h in each set of instances, ρp = profileh−profilemin

profilemin
was calculated for each

instance, where profileh is the profile obtained using a heuristic h and profilemin is the lowest
profile obtained in an instance by a heuristic tested. The same is carried out in relation to
both bandwidth reduction (ρβ ) and execution times (ρt ). To the best of our knowledge, this
paper is the first (published) instance of this approach being used in the field.

4 Results and analysis

This section presents the results obtained by the heuristics in relation to bandwidth and profile
reductions in 113 (Sect. 4.1) and 22 (Sect. 4.2) instances of theHarwell-Boeing andUniversity
of Florida sparse-matrix collections, respectively. In the tables shown in this section, it can
be seen that the instance name and size (n), the value of the initial bandwidth (β0) or profile
(profile0) of the instance, and the average values of bandwidth, profile and runtime obtained
using each heuristic in 10 executions carried out in each of the instances. Section 4.3 analyzes
the results obtained.

4.1 Results of 14 heuristics applied to instances of the Harwell-Boeing
sparse-matrix collection

This section presents the bandwidth and profile results obtained using 14 heuristics applied to
113 instances of the Harwell-Boeing sparse-matrix collection. Sections 4.1.1–4.1.4 present
the results of the 14 heuristics for bandwidth and profile reductions applied to the sets
composed of 15 and 35 symmetric matrices and 18 and 45 asymmetric matrices of the
Harwell-Boeing sparse-matrix collection, respectively.

4.1.1 Results of 14 heuristics applied to the set composed of 15 symmetric instances of
the Harwell-Boeing sparse-matrix collection

In this set composed of 15 symmetric instances, the FNCHC (Lim et al. 2003, 2004, 2007)
and NSloan (Kumfert and Pothen 1997) heuristics were the best ones for reducing bandwidth
and profile when considering the ρβ and ρp metrics, respectively [see Fig. 1a, b, and Table 9
(Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 are available in Appendix B)]. These
two heuristics also obtained the largest number of best results of bandwidth (in 12 instances)
and profile (in 8 instances) in this dataset (see Fig. 1c, d).

The VNS-band heuristic was tested with a timeout of 500s because this was the time set
by its authors (Mladenovic et al. 2010). It should be noted that 500s on the machine used in
this study achieves more computation than the machine on which the tests were conducted
by Mladenovic et al. (2010). In spite of this, the VNS-band heuristic was dominated by the
FNCHC and NSloan heuristics in relation to bandwidth and profile reductions, respectively,
for this set of instances.

The hGPHH-GL and RCM–GLmethods were the fastest ones among the heuristics tested
according to the ρt metric, and considering also that the RCM–GL method obtained the
lowest computational costs for a larger number of instances (six instances) (see Fig. 2; Table
10). In particular, the WBRA (Esposito et al. 1998), FNCHC (Lim et al. 2003, 2004, 2007),
VNS-band (Mladenovic et al. 2010), and CSS-band (Kaveh and Sharafi 2012) heuristics
showed higher execution times than the 10 other heuristics tested. Moreover, the hGPHH-
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Fig. 1 Results (a
∑

ρb , b
∑

ρp) of 14 heuristics applied to reduce a bandwidth and b profile, and number
of best results of several heuristics applied to reduce c bandwidth and d profile of 15 symmetric instances of
the Harwell-Boeing sparse-matrix collection
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Fig. 2 Results (
∑

ρt ) of 10 heuristics applied to reduce bandwidth of 15 symmetric instances of the Harwell-
Boeing sparse-matrix collection

GL method is as fast as the RCM–GL method because their difference is how to order the
adjacent vertices (to be numbered) to the current vertex.

4.1.2 Results of 14 heuristics applied to the set composed of 35 symmetric instances of
the Harwell-Boeing sparse-matrix collection

In this set composed of 35 symmetric instances, the VNS-band (8 s) (Mladenovic et al. 2010)
and MPG (Medeiros et al. 1993) heuristics were the best ones for reducing bandwidth and
profile when considering the ρb and ρp metrics, respectively (see Fig. 3a, b; Tables 11 and
12). These two heuristics also obtained the largest number of best results of bandwidth (in 24
instances) and profile (in 11 instances) in this set of instances, respectively (see Fig. 3c, d).
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ρp) of 14 heuristics applied to reduce a bandwidth and b profile, and number
of best results of several heuristics applied to reduce c bandwidth and d profile of 35 symmetric instances of
the Harwell-Boeing sparse-matrix collection
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Fig. 4 Results (
∑

ρt ) of 10 heuristics applied to reduce bandwidth of 35 symmetric instances of the Harwell-
Boeing sparse-matrix collection

In addition, Sloan’s (1989) algorithm was the fastest method among the heuristics tested (see
Fig. 4; Table 13).

4.1.3 Results of 14 heuristics applied to the set composed of 18 asymmetric instances
of the Harwell-Boeing sparse-matrix collection

In this set composed of 18 asymmetric instances, the FNCHC and MPG heuristics were
the best ones for reducing bandwidth and profile when considering the ρb and ρp metrics,
respectively (see Fig. 5a, b; Table 14). The RCM–GL method was the fastest method among
the heuristics tested (see Fig. 6; Table 15).
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Fig. 5 Results (a
∑

ρb ,b
∑

ρp) of 14 heuristics applied to reduce a bandwidth andb profile of 18 asymmetric
instances of the Harwell-Boeing sparse-matrix collection
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Fig. 6 Results (
∑

ρt ) of 10 heuristics applied to reduce bandwidth of 18 asymmetric instances of theHarwell-
Boeing sparse-matrix collection

4.1.4 Results of 14 heuristics applied to the set composed of 45 asymmetric instances
of the Harwell-Boeing sparse-matrix collection

In this set composed of 45 asymmetric instances, the VNS-band (12s) (Mladenovic et al.
2010) and MPG (Medeiros et al. 1993) heuristics were the best ones for reducing bandwidth
and profile when considering the ρb and ρp metrics, respectively (see Fig. 7a, b; Tables 16
and 17). These two heuristics also obtained the largest number of best results of bandwidth
(in 34 instances) and profile (in 17 instances) in this set of instances, respectively (see Fig.
7c, d). The hGPHH-GL heuristic was the fastest method among the heuristics tested (see Fig.
8; Table 18).

4.2 Results of 10 heuristics applied to instances of the University of Florida
sparse-matrix collection

Results of Snay’s (1976), Burgess and Lai (1986), WBRA (Esposito et al. 1998), and CSS-
band (Kaveh and Sharafi 2012) heuristics were dominated by the 10 other heuristics when
applied to the 113 instances of the Harwell-Boeing sparse-matrix collection (see Sect. 4.1)
so that these four heuristics were not applied to the 22 instances of the University of Florida
sparse-matrix collection. Hence, Sects. 4.2.1 and 4.2.2 present the results of 10 heuristics
for bandwidth and profile reductions applied to the sets composed of 17 symmetric and 5
asymmetric matrices of the University of Florida sparse-matrix collection, respectively.
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Fig. 7 Results (a
∑

ρb , b
∑

ρp) of 14 heuristics applied to reduce a bandwidth and b profile, and number
of best results of several heuristics applied to reduce c bandwidth and d profile of 45 asymmetric instances of
the Harwell-Boeing sparse-matrix collection
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Fig. 8 Results (
∑

ρt ) of 10 heuristics applied to reduce bandwidth of 45 asymmetric instances of theHarwell-
Boeing sparse-matrix collection

4.2.1 Results of 10 heuristics applied to the set composed of 17 symmetric instances of
the University of Florida sparse-matrix collection

In this set composed of 17 symmetric instances, the FNCHC and NSloan heuristics were
the best ones for reducing bandwidth and profile when considering the ρb and ρp metrics,
respectively (see Fig. 9a, b; Table 19). These two heuristics also obtained the largest number
of best results of bandwidth (in eight instances) and profile (in ten instances) in this set of
instances, respectively (see Fig. 9c, d). The RCM–GLmethod was the fastest method among
the heuristics tested (see Fig. 10; Table 20).

We established the VNS-band timeout at 500s to solve the problem in these 17 symmetric
instances of the University of Florida sparse-matrix collection. Probably, the VNS-band
heuristic would achieve better results with a higher timeout, but our intention is to investigate
low timeouts for the heuristics. In the tests shown in Table 20, one can note that the VNS-band
heuristic achieved its results with a higher computing cost of 1 and 5 magnitudes in relation
to the FNCHC and RCM–GL heuristics, respectively.
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Fig. 9 Results (a
∑

ρb , b
∑

ρp) of 10 heuristics applied to reduce a bandwidth and b profile, and number
of best results of several heuristics applied to reduce c bandwidth and d profile of 17 symmetric instances of
the University of Florida sparse-matrix collection
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Fig. 10 Results (
∑

ρt ) of 10 heuristics applied to reduce bandwidth of 17 symmetric instances of the Uni-
versity of Florida sparse-matrix collection

4.2.2 Results of 10 heuristics applied to the set composed of five asymmetric instances
of the University of Florida sparse-matrix collection

In this set composed of five asymmetric instances, one can verify that the GPS and MPG
heuristics were the best ones for reducing bandwidth and profile when considering the ρb and
ρp metrics, respectively (see Fig. 11a, b; Table 21). These two heuristics also obtained the
largest number of best results of bandwidth (in two instances) and profile (in three instances)
in this set of instances, respectively. The RCM–GL method was the fastest method among
the heuristics tested (see Fig. 12; Table 21).

Similar to the executions performed with the 17 symmetric instances of the University of
Florida sparse-matrix collection, we established the VNS-band timeout at 500s to solve the
problem in these five asymmetric instances of this dataset. Likewise, it is probable that the
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Fig. 11 Results (a
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ρb , b
∑

ρp) of 10 heuristics applied to reduce a bandwidth and b profile of five
asymmetric instances of the University of Florida sparse-matrix collection
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Fig. 12 Results (
∑

ρt ) of 6 heuristics applied to reduce bandwidth of five asymmetric instances of the
University of Florida sparse-matrix collection

VNS-band heuristic would achieve better results with a higher timeout, but our intention is
to investigate low timeouts for the heuristics. In the tests performed in these five asymmetric
matrices, the VNS-band heuristic achieved its results with a higher computing cost of 1 and
5 magnitudes in relation to the GPS and RCM–GL algorithms, respectively (see Table 21).

4.3 Best heuristics applied to four sets of instances of the Harwell-Boeing and two
sets of instances of the University of Florida sparse-matrix collections

The sets composed of 15 symmetric and 18 asymmetric instances contain much smaller
matrices than the sets composed of 35 symmetric and 45 asymmetric instances, respectively.
Moreover, the instances of the University of Florida sparse-matrix collection are larger than
the instances of the Harwell-Boeing sparse-matrix collection. It may not be appropriate to
consider a small instance with the same score of a much larger instance. Thus, the sets of
instances of the University of Florida sparse-matrix collection were mainly considered to
identify the best low-cost heuristics for bandwidth and profile reductions. On the other hand,
the other sets composed of instances of the Harwell-Boeing sparse-matrix collection are also
considered, as described below.

We divided the sets of test problems by application area and then the most promising
heuristics for each specific application were identified. Tables 2 (symmetric matrices) and
3 (asymmetric matrices) show the most promising heuristics for application areas applied
to the four sets of instances of the Harwell-Boeing (http://math.nist.gov/MatrixMarket/data/
Harwell-Boeing (Duff et al. 1989a)) and the two sets of instances of the University of Florida
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Table 2 The most promising heuristics (for ten application areas) for reducing bandwidth and profile of
symmetric matrices

Heuristic Application area Reduction

FNCHC Computational fluid dynamics problem Bandwidth

Dynamic analyses in structural engineering

Finite-element structures

problems in aircraft design

Oceanic modeling

Optimization problem

Power system networks

Partial differential equations

Structural problem

RCM–GL Finite-element model problem

Oil reservoir modeling

MPG Dynamic analyses in structural engineering Profile

Finite-element structures

problems in aircraft design

NSloan Computational fluid dynamics problem

Oil reservoir modeling

Optimization problem

Structural problem

Sloan Finite-element model problem

Partial differential equations

Power system networks

Oceanic modeling

sparse-matrix (http://www.cise.ufl.edu/research/sparse/matrices/index.html (Davis and Hu
2011)) collections in relation to bandwidth and profile reductions (see Tables 22 and 23 in
Appendix C). Appendix D analyzes the heuristics that showed the best bandwidth and profile
reductions of symmetric and asymmetric matrices. Table 4 shows the heuristics that showed
the best overall performance on these six sets of test matrices.

Figure 13 [WBRA (Esposito et al. 1998), FNCHC (Lim et al. 2003, 2004, 2007), VNS-
band (Mladenovic et al. 2010), and CSS-band (Kaveh and Sharafi 2012) heuristics], Figure
14 [GPS (Gibbs et al. 1976), Snay’s (1976), Burgess and Lai (1986), and GGPS (Wang et al.
2009) heuristics], and Figure 15 [GPS (Gibbs et al. 1976), FNCHC (Lim et al. 2003, 2004,
2007), GGPS (Wang et al. 2009), and VNS-band (Mladenovic et al. 2010)], built from a wide
variety of references thatwere part of thiswork, showgraphs of execution times, of the highest
time-consuming heuristics tested, applied to 113 and 22 instances of the Harwell-Boeing and
University of Florida sparse-matrix collections, respectively.

As expected, the FNCHC (Lim et al. 2003, 2004, 2007), VNS-band (Mladenovic et al.
2010), andCSS-band (Kaveh and Sharafi 2012) heuristics showed higher computational costs
than most of the methods tested here because these are metaheuristic-based heuristics.

The WBRA heuristic (Esposito et al. 1998) shows high computational cost because it
builds a rooted level structure (RLS) for each vertex of the graph and these structures are
renumbered based on a bottleneck linear assignment. This heuristic for bandwidth reduction

123

http://www.cise.ufl.edu/research/sparse/matrices/index.html


1426 S. L. G. de Oliveira et al.

Table 3 The most promising heuristics (for 14 application areas) for reducing bandwidth and profile of
asymmetric matrices

Heuristic Application area Best reduction

FNCHC Chemical engineering Bandwidth

Chemical kinetics

Economic modeling

Flow in networks

Nuclear reactor modeling

Power network problem

GPS Circuit physics

Circuit simulation problem

Directed graph

Fluid flow modeling

Materials problem

Oil reservoir simulation

Simulation studies in computer systems

hGPHH-GL Astrophysics

GPS Materials problem Profile

GGPS Simulation studies in computer systems

MPG Astrophysics

Chemical engineering

Circuit simulation problem

Directed graph

Flow in networks

Fluid flow modeling

Nuclear reactor modeling

Oil reservoir simulation

hGPHH-GL Economic modeling

NSloan Circuit physics

Sloan–MGPS Chemical kinetics

Power network problem

Table 4 Heuristics that showed
the best overall performance on
the six sets of test matrices

Type β Profile

Symmetric FNCHC GPS

Asymmetric NSloan MPG

of symmetric matrices did not show competitive results when compared to other heuristics,
such as theVNS-band, FNCHC, andGPSheuristics. TheWBRAheuristic employs a function
to move vertices from the level with maximum width to the subsequent level (nearer the
level 0) in the level structure (that may not be rooted at a vertex). This may result in a
worse distribution of the vertices in relation to the RLS created by the GPS algorithm, for
example.
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Fig. 13 Average execution times of theWBRA (Esposito et al. 1998), FNCHC (Lim et al. 2003, 2004, 2007),
VNS-band (8 s) (Mladenovic et al. 2010), and CSS-band (Kaveh and Sharafi 2012) heuristics applied to 103
(ranging from 100 to 1104 vertices) instances of the Harwell-Boeing sparse-matrix collection

Fig. 14 Average execution times of the GPS (Gibbs et al. 1976), Snay’s (1976), Burgess and Lai (1986), and
GGPS (Wang et al. 2009) heuristics applied to 113 instances of the Harwell-Boeing sparse-matrix collection

Fig. 15 Average execution times of the GPS (Gibbs et al. 1976), FNCHC (Lim et al. 2003, 2004, 2007),
GGPS (Wang et al. 2009), and VNS-band (Mladenovic et al. 2010) heuristics applied to 17 symmetric and 5
asymmetric instances of the University of Florida sparse-matrix collection

The results of the CSS-band heuristic may be related to the random initial solution sug-
gested by its authors (we strictly followed the algorithms proposed when implementing these
heuristics). On the other hand, theVNS-band and FNCHCheuristics employ a variation of the
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breadth-first search procedure to provide an initial solution. Moreover, a slow convergence
was observed within the CSS-band heuristic.

Although based on RCM and GPS (Gibbs et al. 1976) algorithms, Burgess and Lai’s
heuristic (Burgess and Lai 1986) contains a stage where three RLSs are modified and its
results showed higher execution times than the GPS algorithm. To be more precise, Burgess
and Lai’s heuristic (Burgess and Lai 1986) attempts to reduce the width of each level of three
RLSs built in the first step. This heuristic moves vertices from one level above or below until
a minimum width is reached. Thus, this algorithm may compute a level for a long time until
reaching this minimum width.

Snay’s heuristic (Snay 1976) is similar to theRCMmethod, considering that both are based
on breadth-first search procedure. The RCM method labels adjacent vertices to the current
vertex (sorting them in ascending degree order) and Snay’s heuristic (Snay 1976) takes into
account vertices also in the second level (sorting them in ascending degree order, considering
only adjacencies to vertices that are neither labeled nor are candidate vertices) of the vertices
already labeled. Snay’s heuristic (Snay 1976) performs this task for 10 pseudo-peripheral
vertices, which explains its high computational cost. Even designed for profile reduction (by
allowing vertices with small degree numbers being labeled before other vertices), the results
of Snay’s heuristic were not competitive with the results of the other heuristics for profile
reduction, such as Sloan’s algorithm (and its variations).

In addition to the GPS (Gibbs et al. 1976), MPG (Medeiros et al. 1993), NSloan (Kum-
fert and Pothen 1997), and FNCHC (Lim et al. 2003, 2004, 2007) heuristics for bandwidth
and/or profile reductions, it should also be noted that the RCM–GL (George and Liu 1981)
and hGPHH-GL (Koohestani and Poli 2011) methods demonstrated very low computational
costs in the six datasets tested. Figure 16 shows the execution times of the RCM–GL (George
and Liu 1981), Sloan’s (1989), MPG (Medeiros et al. 1993), NSloan (Kumfert and Pothen
1997), Sloan–MGPS (Reid and Scott 1999), and hGPHH-GL (Koohestani and Poli 2011)
heuristics, which are the lowest-cost heuristics tested, applied to 113 asymmetric instances
of the Harwell-Boeing sparse-matrix collection. In particular, the 14 heuristics showed very
high computational costs in the MBEACXC, MBEAFLW, and MBEAUSE instances (from
economic modeling). These instances have many connected components and isolated ver-
tices; the heuristics are applied to each connected component of a disconnected graph.

Fig. 16 Average execution times of the RCM–GL (George and Liu 1981), Sloan’s (1989), MPG (Medeiros
et al. 1993), NSloan (Kumfert and Pothen 1997), Sloan–MGPS (Reid and Scott 1999), and hGPHH-GL
(Koohestani and Poli 2011) heuristics applied to 113 asymmetric instances of the Harwell-Boeing sparse-
matrix collection
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Fig. 17 Average execution times of the RCM–GL (George and Liu 1981), Sloan’s (1989), MPG (Medeiros
et al. 1993), NSloan (Kumfert and Pothen 1997), Sloan–MGPS (Reid and Scott 1999), and hGPHH-GL
(Koohestani and Poli 2011) heuristics applied to 22 instances of the University of Florida sparse-matrix
collection

Figure 17 shows the average execution times of the RCM–GL (George and Liu 1981),
Sloan’s (1989), MPG (Medeiros et al. 1993), NSloan (Kumfert and Pothen 1997), Sloan–
MGPS (Reid and Scott 1999), and hGPHH-GL (Koohestani and Poli 2011) heuristics applied
to 22 instances of the University of Florida sparse-matrix collection. In general, the MPG
heuristic (Medeiros et al. 1993) showed lower computational cost thanSloan’s (1989),NSloan
(Kumfert and Pothen 1997), and Sloan–MGPS (Reid and Scott 1999). In particular, the
MPG (Medeiros et al. 1993) limits the number of candidate vertices to be examined on each
iteration.

5 Conclusions

Among 132 heuristics identified in the literature that were applied to bandwidth and/or
profile reductions, 14 heuristics were selected as the most promising low-cost heuristics to
solve these problems. In experiments with 113 and 22 instances (up to 100,196 vertices)
of the Harwell-Boeing and University of Florida sparse-matrix collections, respectively, the
FNCHC (Lim et al. 2003, 2004, 2007) and GPS (Gibbs et al. 1976) heuristics showed the
best results with respect to bandwidth reduction of symmetric and asymmetric matrices,
respectively. Additionally, the NSloan (Kumfert and Pothen 1997) andMPG (Medeiros et al.
1993) heuristics may be seen as the most promising low-cost algorithms for profile reduction
of symmetric and asymmetric matrices, respectively.

Heuristics for reordering of vertices contribute to provide adequate memory location and,
hence, improving cache hit rates (Das et al. 1992; Burgess and Giles 1997). Moreover, as
exhibited by the computational experiment described in this paper, conclusively, the choice
of a heuristic is highly dependent on the use of a specific instance. Thus, in addition to the
GPS (Gibbs et al. 1976), MPG (Medeiros et al. 1993), NSloan (Kumfert and Pothen 1997),
and FNCHC (Lim et al. 2003, 2004, 2007) heuristics, the RCM–GL (George and Liu 1981)
and hGPHH-GL (Koohestani and Poli 2011) algorithms showed very low computational
costs for bandwidth and/or profile reductions in the six sets of instances tested. These six
heuristics were identified as the most promising low-cost heuristics for bandwidth and profile
reductions so that the computational cost of solving large-scale linear systems by iterative
methods can be reduced (depending on the preconditioner used to reduce the number of
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iterations of the solver applied). In addition, Sloan’s, GGPS, and Sloan–MGPS heuristics
can be applied to instances originating from specific application areas (see Tables 2, 3).

Additional datasets includingmuch larger matrices shall be included in a future evaluation
so that an insight is intended to be offered as to how the tested heuristics compare on very
large examples that are of more practical interest. Thus, we intend to apply the 14 heuristics
tested in this work and, in particular, those six heuristics selected, to perform reordering of
vertices and reduce the computational cost of iterative methods for solving large-scale linear
systems to verify the best method(s) in this context.
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Appendix A: Implementation of the heuristics, testing, and calibration

This appendix shows the testing and calibration performed to compare our implementations
with the codes used by the original proposers of the 14 heuristics to ensure the codes we
implemented were comparable to the algorithms that were originally proposed. Regarding
the VNS-band heuristic, 32-bit and 64-bit executable programs of this heuristic (which were
kindly provided by one of the heuristic’s authors) were used. Mladenovic et al. (2010) devel-
oped a heuristic based on variable neighborhood searchmeta-heuristic to solve the bandwidth
minimization problem. This meta-heuristic investigates increasingly distant neighbors of a
solution. An initial solution is generated through applying a random breadth-first search pro-
cedure. Then, a main loop carries out three steps: shaking, local search, and neighborhood
change. First, the neighborhood index k is initialized with kmin, which is the size of the neigh-
borhood. Second, in the shaking step, the meta-heuristic produces a solution S within the
current neighborhood. Using the solution S, a local-search method produces a local-optimum
solution Ol . Third, Ol replaces the current solution if the bandwidth of the solution Ol is
narrower than the bandwidth of the current solution, and k is set to kmin; otherwise, neigh-
borhood is expanded incrementing k while k < kmax. The VNS-band heuristic terminates
when the execution time exceeds a timeout as previously established.

The FNCHC-heuristic source code was also kindly provided by one of the heuristic’s
authors.With this, the source codewas converted in this presentwork to theC++programming
language. The FNCHC heuristic (Lim et al. 2003, 2004, 2007) is a variation of the NCHC
heuristic (Lim et al. 2003, 2004, 2007). The FNCHC heuristic is based on a direct node
adjustment method with hill climbing for solving the bandwidth minimization problem.

We asked all the other heuristics’ authors for the sources and/or executables of their
algorithms. However, some authors responded that they no longer had the code, some authors
did not answer, and some authors explained that the programs could not be provided. Then,
the remaining 12 heuristics were also implemented in the C++ programming language so
that the computational costs of the heuristics could be compared appropriately. Specifically,
the g++ version 4.8.2 compiler was used.

It should be noted that these heuristics are simple to implement:

– the RCM–GL (George and Liu 1981) (based on breadth-first search),
– Snay’s heuristic (Snay 1976) (based on RCM method),
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– Sloan’s algorithm (Sloan 1989),
– the Medeiros–Pimenta–Goldenberg (MPG) heuristic (Medeiros et al. 1993) (based on

Sloan’s algorithm),
– the Normalized Sloan (NSloan) heuristic (Kumfert and Pothen 1997) (based on Sloan’s

algorithm),
– Sloan’s algorithm with pseudo-peripheral vertex given by the modified GPS algorithm

(Sloan–MGPS) (Reid and Scott 1999) (based on Sloan’s algorithm),
– the heuristic based on genetic programming hyper-heuristic (hGPHH) (Koohestani and

Poli 2011) (based on RCM method).

Details about the heuristics implemented are given below. Sections A.1 and A.2 show the
testing and calibration performed with regard to the RCM–GL and hGPHH-GL methods,
and the GPS algorithm, respectively.

Sloan’s (1989), the NSloan (Kumfert and Pothen 1997), Sloan–MGPS (Reid and Scott
1999), and Charged System Search for bandwidth reduction (CSS-band) (Kaveh and Sharafi
2012) heuristics have important parameters that may change the results. Sections A.3 andA.4
show the testing and calibration performed with regard to Sloan’s, Nsloan, and Sloan–MGPS
heuristics, and the MPG heuristic, respectively. Section A.5 shows the testing and calibration
performed with regard to the CSS-band heuristic. On the other hand, the other heuristics do
not have parameters that affect the results.

To our knowledge, results of Snay’s (1976), Burgess and Lai (1986), wonder bandwidth
reduction algorithm (WBRA) (Esposito et al. 1998),GenericGPS (GGPS) (Wang et al. 2009),
and CSS-band (Kaveh and Sharafi 2012) heuristics have only been published in their original
papers and, unfortunately, we did not find the instances where these five heuristics were
applied. On the other hand, since an efficient implementation comes at a cost in programming
effort, we strictly observed the descriptions of the algorithms provided by their authors to
obtain reasonably efficient implementations of (all) these heuristics.

It should be noted that it was not our intention that the results of the C++ programming
language versions of the heuristics outperform results of the original implementations. Our
intention was to implement reasonably efficient implementations of the heuristics tested to
make it possible an appropriate comparison of the results of the 14 heuristics.

A.1: The RCM–GL and hGPHH-GL methods

In short, the RCM is a breadth-first search-based procedure and the vertices on each level are
labeled in ascending order of degree number. Then, the final labeling is reverted. Similarly,
the hGPHH is a breadth-first search-based procedure and the vertices on each level are
labeledwith a specific formula provided by the genetic programming hyper-heuristic (GPHH)
(Koohestani and Poli 2011).

These two heuristics are highly dependent on the starting vertex and since Koohestani and
Poli (2011) provided no description of the pseudo-peripheral vertex finder used, we employed
the George–Liu algorithm (George and Liu 1979) to find a pseudo-peripheral vertex; hence,
we named this method as hGPHH-GL, i.e., it is an RCM-based heuristic developed through
a genetic programming hyper-heuristic. Thus, in both algorithms, the starting vertex is given
here by the George–Liu algorithm.

Table 5 exhibits results of our implementation of the RCM–GL and hGPHH-GL methods
applied to 11 instances of the Harwell-Boeing sparse-matrix collection. These results are
compared to the results of the GHH (Koohestani and Poli 2011) and the RCM method
contained in the MATLAB library (RCMM) (MATLAB 2016), which is a SPARSPAK-
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Table 5 Results of the C++ programming language versions of the RCM–GL (George and Liu 1981) and
hGPHH-GL methods and results of the RCMM (MATLAB 2016) and GHH (Koohestani and Poli 2011)
methods in bandwidth reduction applied to 11 instances of the Harwell-Boeing sparse-matrix collection

Instance RCM–GL RCMM hGPHH-GL GHH

BCSPWR05 59 64 65 58

DWT_209 37 33 34 34

DWT_245 43 55 55 43

DWT_310 15 15 13 13

DWT_361 25 15 25 15

DWT_419 34 34 33 33

DWT_503 64 64 64 51

DWT_592 42 42 42 41

DWT_878 37 46 37 44

DWT_918 57 57 63 44

DWT_992 65 65 63 63

Number of best results 9 8 5 10
∑

ρb 0.79 0.61 1.78 0.19

based highly enhanced version of the RCM method described by George and Liu (1981).
Specifically, Koohestani and Poli (2011) published these results. In general, one can consider
that the results are similar, although differences can be explained by the use of theGeorge–Liu
algorithm (George and Liu 1979) to find pseudo-peripheral vertices.

A.2: The GPS algorithm

In short, the GPS algorithm (Gibbs et al. 1976) creates a level structure rooted at a pseudo-
peripheral vertex. It also considers an end pseudo-peripheral vertex when building this
structure. The final labeling is given starting by the end node of the rooted level structure
(RLS) and the vertices on each level are labeled in decreasing order of degree number.
Let G = (V, E) be a connected and simple graph. Given a vertex v ∈ V , the level
structure rooted at v, with depth (or the eccentricity of v) �(v), is a partitioning L (v) =
{L0(v), L1(v), . . . , L�(v)(v)}, where L0(v) = {v}, Li (v) = Adj(Li−1(v)) − ⋃i−1

j=0 L j (v),
for i = 1, 2, 3, . . . , �(v) and Adj(.) returns the adjacent vertices of the argument. Thewidth
b(L (v)) of L (v) is defined as b(L (u)) = max0≤i≤�(u) |Li (u)|.

Results of the GPS algorithm applied to theHarwell-Boeing sparse-matrix collectionwere
provided by Martí et al. (2001), Piñana et al. (2004), Lim et al. (2007), and Rodriguez-Tello
et al. (2008). These researchers compared the results of their heuristics with the results of
the GPS algorithm applied to instances of this sparse-matrix collection. Their papers show
the average bandwidth over the instances in each dataset. Nevertheless, a comparison of
the average bandwidth (over the instances in each set) of the results obtained using the
(C++ programming language version of the) GPS algorithm to the results shown in these
publications is not adequate because the datasets used here contain instances with very
different sizes, i.e., a heuristic that returns a very large bandwidth in a small instance would
not be penalized appropriately.
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Table 6 Results with respect to bandwidth (Lewis 1982) and profile (Everstine 1979; Lewis 1982) reductions
obtained using the Fortran programming language version of GPS algorithm and results concerning bandwidth
and profile reductions achieved by the C++ programming language version of the GPS algorithm applied to
13 instances of the Harwell-Boeing sparse-matrix collection

Instance β Profile

C++ Lewis (1982) C++ Lewis (1982)

BCSPWR01 9 6 123 100

DWT_209 37 48 4816 4744

DWT_221 19 20 1997 2188

DWT_234 18 18 1274 1497

DWT_245 50 48 5054 3568

DWT_310 13 28 2695 2696

DWT_361 14 14 4699 5054

DWT_419 34 41 8276 8967

DWT_503 64 69 14,783 16,096

DWT_592 36 47 11,703 11,284

DWT_878 27 40 19,120 19,930

DWT_918 58 64 21,940 21,297

DWT_992 36 35 33,076 34,025

Number of best results 10 5 8 5

–
∑

ρβ = 0.57
∑

ρβ = 2.68
∑

ρp = 0.73
∑

ρp = 0.59

Then, we closely followed the recommendations given by Lewis (1982) in a Fortran pro-
gramming language code to implement the GPS algorithm (Gibbs et al. 1976) in the C++
programming language. One of the main results of Lewis (1982) was to present a low-cost
implementation of the GPS algorithm (Gibbs et al. 1976). Lewis (1982) did not explicitly
present results of the GPS algorithm with respect to bandwidth and profile reductions. How-
ever, this author showed results of the Gibbs–King heuristic with regard to bandwidth and
profile reductions and stated that the results of the GPS algorithm were as good as the results
of the Gibbs–King algorithm. On the other hand, Lewis (1982) presented the GPS algo-
rithm computational cost and showed that the Gibbs–King heuristic is much slower than
the GPS algorithm. This author presented these results because the bandwidth and profile
reductions obtained using the GPS algorithm were the same results obtained by Everstine
(1979). On the other hand, Everstine (1979) showed only results concerning wavefront and
profile reductions. Thus, Table 6 shows results with respect to bandwidth reductions obtained
using the Gibbs–King heuristic (the same results obtained using the GPS algorithm) (Lewis
1982), results with regard to profile reductions attained by the GPS algorithm (Everstine
1979; Lewis 1982), and results concerning bandwidth and profile reductions achieved by
the C++ programming language version of the GPS algorithm applied to 13 instances of the
Harwell-Boeing sparse-matrix collection.

In general, the C++ programming language version of the GPS algorithm obtained better
results than the Fortran programming language version of this algorithm (Lewis 1982) in
relation to bandwidth reductions.On the other hand, although theC++programming language
version of the GPS algorithm obtained the largest number of best results (in eight instances)
in this set of instances, the Fortran version of this algorithm (Lewis 1982) was the best one
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for reducing profile when considering the ρp metric. Nevertheless, the difference in the ρp

metric is small and it can be explained by choices of the pseudo-peripheral vertices in these
runs. Therefore, one can consider that the C++ programming language version used here is
a reasonably efficient implementation of the GPS algorithm (Gibbs et al. 1976).

A.3: The Sloan, NSloan, and Sloan–MGPS heuristics

Similar to the GPS algorithm (Gibbs et al. 1976), the first step of Sloan’s algorithm (Sloan
1989) returns a starting (s) and an end (e) pseudo-peripheral vertices. Then, Sloan’s algorithm
(Sloan 1989) creates a level structure rooted at s. The final labeling is given starting by the
vertex s and the vertices are labeled using a max-priority queue according to the priority
p(v) = w1d(v, e) − w2(deg(v) + 1), where w1 and w2 are integer weights, d(v, e) is the
distance of vertex v to the vertex e, and deg(v) is the degree of vertex v. Sloan (1989)
suggested to assign these two weights as w1 = 1 and w2 = 2. Setting w1 � w2 ≥ 1 places
more emphasis on the global criterion of distance from the target end vertex and forces the
vertices to be labeled level by level, and the vertex-labeling algorithm is the method of King
(King 1970). When setting w1 = 0 and w2 = 1, the vertex-labeling algorithm is similar to
Snay’s heuristic (Snay 1976).

One can realize that the RCMmethod (George 1971) obtains better bandwidth results than
Sloan’s algorithm (Sloan 1989) (and variations) because, in the RCMmethod, if (u, v) ∈ E ,
then |s(u)− s(v)| is small, since the vertices are labeled level by level in relation to the level
structure rooted at the starting vertex. In turn, Sloan’s algorithm (Sloan 1989) may provide a
labelingwith small |s(u)−s(v)|, but large d(u, v)when placingmore emphasis on the current
degree as the principal measure of priority (i.e., w2 > w1), which is a local criterion. On the
other hand, one can realize that Sloan’s algorithm (Sloan 1989) (and variations) obtains better
profile results than the RCMmethod (George 1971), because the RCMmethod may produce
βi (1 ≤ i ≤ |V |) similar to β(A) and, consequently, producing a labeling with large profile.
By its turn, Sloan’s algorithm (Sloan 1989) (and variations) produces small βi (1 ≤ i ≤ |V |)
by choosing to label firstly vertices with smaller degrees so that it produces a labeling with
small profile [although in each iteration Sloan’s algorithm (Sloan 1989) (and variations)
forces to label vertices level by level—similarly to the RCM method—by increasing w2 to
the priority of the candidate vertices to be labeled].

We strictly observed the recommendations given by Sloan (Sloan 1989) and also the
recommendations described in http://www.hsl.rl.ac.uk/archive/specs/mc40 (STFC 2015) in
a Fortran programming language code to implement this heuristic in the C++ programming
language. Likewise, we studied the Fortran programming language code of Sloan–MGPS
available at http://www.hsl.rl.ac.uk/catalogue/mc60.html (STFC 2015) to implement this
heuristic in the C++ programming language.

Sloan’s algorithm (Sloan 1989) for finding pseudo-peripheral vertices follows three main
steps. First, Sloan’s algorithm (Sloan 1989) for finding pseudo-peripheral vertices selects a
vertex of minimum degree v in the graph. Second, it scans L�(v)(v) and then observes a set
containing only one vertex of each degree. Finally, considering the eccentricity and width
of RLSs, this algorithm returns a starting (s) and an end (e) pseudo-peripheral vertices. This
algorithm is a modified version of the algorithm of Gibbs et al. (1976) (which considers only
the eccentricity of vertices) and is also applied together with the MPG (Medeiros et al. 1993)
(see Sect. A.4) and NSloan (Kumfert and Pothen 1997) heuristics.

Reid and Scott (1999) proposed two modifications in Sloan’s algorithm (Sloan 1989) for
finding pseudo-peripheral vertices: it scans L�(v)(v) and observes a set containing only five
vertices which are not adjacent to each other (instead of observing a set containing only one
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vertex of each degree) and, before returning the pseudo-peripheral vertices, it changes s by e
if �(e) > �(s). Therefore, the Sloan–MGPS heuristic (Reid and Scott 1999) is Sloan’s vertex-
labeling algorithm with pseudo-peripheral vertices given by this modified GPS algorithm.

Sloan (1989) proposed to employ two weights to label the vertices of the instance: w1,
associated with the distance d(v, e) of the vertex v to the target end vertex e in L (s),
and w2, associated with the degree of each vertex. To provide specific detail, the priority
p(v) = w1d(v, e) − w2(deg(v) + 1) employed in Sloan’s algorithm (Sloan 1989) presents
different scales for both criteria. The value of deg(v) + 1 ranges from 1 to m + 1 (where
m is the maximum degree of the graph G = (V, E)), and d(v, e) ranges from 0 (when
v = e, and d(v, e) > 0 for d �= e) to the eccentricity �(e) (of the target end vertex e).
Regarding Sloan’s (1989), NSloan (Kumfert and Pothen 1997), and Sloan–MGPS (Reid and
Scott 1999) heuristics, we established the two weights as these parameters were described in
the original papers. When more than one pair of values have been suggested in the original
papers, we performed exploratory investigations to determine the pair of values that obtains
the best profile results. Then, the two weights are assigned as w1 = 1 and w2 = 2 for the
Sloan–MGPS heuristic (Reid and Scott 1999), and as w1 = 2 and w2 = 1 for the NSloan
heuristic (Kumfert and Pothen 1997). To give more specific detail, although assigning these
two weights as w1 = 1 and w2 = 2, Sloan’s (1989), MPG (Medeiros et al. 1993) (see Sect.
A.4), and Sloan–MGPS (Reid and Scott 1999) heuristics placemore emphasis on the distance
d(v, e) (related to L (s)) when applied to sparse graphs because the scale of this criterion
is larger than the scale of the other criterion. One can realize that, in sparse graphs, �(e) is
larger than m so that Kumfert and Pothen (1997) normalized these two criteria to propose
the Normalized Sloan (NSloan) heuristic.

Results of Sloan’s (Sloan 1989) and Sloan–MGPS (Reid and Scott 1999) heuristics applied
to 17 symmetric instances of theUniversity of Florida sparse-matrix collectionwere provided
by Reid and Scott (1999). Table 7 exhibits results of the C++ programming language versions
of Sloan’s algorithm and the Sloan–MGPS heuristic, and the results of these heuristics pro-
vided by Reid and Scott (1999) applied to 17 symmetric instances of the University of Florida
sparse-matrix collection. In this dataset composed of 17 symmetric instances, one can verify
that the C++ programming language versions of the two heuristics obtained better profile
results when considering the ρp metric. Disregarding the skirt instance (which Reid and Scott
(1999) show larger profiles of 2 magnitudes in relation to the C++ programming language
versions), one finds

∑
ρp = 0.84 for Sloan’s algorithm (Sloan 1989), against

∑
ρp = 0.58

resulted by the C++ programming language version of this heuristic, and the ρp metric in
both versions of the Sloan–MGPS is also similar when disregarding this instance.

Kumfert and Pothen (1997) provided results of theNSloan heuristic applied to instances of
theUniversity of Florida sparse-matrix collection. Kumfert and Pothen (1997) normalized the
results of the NSloan heuristic in relation to the RCM method (George 1971) with pseudo-
peripheral vertex given by the method of Duff et al. (1989a), which is similar to Sloan’s
algorithm for finding pseudo-peripheral vertices (Sloan 1989). Table 7 replicates these results.
In addition, Table 7 shows results of the C++ programming language version of the NSloan
heuristic normalized in relation to the results obtained using the C++ programming language
version of the RCM–GLmethod (George and Liu 1981) applied to 17 symmetric instances of
the University of Florida sparse-matrix collection. In this dataset composed of 17 symmetric
instances, one finds

∑
ρp = 0.13 for the original NSloan heuristic (Kumfert and Pothen

1997), against
∑

ρp = 1.64 resulted by the C++ programming language version of this
heuristic. One can observe that results of both implementations are similar and differences in
the results can be explained by the use of different algorithms for finding pseudo-peripheral
vertices.
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Table 7 Results of implementations in the C++ programming language of Sloan’s (1989), NSloan (Kumfert
and Pothen 1997), and Sloan–MGPS (Reid and Scott 1999) heuristics and results of these heuristics provided
by Kumfert and Pothen (1997) (KP97) and Reid and Scott (1999) (RS99) in profile reductions applied to 17
symmetric instances of the University of Florida sparse-matrix collection

Instance Size Sloan Sloan–MGPS NSloan

C++ RS99 C++ RS99 C++ KP97

barth 6691 488,502 490,000 485,788 470,000 0.66 0.66

barth4 6019 674,980 450,000 658,381 330,000 0.47 0.27

barth5 15,606 2,315,620 2,430,000 2,320,292 1,440,000 0.43 0.41

bcsstk30 28,924 10,655,704 15,720,000 10,080,145 16,150,000 0.53 0.45

commanche_dual 7920 425,818 440,000 397,955 330,000 0.59 0.54

copter1 17,222 7,128,590 7,090,000 7,127,731 6,050,000 0.68 0.70

copter2 55,476 43,783,488 43,240,000 43,208,117 37,960,000 0.53 0.56

finance256 37,376 6,183,691 6,570,000 6,319,706 6,350,000 0.22 0.19

ford1 18,728 2,399,069 2,340,000 2,329,436 2,350,000 0.80 0.81

ford2 100,196 40,458,534 40,630,000 40,061,732 41,050,000 0.71 0.71

nasasrb 54,870 18,486,625 18,350,000 18,559,413 19,010,000 0.88 0.91

onera_dual 85,567 114,445,935 113,670,000 112,617,638 87,750,000 0.46 0.41

pds10 16,558 11,401,308 13,680,000 10,967,390 9,360,000 0.34 0.31

shuttle_eddy 10,429 583,595 590,000 579,306 620,000 0.82 0.81

skirt 12,598 728,955 34,120,000 699,284 36,600,000 0.72 0.67

tandem_dual 94,069 90,000,767 87,790,000 87,639,361 66,210,000 0.54 0.51

tandem_vtx 18,454 6,300,173 6,290,000 5,983,094 5,720,000 0.37 0.35

No. of best results – 9 8 7 10 6 13
∑

ρp – 0.58 46.65 2.99 52.07 1.64 0.13

A.4: The MPG heuristic

The MPG heuristic (Medeiros et al. 1993) employs two max-priority queues: t contains
vertices that are candidate vertices to be labeled, and q contains vertices belonging to t
and also vertices that can be inserted to t. Similar to Sloan’s algorithm (Sloan 1989) (and
variations), the current degree of a vertex is the number of adjacencies to vertices that neither
have been labeled nor belong to q. A main loop performs three steps. First, a vertex v is
inserted into q to maximize a specific priority function. Second, the current degree currdegv

of each vertex v ∈ t is observed: the algorithm labels a vertex v if currdegv = 0, and the
algorithm removes from t a vertex v (i.e., t ← t − {v}) if currdegv > 1. Third, if t is empty,
the algorithm inserts into t each vertex u ∈ q with priority pu ≥ pmax(q)−1, where pmax(q)

returns the maximum priority among the vertices in q.
Table 8 exhibits results of the C++ programming language version of the MPG heuris-

tic and the results of this heuristic provided by Medeiros et al. (1993) applied to 30
symmetric instances of the Harwell-Boeing sparse-matrix collection. In this dataset com-
posed of 30 instances, one can verify that the C++ programming language version
of the MPG heuristic obtained better profile results than the original version of this
heuristic.
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Table 8 Results of an
implementation in the C++
programming language of the
MPG heuristic (Medeiros et al.
1993) and results of this heuristic
provided by Medeiros et al.
(1993) in profile reductions
applied to 30 instances of the
Harwell-Boeing sparse-matrix
collection

Instance Size MPG

C++ Medeiros et al. (1993)

DWT_59 59 236 284

DWT_66 66 128 193

DWT_72 72 205 241

DWT_87 87 470 534

DWT_162 162 1354 1546

DWT_193 193 4401 4553

DWT_198 198 1160 1301

DWT_209 209 3003 3078

DWT_221 221 1818 2005

DWT_234 234 896 1064

DWT_245 245 2617 2682

DWT_307 307 6742 7185

DWT_310 310 2657 2951

DWT_346 346 6309 6556

DWT_361 361 4765 5067

DWT_419 419 6852 7194

DWT_492 492 2958 3359

DWT_503 503 14,164 14,439

DWT_512 512 4461 4727

DWT_592 592 9526 10,031

DWT_607 607 13,741 14,570

DWT_758 758 6564 7249

DWT_869 869 13,108 13,874

DWT_878 878 18,693 19,782

DWT_918 918 16,139 16,984

DWT_992 992 33,376 34,524

DWT_1005 1005 33,413 33,490

DWT_1007 1007 19,944 22,808

DWT_1242 1242 36,102 37,842

DWT_2680 2680 87,275 89,193

Number of best results – 30 0
∑

ρp – 0.00 2.84

A.5: The CSS-band heuristic

Regarding the charged system search for bandwidth reduction (CSS-band) heuristic (Kaveh
and Sharafi 2012), 500 iterations were used as a termination criterion, and 1 charged particle
per 100 verticeswas used in the tests performed. These values are the same used byKaveh and
Sharafi (2012). This heuristic was also tested with less iterations and less charged particles.
This considerably decreased the computational cost of the heuristic; however, the bandwidth

123



1438 S. L. G. de Oliveira et al.

and profile reductions also decreased substantially. In addition, tests with more iterations and
more charged particles were performed. Although it slightly improved the bandwidth and
profile reductions, the computational cost increased considerably.

Appendix B: Results

The first and second parts of Table 9 contain the results of 14 heuristics applied to reduce
the bandwidth and profile of 15 symmetric instances of the Harwell-Boeing sparse-matrix
collection, respectively. Numbers in bold face are the best results. Table 10 shows the average
execution times of the 14 heuristics applied to 15 symmetric instances of the Harwell-Boeing
sparse-matrix collection. Similar to the other tables related to average execution times shown
below, Table 10 also shows the number of best results, the rank order according to the

∑
ρt

metric, and the mode of the order of magnitude of these 14 heuristics. In particular, to achieve
the maximal precision of the metrics, we set up several decimal cases to avoid draws.

Tables 11 and 12 contain the results of 14 heuristics applied to reduce the bandwidth and
profile of 35 symmetric instances of the Harwell-Boeing sparse-matrix collection, respec-
tively. In particular, Table 11 contains the results of the VNS-band heuristic set at 7 and 8s.
This was done to show that 8 s was the lowest timeout required for the VNS-band heuristic
to obtain better results than the FNCHC heuristic, which was the second best in reducing
bandwidth, according to the ρb metric. Table 12 also contains the results of the VNS-band
heuristic set with 500s. Even so, when considering profile reductions, the VNS-band heuris-
tic was dominated by the MPG (Medeiros et al. 1993), Sloan–MGPS (Reid and Scott 1999),
Sloan’s (1989), and NSloan (Kumfert and Pothen 1997) heuristics in this set of 35 symmetric
instances. Table 13 shows the average execution times of the 14 heuristics applied to 35
symmetric instances of the Harwell-Boeing sparse-matrix collection.

Table 14 contains the results of 14 heuristics applied to reduce the bandwidth and profile
of 18 asymmetric instances of the Harwell-Boeing sparse-matrix collection. In particular, in
the GENT113 instance, it was only possible to apply the 64-bit executable program of the
VNS-band heuristic with a limit of 6 s. Therefore, the bandwidth and profile values presented
for this instance are obtained using the VNS-band (6 s) heuristic. Table 15 shows the average
execution times of the 14 heuristics applied to 18 asymmetric instances of theHarwell-Boeing
sparse-matrix collection.

Tables 16 and 17 contain the results of 14 heuristics applied to reduce the bandwidth
and profile of 45 asymmetric instances of the Harwell-Boeing sparse-matrix collection,
respectively. In particular, it was not possible to apply the 64-bit executable program of
the VNS-band heuristic in the SHERMAN4 instance. In this instance, the values are shown
after being obtained using the 32-bit executable program of the VNS-band heuristic, consid-
ering the same runtime limit. Table 18 shows the average execution times of the 14 heuristics
applied to 45 asymmetric instances of the Harwell-Boeing sparse-matrix collection.

Table 19 contains the results of 10 heuristics applied to reduce the bandwidth and profile
of 17 symmetric instances of the University of Florida sparse-matrix collection. Table 20
shows the average execution times of the 10 heuristics applied to 17 symmetric instances of
the University of Florida sparse-matrix collection.

Table 21 contains the results of 10 heuristics applied to reduce the bandwidth and profile of
five asymmetric instances of the University of Florida sparse-matrix collection. Table 21 also
shows the average execution times of the 10 heuristics applied to five asymmetric instances
of the University of Florida sparse-matrix collection.
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Appendix C: Application areas

Tables 22 and 23 show several instances of the University of Florida and Harwell-Boeing
sparse-matrix collections divided by application area, respectively.

Table 22 Twenty two instances of the University of Florida sparse-matrix collection divided by application
area

Application area Instances

Structural problem BARTH, BARTH4, BARTH5, BCSSTK30,
COMMANCHE_DUAL, FORD1, FORD2,
NASASRB, ONERA_DUAL, SHUTTLE_EDDY,
SKIRT, TANDEM_DUAL, TANDEM_VTX

Computational fluid dynamics problem COPTER_1, COPTER_2

Optimization problem FINANCE256, PDS10

Circuit simulation problem ASIC_100KS, CKT11752_TR_0

Materials problem CRYG10000

Power network problem HVDC1

Directed graph SOC-EPINIONS1

Table 23 One-hundred and thirteen instances of the Harwell-Boeing sparse-matrix collection divided by
application area

Application area Instances

Astrophysics MCCA, MCFE

Chemical engineering IMPCOL_A, IMPCOL_B, IMPCOL_C, IMPCOL_D,
IMPCOL_E, WEST0132, WEST0156, WEST0167,
WEST0381, WEST0479, WEST0497, WEST0655,
WEST0989

Chemical kinetics FS_183_1, FS_541_1, FS_680_1, FS_760_1

Circuit physics JPWH_991

Dynamic analyses in structural BCSSTK01, BCSSTK04, BCSSTK05, BCSSTK06,

engineering BCSSTK19, BCSSTK20, BCSSTK22, BCSSTM07

Economic modeling MBEACXC, MBEAFLW, MBEAUSE

Finite-element model problem JAGMESH1

Finite-element structures CAN_144, CAN_161, CAN_292, CAN_445,

problems in aircraft design CAN_715, CAN_838

Flow in networks HOR_131

Fluid flow modeling LNS_131, LNSP_511

Nuclear reactor modeling NNC261, NNC666

Oceanic modeling PLAT362, PLSKZ362

Oil recovery STEAM1, STEAM2, STEAM3

Oil reservoir modeling/simulation ORSIRR_2, SAYLR1, SAYLR3, SHERMAN1,
SHERMAN4

Partial differential equations GR_30_30

Power systems networks/ 494_BUS, 662_BUS, 685_BUS, BCSPWR01,
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1466 S. L. G. de Oliveira et al.

Table 23 continued

power networks BCSPWR02, BCSPWR03, BCSPWR04, BCSPWR05

Reservoir modeling PORES_1, PORES_3

Simulation studies GRE_115, GRE_185, GRE_216A,

in computer systems GRE_343, GRE_512

Structural engineering/linear DWT_209, DWT_221, DWT_234, DWT_245,

equations in structural engineering DWT_310, DWT_361, DWT_419, DWT_503,

DWT_592, DWT_878, DWT_918, DWT_992,

NOS1, NOS2, NOS3, NOS4, NOS5, NOS6, NOS7

Variety of disciplines ARC130, ASH85, ASH292, BP_0,

BP_200, BP_400, BP_600, BP_800,

BP_1000, BP_1200, BP_1400, BP_1600,

CURTIS54, GENT113, IBM32, LUND_A,

LUND_B, SHL_0, SHL_200, SHL_400,

STR_0, STR_200, STR_600, WILL57, WILL199

Appendix D: The most promising low-cost heuristics for bandwidth and
profile reductions of symmetric and asymmetric matrices

Table 24 summarizes the results of the heuristics that showed the best overall performance
on the six sets of test matrices. Additionally, Table 24 shows the lowest-cost heuristics tested
in these sets of instances. Furthermore, in spite of the small number of executions for each
heuristic in each instance, Table 24 shows the largest standard deviation σ and coefficient of
variation attained in relation to the execution times of the 14 heuristics for these six datasets
tested.

It should be noted that when execution times are crucial for the application, a reason-
able bandwidth or profile reduction by a very fast heuristic may be better than a very large
bandwidth or profile reduction provided by a heuristic with high computational cost. Then,
Table 24 shows the rank order of heuristics and their order of magnitude regarding their
computational costs.

Unlike heuristics such as the RCM–GL, hGPHH-GL, GPS, and GGPS, in the heuristics
designed for profile reduction tested here, vertices are not exclusively labeled level by level
in relation to the level structure rooted at a starting vertex. This favors a profile reduction by
selecting a vertex of small degree number to be labeled before other vertices. This is carried
out in Snay’s (1976), Sloan’s (1989), MPG (Medeiros et al. 1993), NSloan (Kumfert and
Pothen 1997), and Sloan–MGPS (Reid and Scott 1999) heuristics.

Sloan’s algorithm (Sloan 1989) showed lower computational cost than the Sloan–MGPS
heuristic (Reid and Scott 1999) in all tests performed [e.g., Sloan’s algorithm (Sloan 1989)
achieved its results with a lower computing cost of 1 magnitude in relation to the Sloan–
MGPS heuristic (Reid and Scott 1999) when applied to the 17 symmetric instances of the
University of Florida sparse-matrix collection (see Table 20)]. It should be noted that Sloan’s
(1989) and MPG (Medeiros et al. 1993) heuristics were implemented with a linked list and
the NSloan (Kumfert and Pothen 1997) and Sloan–MGPS (Reid and Scott 1999) heuristics
were implemented with a binary heap (as proposed in the original algorithms). Specifically,
a version of Sloan’s algorithm (Sloan 1989) implemented here with a binary heap was more
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expensive than the version implemented with a linked list. The number of vertices in the
max-priority queue in each iteration may be small so that the operations within the linked list
are less expensive than the operations within the max heap (which would show a different
asymptotic behavior for a sufficiently large number of vertices). On the other hand, Sloan’s
algorithm (Sloan 1989) was dominated by the Sloan–MGPS heuristic (Reid and Scott 1999)
in relation to bandwidth and profile reductions in all tests performed: the MGPS method
(Reid and Scott 1999) may have selected pseudo-peripheral vertices with larger eccentricity
(or a smaller width of the corresponding RLS was generated) than the pseudo-peripheral
vertices given by Sloan’s algorithm (Sloan 1989) (for this task).

Sections D.1 and D.2 describe the best heuristics for bandwidth reduction of symmetric
and asymmetricmatrices, respectively. Finally, Sect. D.3 addresses the best low-cost heuristic
for profile reduction of symmetric and asymmetric matrices.

D.1: Best heuristic for bandwidth reduction of symmetric matrices

When setting lowVNS-band timeouts and their results comparedwith low-cost heuristics, the
VNS-band (8 s) heuristic provided better bandwidth results in the set composed of 35 sym-
metric instances of the Harwell-Boeing sparse-matrix collection (see Fig. 3c). The FNCHC
heuristic was the second best in reducing bandwidth in this dataset, according to the ρb met-
ric (see Fig. 3a and Table 11). The VNS-band heuristic achieved these results with a higher
computing cost of two magnitudes in relation to the FNCHC heuristic (see Table 13).

Additionally, in the tests presented in this paper, the FNCHC heuristic obtained the best
results in 12 instances in the set composed of 15 symmetric instances (see Fig. 1c). Moreover,
the FNCHC heuristic obtained the best results in the 17 symmetric instances of the University
of Florida sparse-matrix collection (see Figs. 9a, c in Sect. 4.2.1 and the first part of Table 19).
Therefore, the FNCHC (Lim et al. 2003, 2004, 2007) heuristic was considered the algorithm
that achieved the most promising (overall) results for reducing bandwidth of symmetric
matrices.

D.2: Best heuristic for bandwidth reduction of asymmetric matrices

Although the FNCHC and VNS-band heuristics obtained the best results in relation to
bandwidth reduction in the sets composed of 18 and 45 asymmetric instances of the Harwell-
Boeing sparse-matrix collection (see Figs. 5a, 7a, c, the first part of Tables 14, and 16),
respectively, when applied to the dataset composed of five asymmetric instances of the
University of Florida sparse-matrix collection, the GPS algorithm obtained the best results
according to the ρβ metric (see Fig. 11a, the first part of Table 21, and Sect. 4.2.2). More-
over, in general, the GPS algorithm achieved the third (see Sects. 4.1.1 and 4.1.2) and forth
(see Sects. 4.1.3 and 4.1.4) best results according to the ρβ metric when applied to the four
datasets composed of symmetric and asymmetric instances of the Harwell-Boeing sparse-
matrix collection. The GPS algorithm was outperformed by the FNCHC and VNS-band
(with its timeout set at 8, 12, and 500s) heuristics when applied to the 113 instances of the
Harwell-Boeing sparse-matrix collection (see Figures 1a–c, 3a–c, 5a, and 7a–c, and Tables
11, 14, and 16). On the other hand, the GPS algorithm outperformed the VNS-band (500s)
when applied to the 22 instances of the University of Florida sparse-matrix collection (see
Figs. 9a and 11a; Tables 19, 21).

It should be noted that the FNCHC and VNS-band heuristics generate several solutions
and employ local-search procedures to provide local-optimum solutions. The GPS algorithm
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generates only one solution. Moreover, a local-search procedure is not employed within the
GPS algorithm.

The FNCHC and VNS-band heuristics achieved their results with a higher computing
cost of 1 magnitude in relation to the GPS heuristic in the set composed of five asymmetric
instances of the University of Florida sparse-matrix collection (see Table 21). Thus, the GPS
algorithm was considered the most promising low-cost heuristic for bandwidth reduction of
asymmetric matrices.

D.3: Best low-cost heuristic for profile reduction of symmetric and asymmetric
matrices

TheMPG (Medeiros et al. 1993) and NSloan (Kumfert and Pothen 1997) heuristics obtained
the best profile results in 11 and 9 instances in the set composed of 35 symmetric instances of
the Harwell-Boeing sparse-matrix collection, respectively (see Fig. 3d; Table 12). Moreover,
the NSloan (Kumfert and Pothen 1997) obtained the best profile results in the set composed
of 15 symmetric instances of the Harwell-Boeing sparse-matrix collection (see Fig. 1b, d
and the second part of Table 9) and in the set composed of 17 symmetric instances of the
University of Florida sparse-matrix collection (see Fig. 9b, d and Table 19). Therefore, the
NSloan (Kumfert and Pothen 1997) heuristic was considered the best low-cost heuristic for
profile reduction of symmetric matrices.

In relation to asymmetric instances, theMPG (Medeiros et al. 1993) heuristic obtained the
best results in the sets composed of 18 and 45 asymmetric instances of the Harwell-Boeing
sparse-matrix collection (see Figs 5b, 7b, and 7d; Tables 14, 17) and in the set composed of
five asymmetric instances of the University of Florida sparse-matrix collection (see Fig. 11b
and the second part of Table 21). Therefore, the MPG heuristic (Medeiros et al. 1993) was
considered the best heuristic for profile reduction of asymmetric matrices.

Usually, in sparse graphs, �(e) is larger than m. Thus, Sloan’s (1989) and Sloan–MGPS
(Reid and Scott 1999) heuristics place more emphasis on the distance of a vertex v to the
target end vertex (a global criterion) than the degree of v (a local criterion). Thus, these two
heuristics tend to label vertices level by level in a level structure rooted at a starting vertex. By
normalizing the priority of these two criteria, theNSloan heuristic (Kumfert and Pothen 1997)
places similar emphasis on these two criteria. On the other hand, a vertex-labeling algorithm
that labels vertices in an ascending degree number produces poor bandwidth reduction at a
high computational cost because it considers many candidate vertices for each iteration (we
tested it here within exploratory investigations). Thus, the MPG heuristic (Medeiros et al.
1993) controls the number of candidate vertices and (although assigning the two weights
as w1 = 1 and w2 = 2) offers a trade-off between the two criteria mentioned. These
characteristics of the NSloan (Kumfert and Pothen 1997) and MPG (Medeiros et al. 1993)
heuristics can explain their best results in profile reduction of symmetric and asymmetric
instances when compared to the other heuristics for this task, respectively.
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