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Abstract In this paper, we propose a class of customized proximal point algorithms for
linearly constrained convex optimization problems. The algorithms are implementable, pro-
vided that the proximal operator of the objective function is easy to evaluate. We show that,
with special setting of the algorithmic scalar, our algorithms contain the customized prox-
imal point algorithm (He et al., Optim Appl 56:559–572, 2013), the linearized augmented
Lagrangian method (Yang and Yuan, Math Comput 82:301–329, 2013), the Bregman Oper-
ator Splitting algorithm (Zhang et al., SIAM J Imaging Sci 3:253–276, 2010) as special
cases. The global convergence and worst-case convergence rate measured by the iteration
complexity are established for the proposed algorithms. Numerical results demonstrate that
the algorithms work well for a wide range of the scalar.

Keywords Convex optimization ·Proximal point algorithm ·Linear constraints ·Augmented
Lagrangian method

Mathematics Subject Classification 65K10 · 90C25 · 90C30

1 Introduction

In this paper, we consider the following convex minimization problem with linear constraint:

min{θ(x) | Ax = b, x ∈ X }, (1.1)
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where A ∈ �m×n, b ∈ �m , X is a closed convex set and θ(x) : �n → � is a proper convex
function. Without loss of generality, we assume that the solution set of (1.1), denoted by X ∗,
is nonempty. Problem (1.1) has many applications, such as compressive sensing (Yin et al.
2008; Starck et al. 2010), image processing (Chambolle and Pock 2011; Zhang et al. 2010),
machine learning (Cai et al. 2010).

To solve (1.1), a benchmark is the augmented Lagrangian multiplier method (ALM)
(Hestenes 1969; Powell 1969). For given λk , ALM generates the new iterate via the scheme:

⎧
⎪⎨

⎪⎩

xk+1 = argmin
x∈X

{

θ(x) + β

2

∥
∥
∥
∥Ax − b − 1

β
λk

∥
∥
∥
∥

2
}

, (1.2a)

λk+1 = λk − β(Axk+1 − b), (1.2b)

where λ is the Lagrange multiplier and β is a penalty parameter. ALM is a fundamental and
effective approach in optimization. In particular, it was shown by Rockafellar (1976) that
ALM is the proximal point algorithm (PPA) applied to the dual of (1.1).

At each iteration, the computation ofALMfor (1.2a) is dominated by solving the following
subproblem:

x := argmin{θ(x) + r

2
‖Ax − a‖2 |x ∈ X }, (1.3)

where r > 0, a ∈ �m . When the problem (1.3) has closed form or easily computable
solutions, the implementation of the ALM could be easy. However, in many application
cases, xk+1 in (1.3) cannot be computed directly. Here, we list two examples.

• Basis pursuit: The basis pursuit problem seeks to recover a sparse vector by finding
solutions to underdetermined linear systems. It can be formulated as follows:

min{‖x‖1 | Ax = b}, (1.4)

where A is a matrix, and b is a given vector. When use ALM to solve (1.4), one need to
solve the following minimization problem:

x := argmin{‖x‖1 + r

2
‖Ax − a‖2}, (1.5)

Note that the operator ‖ · ‖1 is non-smooth, thus it is not easy to obtain a solution.
• Matrix completion: The matrix completion problem consists of reconstructing an

unknown low-rank matrix from a given subset of observed entries. Mathematically, the
matrix completion problem is

min{‖X‖∗ | AX = b}, (1.6)

where ‖ · ‖∗ denotes the nuclear norm of a matrix and A is a linear mapping. When use
ALM to solve (1.6), one need to solve the following minimization problem:

X := argmin
{
‖X‖∗ + r

2
‖AX − �‖2F

}
, (1.7)

where � is a given matrix. The operator ‖ · ‖∗ is also non-smooth, thus it is not easy to
obtain a solution.

For both problems (1.5) and (1.7), no exact solutions can be obtained. To guarantee
the global convergence of ALM, a number of inner iterations are required to pursuit an
approximate solution subject to certain inexactness criteria. Consequently, the efficiency of
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ALM becomes entirely dependent upon the inner iterations. Interestingly, for the following
l1 + l2 problem

x := argmin
{
‖x‖1 + r

2
‖x − a‖2

}
, (1.8)

one can get the closed form solution directly by the soft thresholding operator given by

x = sgn(a)max

(

0; |a| − 1

r

)

, (1.9)

where all the operations are defined elementwise; for the following matrix problem

X := argmin
{
‖X‖∗ + r

2
‖X − �‖2F

}
, (1.10)

the closed form solution can also be easily obtained using the matrix shrinkage operator (see
Cai et al. 2010; Ma et al. 2011)

X = UDiag

(

max

(

σ − 1

r

)

, 0

)

V T (1.11)

where UDiag(σ )V T is the singular value decomposition of the matrix �.
Accordingly, it is interesting to discuss special strategies to utilize these special compu-

tational properties of the objective function. This motivates us to conduct our analysis by
assuming the proximal operator

x :=
(

I + 1

r
∂θ

)−1

(a) = argmin
{
θ(x) + r

2
‖x − a‖2 | x ∈ X

}
(1.12)

is easy to evaluate, where r has the same meaning as (1.3). The assumption associated with
the proximal operator is not restricted; details about this kind of assumption can be found in,
e.g., Cai et al. (2010) and Chambolle and Pock (2011).We refer the reader to Parikh and Boyd
(2014) for additional examples. Note that for the subproblem (1.2a) ofALM, at each iteration,
one need to evaluate the operator (βATA + ∂θ)−1(·), while for the subproblem (1.12), one
need to evaluate the operator (r I + ∂θ)−1(·). In numerical analysis, the condition number
ATA is usually larger than 1. When ATA is ill-conditioned, i.e., the condition number is too
large (this is usually encountered in image processing); the subproblem (1.2a) is less stable
than (1.12). As we know that a smaller condition number leads to a faster convergence, thus
the subproblem (1.12) is easier than (1.2a) when ATA is ill-conditioned. See Cai et al. (2009)
for some numerical demonstrations on these two subproblems. Furthermore, as we already
demonstrated for some applications, (r I + ∂θ)−1(·) can admit a closed form solution, while
(βATA + ∂θ)−1(·) cannot, and need inner iterations to solve. Altogether, the assumption
(1.12) is useful for the algorithmic implementation.

He et al. (2013) developed a customized proximal point algorithm for (1.1). They showed
that by choosing a suitable proximal regularization parameter, the difficulty of solving the
subproblems in ALM becomes alleviated, see also in Gu et al. (2014) and You et al. (2013).
In Yang and Yuan (2013), a linearized augmented Lagrangian multiplier method (LALM)
has been proposed. The key ideal of LALM is to linearize the quadratic penalties in ALM by
adding a proximal term 1

2‖x−x‖2G withG = r I−βATA.With this choice, the x-subproblem
reduces to estimating the proximal operator of θ(·) and, thus, it is suitable to solve the nuclear
norm minimization problem. This technique is also used in Zhang et al. (2010), Ma (2016)
and Li and Yuan (2015) for tackling imaging processing problems. Note that the problem
(1.1) can be reformulated as a saddle point algorithm, then could be solved by primal-dual
hybrid gradient method (PDHG) as discussed in Chambolle and Pock (2011) and He and
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Yuan (2012). Alternatively, one can regularize (1.1) as a structured convex problem, thus the
proximal gradient method (Beck and Teboulle 2009; Cai et al. 2010; Daubechies et al. 2004),
alternating direction methods (Glowinski and Le Tallec 1989; Ma 2016; Li and Yuan 2015),
and Bregman methods (Goldstein and Osher 2009; Ma et al. 2011; Huang et al. 2013; Yin
et al. 2008) are applicable. We refer to Esser (2009) for the connection of these methods.

In this paper, we focus on designing implementable methods for solving the problem
(1.1) under the same assumption. Differ from the PPA in He et al. (2013), we propose a
class of PPA. The proposed methods can be applied to solve concrete models with only
requiring evaluation of the proximal operator. Moreover, we show that the PPA proposed in
He et al. (2013), LALM (Yang and Yuan 2013) and the Bregman Operator Splitting (BOS)
proposed in Zhang et al. (2010) are all special cases of our algorithmic framework. Our
study can provide a better understanding of the customized version of PPA. The paper is
organized as follows. In Sect. 2, we review some preliminaries. In Sect. 3, we present the
newmethod and discuss its connection with other existing methods. Sections 4 and 5 analyze
its convergence and convergence rate. In Sect. 6, numerical experiments are conducted to
illustrate the performances. Finally, we conclude the paper in Sect. 7.

2 Preliminaries

2.1 Variational characterization of (1.1)

In this section, we characterize the optimal condition of (1.1) as a variational reformulation,
which is easier to expose our motivation.

The Lagrangian function associated with (1.1) is

L(x, y, λ) = θ(x) − λT(Ax − b), (2.1)

where λ ∈ �m is a Lagrangian multiplier. Solving (1.1) is equivalent to finding a saddle point
of L. Let w∗ = (x∗, λ∗) be a saddle point of L (2.1). We have

Lλ∈�m (x∗, λ) ≤ L(x∗, λ∗) ≤ Lx∈X (x, λ∗). (2.2)

Then, finding w∗ amounts to solve the following mixed variational inequality:

θ(x) − θ(x∗) + (w − w∗)TF(w∗) ≥ 0, ∀w ∈ �, (2.3a)

with

w :=
(
x
λ

)

, F(w) :=
( −ATλ

Ax − b

)

, (2.3b)

and
� = X × �m . (2.3c)

Here, we denote (2.3a–2.3c) by VI(�, F).
Note that the mapping F(·) is said to be monotone with respect to � if

(F(w) − F(w′))T(w − w′) ≥ 0, ∀w,w′ ∈ �. (2.4)

Consequently, it can be easily verified that F(w) (2.3b) is monotone. Under the aforemen-
tioned nonempty assumption on the solution set of (1.1), the solution set ofVI(�, F), denoted
by �∗, is also nonempty.
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2.2 Proximal point algorithmic framework

In this subsection, we briefly review the generalized proximal point algorithm (PPA) for
solving VI(�, F) (2.3).

PPA which was initiated byMartinet (1970) and subsequently generalized by Rockafellar
(1976) plays a fundamental role in optimization. For given wk ∈ �, PPA generates the new
iterate via

θ(x ′) − θ(xk+1) + (w′ − wk+1)T(F(wk+1) + G(wk+1 − wk)) ≥ 0, ∀w′ ∈ �, (2.5)

where G ∈ �(n+m)×(n+m) is a positive definite matrix, playing the role of proximal regular-
ization. The case of the classical PPA corresponds to taking G = β · I , where β > 0 and I
is the identity matrix. This simplest choice of G regularizes the proximal terms wk+1 − wk

in the uniform way. Although the classical PPA can be used to solve many convex problems,
it may encounter unbearable difficulty of computing the subproblem in practice. In fact, the
resulting subproblem is, in many cases, as hard as the original problem. To overcome this
drawback, some customized PPA schemes with metric proximal regularization are proposed
in the literatures, see, e.g., He et al. (2013, 2016), Gu et al. (2014), Han et al. (2014) and
He (2015). These customized PPAs choose G in accordance with the separable structures
of their VI reformulations for various problems. As a result, the reduced subproblems are
considerably easier compared to the classical PPA.

3 Algorithm

In this section, we describe our customized PPA for solving (1.1), and then extend to the
case of inequality constraints in Sect. 3.3. To better differentiate our contributions, we make
explicit comparisons of our customized PPA with the PPA proposed in He et al. (2013) and
Gu et al. (2014), the linearized ALM proposed in Yang and Yuan (2013) and the Bregman
operator splitting (BOS) method proposed in Zhang et al. (2010).

3.1 Customized PPA

Recall that the main computational difficulty of the ALM lies in the fact that the evaluation of
(1.3) is not necessarily easy to compute. For PPA scheme, if we choose a suitable proximal
regularization matrix G to simplify the x-subproblem by reducing it to a evaluation of the
proximal operator of θ(x), then the encountered difficulty would be particularly alleviated
under our assumption (1.12). Here, we judiciously choose G as

G =
(
r I + 1

s (t
2 − 1)ATA t AT

t A s I

)

. (3.1)

Obviously, to ensure the positive definite of G, we need to impose restrictions on the para-
meters. Here, we restrict r > 0, s > 0, rs > ‖ATA‖ and take t an arbitrary real scalar,
respectively.

To get the scheme of our customized PPA, substitute G (3.1) into PPA (2.5), we get

∀w′ ∈ �, θ(x ′) − θ(xk+1) +
(
x ′ − xk+1

λ′ − λk+1

)T {(−ATλk+1

Axk+1 − b

)

+
(
r I + 1

s (t
2 − 1)ATA t AT

t A s I

) (
xk+1 − xk

λk+1 − λk

)}

≥ 0.

(3.2)
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Note that the above VI is equivalent to

Axk+1 − b + t A(xk+1 − xk) + s(λk+1 − λk) = 0, (3.3)

and

xk+1 ∈ X , θ(x ′) − θ(xk+1)

+ (x ′ − xk+1)T
{

−ATλk+1+
(

r I+ 1

s
(t2 − 1)ATA

)

(xk+1 − xk)+t AT(λk+1 − λk)

}

≥0, ∀x ′ ∈X .

(3.4)

From (3.3), we obtain

λk+1 = λk − 1

s
((1 + t)Axk+1 − t Axk − b), (3.5)

The x-subproblem (3.4) amounts to solving the following minimization:

xk+1 = argmin
x∈X

{

θ(x) + r

2
‖x − xk − 1

r
AT

(

λk − 1

s
(1 − t)(Axk − b)

)

‖2
}

. (3.6)

Combining (3.5) and (3.6), the customized PPA iterates as follows.

Algorithm 1: The customized PPA for (1.1)

Input: Choose a scalar t ∈ (−∞,+∞) and let the parameters r > 0, s > 0 satisfy
the condition rs > ‖ATA‖.
Initialization: (x0, λ0) ∈ �.

Iteration Step:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = argmin
x∈X{θ(x) + r

2
‖x − xk − 1

r
AT(λk − 1

s
(1 − t)(Axk − b))‖2},

(3.7a)

λk+1 = λk − 1

s
((1 + t)Axk+1 − t Axk − b). (3.7b)

Remark 1 Notice that the x-subproblem of the algorithm amounts to evaluating the resolvent
operator of θ(x). Due to the assumption (1.12), such a problem is well solved. This is a
computational advantage over ALM.

Remark 2 When the condition rs > ‖ATA‖ holds, the matrix G is positive definite for
every specified t ∈ (−∞,+∞). Then, with different choices of t , a class of specific PPA
for solving (1.1) is proposed.

3.2 Connections with existing methods

Recently, several relevant algorithms have been proposed for solving (1.1). We present some
of them here and show their connection to Algorithm 1.

3.2.1 The linearized augmented Lagrangian method

In Yang and Yuan (2013), the authors proposed a linearized augmented Lagrangian method
(LALM) for the nuclear norm minimization problem. The main idea of LALM is to linearize
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the x-subproblem in ALM. By taking one proximal gradient step to approximate the term
β
2 ‖Ax − b − 1

β
λk‖2 at xk , one obtains

β

2

∥
∥
∥
∥Ax − b − 1

β
λk

∥
∥
∥
∥

2

≈ β

2
‖Axk − b − 1

β
λk‖2 + (x − xk)Tgk + r

2
‖x − xk‖2. (3.8)

where gk = βAT(Axk − b− 1
β
λk) is the gradient of the quadratic term β

2 ‖Ax − b− 1
β
λk‖2.

Substitute (3.8) into (1.2a) and make simple manipulation, the LALM iterates as follows:
{
xk+1 = argminx∈X {θ(x) + r

2‖x − xk − 1
r A

T(λk − β(Axk − b))‖2},
λk+1 = λk − β(Axk+1 − b).

(3.9)

It is easy to check that the LALM takes a formof our customized PPAwith t = 0, β = 1/s.

3.2.2 The Bregman Operator Splitting algorithm

In Zhang et al. (2010), A Bregman operator splitting (BOS) is proposed for solving nonlocal
TV denoising problems. BOS can be interpreted as an inexact Uzawamethod (Glowinski and
Le Tallec 1989) applied to the augmented Lagrangian function associated with the original
problem (Esser 2009). The main idea of BOS is to adding an additional quadratic proximal
term 1

2‖x−xk‖2
r I−βATA

to the x-subproblem in ALM, so that the term ‖Ax‖ can be canceled
out. More precisely, let r > β‖ATA‖. Then, the x-subproblem is

xk+1 = argmin
x∈X

{

θ(x) + β

2

∥
∥
∥
∥Ax − b − 1

β
λk

∥
∥
∥
∥

2

+ 1

2
‖x − xk‖2r I−βATA

}

. (3.10)

Rewriting the above term yields

xk+1 = argmin
x∈X

{

θ(x) + r

2

∥
∥
∥
∥x − xk − 1

r
AT(λk − β(Axk − b))

∥
∥
∥
∥

2
}

. (3.11)

Now, it can easily seen that the linearized ALM is equivalent to BOS with a different
motivation. As a result, BOS also takes the form of our customized PPAwith t = 0, β = 1/s.

3.2.3 The customized proximal point algorithm

He et al. (2013) proposed a customized proximal point algorithm to exploit the simplicity in
(1.12). The authors suggested to choose the regularization matrix as:

G1 =
(

r I −AT

−A s I

)

. (3.12)

where r > 0, s > 0 and rs > ‖ATA‖. With this customized choice of G, the resulting PPA
scheme (2.5) can be written as:

{
λk+1 = λk − 1

s (Ax
k − b),

xk+1 = argminx∈X
{
θ(x) + r

2

∥
∥x − xk − 1

r A
T(2λk+1 − λk)

∥
∥2

}
.

(3.13)

Note that x-subproblem amounts to evaluating the proximal operator of θ(x). Therefore,
the PPA scheme enjoys easily implementable feature based on the assumption (1.12).
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The update order of (3.13) is λ → x and, thus, it is an dual-primal algorithm (denoted by
DP-PPA). Motivated by He et al. (2013), the authors in Gu et al. (2014) also suggested to
choose the regularization matrix:

G2 =
(
r I AT

A s I

)

, (3.14)

where r > 0, s > 0 and rs > ‖ATA‖. With this customized choice, the resulting PPA
scheme (2.5) can be written as:

{
xk+1 = argminx∈X {θ(x) + r

2‖x − xk − 1
r A

Tλk‖2},
λk+1 = λk − 1

s (A(2xk+1 − xk) − b),
(3.15)

Compared to the iterative schemes of (3.13), (3.15) iterates in a primal-dual order (denoted
by PD-PPA). Based on the assumption (1.12), the PPA scheme (3.15) is also easily imple-
mentable. We refer to Li et al. (2015) for its multi-block case.

Obviously, we can easily see that the two PPAs are special cases of our customized PPA
with t = −1, t = 1, respectively.

3.3 Extension

We now further extend our proposed algorithm to solve the following convex problem with
inequality constraints.

min{θ(x) | Ax ≥ b, x ∈ X }. (3.16)

Similarly, the optimality conditions of (3.16) can be formulated as the following VI:

θ(x) − θ(x∗) + (w − w∗)TF(w∗) ≥ 0, ∀w ∈ �, (3.17a)

with

w :=
(
x
λ

)

, F(w) :=
( −ATλ

Ax − b

)

, (3.17b)

and
� = X × �m+. (3.17c)

Let P� denote the projection onto �, the iterative scheme for (3.16) can directly extend as
follows.

Algorithm 2: The customized PPA for (3.16)

Input: Choose scalars t ∈ (−∞,+∞) and r > 0, s > 0 satisfying the condition
rs > ‖ATA‖.
Initialization: (x0, λ0) ∈ �.

Iteration Step:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = argmin
x∈X{θ(x) + r

2
‖x − xk − 1

r
AT(λk − 1

s
(1 − t)(Axk − b))‖2},

(3.18a)

λk+1 = P�m+{λk − 1

s
((1 + t)Axk+1 − t Axk − b)}. (3.18b)
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4 Global convergence

In this section, we establish the convergence of Algorithms 1 and 2. To this end, we first
prove the following lemma.

Lemma 4.1 Suppose the condition

r > 0, s > 0, rs > ‖ATA‖ (4.1)

holds. Then, for any w∗ = (x∗, λ∗)T ∈ �∗, the sequence wk+1 = (xk+1, λk+1)T generated
by Algorithm 1 (Algorithm 2) satisfies the following inequality:

‖wk+1 − w∗‖2G ≤ ‖wk − w∗‖2G − ‖wk − wk+1‖2G , (4.2)

where the norm ‖ · ‖2G is defined as ‖w‖2G = wTGw.

Proof Note that w∗ ∈ �, it follows from (2.5) that

θ(x∗) − θ(xk+1) + (w∗ − wk+1)T(F(wk+1) + G(wk+1 − wk)) ≥ 0. (4.3)

It can be further written as:

(wk+1 − w∗)TG(wk − wk+1) ≥ θ(xk+1) − θ(x∗) + (wk+1 − w∗)TF(wk+1). (4.4)

On the other hand, using (2.4), and w∗ ∈ �∗, we have

θ(xk+1)− θ(x∗)+ (wk+1 −w∗)TF(wk+1) ≥ θ(xk+1)− θ(x∗)+ (wk+1 −w∗)TF(w∗) ≥ 0.
(4.5)

Thus, we get
(wk+1 − w∗)TG(wk − wk+1) ≥ 0. (4.6)

It follows from the above inequality that

‖wk − w∗‖2G = ‖(wk+1 − w∗) + (wk − wk+1)‖2G
≥ ‖wk+1 − w∗‖2G + ‖wk − wk+1‖2G .

(4.7)

Consequently, we obtain

‖wk+1 − w∗‖2G ≤ ‖wk − w∗‖2G − ‖wk − wk+1‖2G . (4.8)

This completes the proof. �

Theorem 4.2 Suppose the condition

r > 0, s > 0, rs > ‖ATA‖ (4.9)

holds. Then, the sequence {wk} generated by Algorithm 1 (Algorithm 2) converges to a
solution point in �∗ globally.

Proof Lemma 4.1 means that the generated iterative sequence {wk} is Fejér monotone with
respective to the solution set. The proof follows immediately from the results in (Bauschke
and Combettes 2011, Chapt. 5). �
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5 A worst-case O(1/ t) convergence rate

In this section, we establish the worst-case O(1/t) convergence rate in a nonergodic sense
for Algorithms 1 and 2, where t denotes the iteration counter. We first prove the following
lemma.

Lemma 5.1 Let {wk = (xk, λk)} be the sequence generated by Algorithm 1 (Algorithm 2).
Then, we have

(wk+1 − wk+2)TG{(wk − wk+1) − (wk+1 − wk+2)} ≥ 0, (5.1)

where the matrix G is defined in (3.1).

Proof Set w = wk+2 in (2.5), we have

θ(xk+2) − θ(xk+1) + (wk+2 − wk+1)TF(wk+1) ≥ (wk+2 − wk+1)TG(wk − wk+1). (5.2)

Note that (2.5) is also true for k := k + 2 and thus

θ(x)−θ(xk+2)+(w−wk+2)TF(wk+2) ≥ (w−wk+2)TG(wk+1−wk+2), ∀w ∈ �. (5.3)

Set w = wk+1 in the above inequality, we obtain

θ(xk+1)−θ(xk+2)+(wk+1−wk+2)TF(wk+2) ≥ (wk+1−wk+2)TG(wk+1−wk+2). (5.4)

Adding (5.2) and (5.4) and using the monotonicity of F , we have

(wk+1 − wk+2)TG{(wk − wk+1) − (wk+1 − wk+2)} ≥ 0. (5.5)

The assertion (5.1) is proved. �
Lemma 5.2 Let {wk = (xk, λk)} be the sequence generated by Algorithm 1 (Algorithm 2).
Then, we have

(wk−wk+1)TG{(wk−wk+1)−(wk+1−wk+2)} ≥ ‖(wk−wk+1)−(wk+1−wk+2)‖2G , (5.6)

where the matrix G is defined in (3.1).

Proof Adding ‖(wk − wk+1) − (wk+1 − wk+2)‖2G to both sides of (5.1), we get

(wk−wk+1)TG{(wk−wk+1)−(wk+1−wk+2)} ≥ ‖(wk−wk+1)−(wk+1−wk+2)‖2G . (5.7)

The lemma is proved. �
Now, we are ready to show that the sequence {‖wk − wk+1‖2G} is non-increasing.
Theorem 5.3 Let {wk = (xk, λk)} be the sequence generated by Algorithm 1 (Algorithm 2).
Then, we have

‖wk+1 − wk+2‖2G ≤ ‖wk − wk+1‖2G , (5.8)

where the matrix G is defined in (3.1).

Proof First, applying the identity

‖a‖2G − ‖b‖2G = 2aTG(a − b) − ‖a − b‖2G , (5.9)
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with a = wk − wk+1 and b = wk+1 − wk+2, we get

‖wk − wk+1‖2G − ‖wk+1 − wk+2‖2G
= 2(wk − wk+1)TG

{
(wk − wk+1) − (wk+1 − wk+2)

}

−‖(wk − wk+1) − (wk+1 − wk+2)‖2G . (5.10)

Inserting (5.6) into the first term of the right-hand side of the last equality, we obtain

‖wk − wk+1‖2G − ‖wk+1 − wk+2‖2G ≥ ‖(wk − wk+1) − (wk+1 − wk+2)‖2G . (5.11)

Now, according to (5.11), we have

‖wk+1 − wk+2‖2G ≤ ‖wk − wk+1‖2G . (5.12)

That is, the monotonicity of the sequence ‖wk − wk+1‖2G is proved.
Then, we can prove a worst-case O(1/t) convergence rate in a nonergodic sense for

Algorithm 1 (Algorithm 2). We summarize the result in the following theorem.

Theorem 5.4 Let {wk = (xk, λk)} be the sequence generated by Algorithm 1 (Algorithm 2).
Then, we have

‖wt − wt+1‖2G ≤ 1

t + 1
‖w0 − w∗‖2G , ∀w∗ ∈ �∗, (5.13)

where the matrix G is defined in (3.1).

Proof First, it follows from Lemma 4.1 that
∞∑

t=0

‖wt − wt+1‖2G ≤ ‖w0 − w∗‖2G , ∀w∗ ∈ �∗. (5.14)

According to Theorem 5.3, the sequence {‖wt − wt+1‖2G} is monotonically non-increasing.
Therefore, we have

(t + 1)‖wt − wt+1‖2G ≤
t∑

i=0

‖wi − wi+1‖2G . (5.15)

The assertion (5.13) follows from (5.14) and (5.15) immediately. �
Notice that �∗ is convex and closed. Let d := inf{‖w − w∗‖G | w∗ ∈ �∗}. Then, for
any given ε > 0, Theorem 5.4 shows that the PPA scheme (3.7) needs at most �d2/ε�
iterations to ensure that ‖wt − wt+1‖2G ≤ ε. Recall that wk+1 is a solution of VI(�, F) if
‖wk − wk+1‖2G = 0. A worst-case O(1/t) convergence rate in a nonergodic sense is thus
established for the PPA in Theorem 5.4. Note that in the paper (Gu et al. 2014), only worst-
case O(1/t) convergence rate in ergodic sense for the PPA schemes (3.13) and (3.15) is
established. In general, a worst-case nonergodic convergence rate is stronger than its ergodic
counterpart. Thus, our analysis provides an important supplement of the convergence result
for the PPA schemes.

6 Numerical experiments

In this section, we evaluate the performance of the customized PPA for solving image recon-
struction problem and matrix completion problem, and report some preliminary numerical
results. The codes of our algorithm were written entirely in Matlab 2015b, and they were
executed on a laptop with an Intel quad-core i7 2.4 GHz CPU with 8 GB of RAM.
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6.1 Image reconstruction

Note that our main motivation of designing customized PPA is to alleviate the x-subproblem
in ALM (1.2) under the simplicity assumption (1.12) holds, here we first focus on comparing
the customized PPA with the direct application of ALM by solving the wavelet-based image
processing problem.

We first briefly review the background of the wavelet-based image processing. Let x ∈ �l

represent a digital image with l = l1 × l2, and W ∈ �l×n be a wavelet dictionary, i.e., each
column ofW be the elements of a wavelet frame. The image x is usually sparse under wavelet
transform W , thus we have x = Wx with x being a sparse vector, see Starck et al. (2010)
for more details. In image reconstruction, one tries to reconstruct the clean image x based on
some observation b, then the model can be formulated as:

min{‖x‖1 | BWx = b}, (6.1)

where B ∈ �m×l is a diagonalmatrixwhose diagonal elements are either 0 or 1. The locations
of 0 and 1 in B correspond to missing and known pixels of the image. The objective function
‖x‖1 is to deduce a sparse representation under the wavelet dictionary. The model (6.1) is a
special case of the abstract model (1.1), thus the proposed method is applicable.

In our experiments, we adopt the reflective boundary condition for the image reconstruc-
tion problems. Under this circumstance, the mask B can be expressed as B = SH , where
S ∈ �m×l is a downsampling matrix that satisfies ‖S‖ = 1 and H ∈ �l×l is a blurry matrix
that can be diagonalized by the discrete consine transform (DCT). Note that the dictionary
W has the property WTW = I , we have ‖ATA‖ = ‖WTBTWB‖ = 1 (where A := BW )
(He et al. 2013). Therefore, the condition of the parameters rs > ‖ATA‖ in Algorithm 1
reduces to rs > 1 in our experiments.

We test the 256×256 images of Lena.jpg andHouse.png for the image inpainting problem.
The dictionary W is chosen as the inverse discrete Haar wavelet transform with a level of 6.
For all the cases, we create the noisy images using the out-of focus kernel with a radius of 7
and the masking operator S to hide 50% pixels. The positions of missing pixels are setting
randomly. For the implementation, we take r = 0.6, s = 1.02/r to implement Algorithm 1
and β = 10 and λ0 = 0 for ALM (1.2). The initial point is set to be (x0, λ0) = (WT(b), 0).
We refer the reader to He and Yuan (2012); He et al. (2013) for more implementation details.
For solving the concrete application (6.1) by ALM, since the x-subproblem does not have
closed form solutions, we need to employ certain algorithms to solve it iteratively.We choose
the popular solvers “ISTA” in Daubechies et al. (2004) and “FISTA” in Beck and Teboulle
(2009) for this purpose, and they both allow for a maximal number of 10 iterations for the
inner iteration. The ALM embedded by ISTA and FISTA is denoted by “ALM-ISTA” and
“ALM-FISTA” , respectively. When measuring the quality of the restored images, we use the
value of signal-to-noise ratio (SNR) in decibel (dB)

SNR := 20 log10
‖x‖

‖x̄ − x‖ ,

where x̄ is a image restored and x represents the clean image.
The images restored by Algorithm 1 are shown in Fig. 1 and we also plot the evolutions

of SNR with respect to computing time for Algorithm 1 (t = −1, t = 0), ALM-ISTA
and ALM-FISTA in Fig. 2. It shows clearly that the Algorithm 1 with t = −1 and t = 0
outperforms the ALM in terms of the improvement in signal-to-noise ratio. This is mainly
because of the simple evaluation of x-subproblem.
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original degraded restored (t = −1) restored (t = 0)

Fig. 1 The original images (first column), the degraded images (second column), the restored images by PPA
t = −1 (third column) and the restored images by PPA t = 0 (forth column)
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Fig. 2 Evolutions of SNRs with respect to CPU time (s). Left Lena; right house

6.2 Matrix completion problem

The matrix completion problem consists of reconstructing an unknown low rank matrix from
a given subset of observed entries. Specifically, let M ∈ �m×n be a low rank matrix, � be a
subset of the indices of entries {1, . . . , l} × {1, . . . , n}, the convex model is

min{‖X‖∗ | X� = M�}, (6.2)

where ‖ · ‖∗ denotes the nuclear norm of a matrix, and the constraint means that Xi j =
Mi j , ∀{i j} ∈ �. Note that it can also been viewed as a projection equation P�(X) =
P�(M), where P�(·) denotes the orthogonal projection onto �. i.e.,

123



A class of customized proximal point algorithms for… 909

-10 -8 -6 -4 -2 0 2 4 6 8 10

The value of t

40

45

50

55

60

65

70

75

80

85

90
Ite

ra
tio

ns

n = 200
n = 400
n = 600
n = 800

-10 -8 -6 -4 -2 0 2 4 6 8 10

Thevalue of t

0

5

10

15

20

25

30

C
P

U
   

tim
e 

(s
)

n = 200
n = 400
n = 600
n = 800

Fig. 3 Performance of Algorithm 1 on four different dimension n. Left the number of iterations with respect
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P� : Xi, j �→
{
Xi, j , if {i, j} ∈ �,

0, if {i, j} /∈ �,
(6.3)

thus, we have ‖ATA‖ = 1.
Applying our customized PPA to MCP, we obtain the following updates:

{
Xk+1 = argmin

{
‖X‖∗ + r

2

∥
∥X − Xk − 1

r

(
�k − 1

s (1 − t)(Xk
� − M�)

)∥
∥2
F

}
,

�k+1 = �k − 1
s ((1 + t)Xk+1

� − t · Xk
� − M�).

(6.4)

The first term of the above algorithm has a closed form solution that is given by

Xk+1 = Shrink

{

Xk + 1

r

(

�k − 1

s
(1 − t)(Xk

� − M�)

)

,
1

r

}

(6.5)

where the shrinkage operator is defined by

Shrink(Z , μ) = Udiag(max{σ − μ, 0})V T, (6.6)

where Udiag(σ )V T is the SVD decomposition of Z , see Cai et al. (2010) for details.
In our experiment, we generate the rank-r matrix M as a product MLMT

R , where ML and
MR are independent n × r matrices who have i.i.d. Gaussian entries. The set of observations
� is sampled uniformly at random among all sets of cardinality |�|. A useful quantity for
reference is dr = r(2m − r), which is the number of the degrees of freedom in a non-
symmetric matrix of rank-r and the oversampling factor |�|/dr is defined as the ratio of the
number of samples to the degrees of freedom.

For all tests, the rank-r is set to be 10 and the oversampling factor |�|/dr is 5, and the
penalty parameters is set to be r = 0.005, s = 1.01/r . The primal variable X0 and the dual
variable �0 were all initialized as zeros(n), The stopping criteria is set to be

‖Xk
� − M�‖F
‖M�‖F ≤ 10−4. (6.7)

To expose the behaviors of Algorithm 1 with different values of the scalar t , we plot the
number of iterations and runtime in seconds to solve Problem (6.2) for different values of
t ∈ [−10, 10] in Fig. 3 . We observe that Algorithm 1 exhibits numerical stability when t is
getting changed. Thus, Algorithm 1 works well for a wide range of t , not only in the special
cases ±1, 0.
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7 Conclusions

In this paper, we proposed a class of customized proximal point algorithms for solving
convex programming problemwith linear constraints. Differ from the augmented Lagrangian
multiplier method, the new methods can fully exploit the special structures and properties of
some concretemodels. In this context, they are very suitable for solving large-scale problems.
We show that the PPA (He et al. 2013; Gu et al. 2014), LALM (Yang andYuan 2013) andBOS
(Zhang et al. 2010) are three special cases of our algorithms with t = ±1, 0, respectively.
The global convergence and a worst-case O(1/t) convergence rate in nonergodic sense
for this series of algorithms are proved in a uniform framework. Numerical performance
demonstrated that the algorithms with the scalar t in a wide range also work well, and are
competitive with the three special cases.
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