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Abstract This paper addresses minimizing Tardy/Lost penalties with common due dates
on a single machine. According to this penalty criterion, if tardiness of a job exceeds a
predefined value, the jobwill be lost and penalized by afixed value. The problem is formulated
as an integer programming model, and a heuristic algorithm is constructed. Then, using
the proposed dominance rules and lower bounds, we develop two dynamic programming
algorithms as well as a branch and bound. Experimental results show that the heuristic
algorithm has an average optimality gap less than 2 % in all problem sizes. Instances up to
250 jobs with low variety of process times are optimally solved and for high process time
varieties, the algorithms solved all instances up to 75 jobs.

Keywords Scheduling · Tardy/Lost penalty · Integer programming · Heuristic algorithm ·
Branch-and-bound algorithm · Dynamic programming

Mathematics Subject Classification 90B35 · 90C11 · 90C39 · 90C57

1 Introduction

In this study, we analyze minimizing total Tardy/Lost penalties on a single machine about
two common due dates. Every job i (1 ≤ i ≤ n) has a processing time, pi , and two common
due dates, namely d1 and d2. In the case that a job finishes before the first due date, d1, no
penalty is assigned; if the completion time is between d1 and d2, the job will be penalized
by a tardiness weight, wi ; and finally, the job will be lost if it is completed after the second
due date and a fixed amount of penalty, si , will be incurred. We can formulate the Tardy/Lost
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Fig. 1 Tardy/Lost penalty
function with common due dates

objective function as in Eq. (1), where Ci is the completion time of job i. It is assumed that
si > wi (d2 − d1)whichmeans penalty for losing a job is greater than the maximum possible
tardiness penalty for the same job, and this difference is denoted by parameter ui .

Zi =
⎧
⎨

⎩

0 if Ci ≤ d1
wi (Ci − d1) if d1 < Ci ≤ d2
si = wi (d2 − d1) + ui if Ci > d2

(1)

Figure 1 shows the Tardy/Lost penalty function for job i based on its completion time. The
problem is denoted by 1|d1i = d1, d2i = d2| ∑i∈R1

wi Ti + ∑
i∈R2

si , where R1 and R2

indicate the sets of tardy and lost jobs, respectively. For the sake of brevity, we use 1|d1i =
d1, d2i = d2|TL in the rest of this paper, where TL indicates the Tardy/Lost performance
criteria.

To determine time complexity of this problem, we can set d2 ≥ ∑n
i=1 pi and simplify

it to the problem of minimizing weighted tardiness with common due date. Yuan (1992)
showed that minimizing weighed tardiness with common due date on a single machine is
ordinary NP-hard. According to this, the problem considered in this study is at least NP-hard
in ordinary sense.

Objective functions of real-life manufacturing problems are often much more complex
than the well-known scheduling performance measures. Depending on the type of con-
tractual penalties and expected goodwill of future revenue losses incurred, many types of
non-linear tardiness penalty functions may arise. Tardy/Lost measure combines the futures
of two parameters; weighted tardiness and weighted number of tardy jobs. On the other
hand, the Tardy/Lost performance measure can be considered as a special case for schedul-
ing problems with order acceptance assumption. Here, the objective is minimizing weighted
tardiness on a single machine and common due date, where the rejection cost for a job i
can be defined as (d2 − d1)wi . Order acceptance assumption has been widely investigated
in the literature. Engels and Karger (2003) investigated the problem of minimizing weighted
completion times and rejection penalties and developed some approximation algorithms. The
survey papers by Slotnick (2011) and Shabtay et al. (2013) study a number of scheduling
problems with order acceptance.

From a practical point of view, the Tardy/Lost penalty function is applicable in delivery
contracts, most of which are arranged based on two due dates. If an order is early, then no
penalty is considered; the order will be penalized if its delivery time exceeds the first due
date. The penalty increases in proportion to the delivery time until the second due date is
reached. If the delivery happens later than the second due date, we will lose the order and
a maximum fixed penalty occurs. Other applications of Tardy/Lost measure are perishable
goods and food industries.
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Table 1 Penalty functions derived from TL measure

Measure Penalty Function TL parameter adjustment

Weighted completion
time

Zi = wi Ci d1 = 0 and d2 = ∞

Weighted tardiness Zi =
{
0 if Ci ≤ d1
wi (Ci − d1) if Ci > d1

d2 = ∞

Weighted number
of tardy jobs

Zi =
{
0 if Ci ≤ d1
wi if Ci > d1

d1 = d2

Late work Zi =
⎧
⎨

⎩

0 if Ci ≤ d1
Ci − d1 if d1 < Ci ≤ d2
pi if Ci > d2

wi = 1 and d2 = d1 + pi and ui = 0

Weighted tardiness
with order
acceptance

Zi =
⎧
⎨

⎩

0 if Ci ≤ d1
wi (Ci − d1) if d1 < Ci ≤ d2
Ri if Ci > d2

si = Ri = rejection cost

d2 = rejection point for tardiness penalty

Minimizingweighted tardiness is a special case of Tardy/Lost performancemeasurewhich
has been widely investigated in scheduling area. The problem 1|| ∑wi Ti is NP-hard in a
strong sense (Lenstra et al. 1977) and is optimally solvable in pseudo-polynomial time for
a fixed number of distinct due dates (Kolliopoulos and Steiner 2006). Cheng et al. (2005)
presented an O(n2) time approximation algorithm for the problem as well as a pseudo-
polynomial algorithm when all job due dates have equal slacks. Kolliopoulos and Steiner
(2006) considered the problem with a fixed number of due dates and designed a pseudo-
polynomial algorithm. Karakostas et al. (2009) studied the same problem and designed a
dynamic programming algorithm, as well as an approximation scheme. Koulamas (2010)
considered the latest theoretical developments for problem 1|| ∑ Ti and reviewed some
exact algorithms, fully polynomial time approximation schemes, heuristic algorithms, special
cases, and generalizations of the problem.

In a special case of problem 1|| ∑ wi Ti , where due date is common for all jobs, Lawler and
Moore (1969) provided a pseudo-polynomial dynamic programming algorithm in O(n2d)
time and Fathi and Nuttle (1990) developed a 2-approximation algorithm in O(n2) time.
Kellerer and Strusevich (2006) converted a dynamic programming algorithm to an FPTAS
of O(n6 logW/ε3) time complexity, whereW is the sum of tardiness weights; later, Kianfar
and Moslehi (2013) studied the same problem and developed a more effective FPTAS in
O(n3/ε) time.

According to Table 1, some of the most common performance measures in scheduling
literature are special cases for Tardy/Lost measure. The third column of this table describes
how the parameters of TL measure should be adjusted in each case.

Tardy/Lost performance measure is a kind of regular measure which is continuous and
non-decreasing in completion times of jobs. Detienne et al. (2012) studied a single-machine
problem, whose objective is to minimize a regular step total cost function and they proposed
an exact approach based on Lagrangian relaxation. Zhou and Cai (1997) examined two types
of regular performance measures, the total cost, and the maximum cost, with general cost
functions. In the paper by Shabtay (2008), two continuous and non-decreasing objective
functions are considered that include penalties due to earliness, tardiness, number of tardy
jobs, and due date assignments. The research by Ventura and Radhakrishnan (2003) was
focused on scheduling jobs with varying processing times and distinct due dates on a single
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machine. Carrasco et al. (2013) studied convex non-decreasing cost functions for single-
machine problems subject to precedence constraints. Colin and Quinino (2005) proposed
a pseudo-polynomial time algorithm to find a solution within some tolerance of optimality
for the same problem. The objective function considered by Baptiste and Pape (2005) was
minimizing a regular sum objective function

∑
i fi (Ci ) that corresponds to the cost of the

completion of job i at time Ci . They introduced lower bounds and dominance properties
for this problem and described a branch-and-bound procedure with constraint propagation.
Chandra et al. (2014) developed a binary branch and bound for single-machine problem of
minimizing the maximum scheduling cost that is non-decreasing with job completion time.

Pinedo (1995) indicates that, in practice, the penalty function associated with a scheduling
problem may follow from a function, in which early jobs are assigned no penalty and those
that are finished after their due dates are assigned a penalty that increases at a given rate.
Within the penalty function, the job reaches a point, where the penalty assignment changes
and increases at a much slower pace. The function identified by Pinedo (1995) is general;
however, twomore specific functions that react similarly are the deferral cost function (Lawler
1964) and the late work criterion.

Deferral cost functions have been studied by Kahlbacher (1993) who considered general
penalty functionsmonotonouswith respect to absolute lateness. He examined several specific
cases of the penalty function for situations, in which machine idle times are allowed or not
allowed. Federgruen and Mosheiov (1994) considered a class of single-machine scheduling
problems with a common due date and general earliness and tardiness penalties. In this study,
some polynomial greedy algorithms were proposed and for convex cost structures, they also
examined the worst-case ratio bound if the due date is non-restrictive. Baptiste and Sadykov
(2009) considered the objective of minimizing a piecewise linear function. They introduced
a new Mixed Integer Programming (MIP) model based on time interval decomposition.

The problem of late work minimization on a single machine, as a special case for
Tardy/Lost measure, has been addressed in many studies. Potts and VanWassenhove (1992b)
proposed a polynomial time algorithmbased on the similarity between tardiness and latework
parameters. In another study (Potts and Van Wassenhove 1992a), they developed a branch-
and-bound algorithm for the problem which formed a family of approximation algorithms
based on truncated enumeration. The results concerning late work are partially reviewed in
Chen et al. (1998) and Leung (2004), but Sterna (2011) addresses the first complete review
of the topic. Kethley and Alidaee (2002) modified the definition of the late work criterion
by introducing two due dates for each job, called due date and deadline. They called the
proposed performance criterion as “modified Total Weighted Late Work” which is a special
case for Tardy/Lost penalty function if we set ui = 0 in Eq. (1).

The main contribution of this research is introducing a new general penalty function,
namely Tardy/Lost, for scheduling problems. By adjusting parameters, Tardy/Lost can be
converted into some traditional penalty functions, such as weighted tardiness, tardiness with
order acceptance assumption, late work, and penalties applied in delivery contracts. From
solution point of view, this paper proposes both exact and heuristic methods for a novel prob-
lem, in which exact solutions outperform commercial software CPLEX 12 in test instances.

The rest of this paper is organized as follows. In Sects. 2 and 3, we propose a mathematical
model and a heuristic algorithm, respectively. Section 4 deals with some dominance rules
and lower bounds for problem 1|d1i = d1, d2i = d2|TL which later will be used in design-
ing dynamic programming and branch-and-bound algorithms of Sects. 5 and 6. In the next
section, we examine the performance of the proposed methods using experimental tests and
concluding remarks will be presented in Sect. 8.
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2 Mathematical model

To formulate a mixed integer programming model for problem 1|d1i = d1, d2i = d2|TL, jobs
are partitioned into four groups of early, tardy, lost, and straddling. In each optimal solution,
all tardy jobs except the first one must be sorted by WSPT (Weighted Shortest Processing
Time) ordering. The first tardy job in any optimal schedule may not belong to WSPT, and
we call it straddling job. The straddling job is started before or at due date d1 and is finished
after d1. If the straddling job α is finished after d2, no job belongs to the set of straddling and
job α will be considered as lost. However, in the next sections of this paper, it is assumed that
there is exactly one straddling job in each schedule and the straddling job may be finished
after d2.

We renumber jobs according to WSPT ordering and define groups of early, tardy, lost,
and straddling jobs as groups 1–4, respectively. Decision variables used in this model are as
follows.

Zi is the amount of penalty related to job i .
Xi,k is the binary variable that takes value 1 if job i belongs to group k and otherwise is 0.
In the following, we present a mixed integer programming (MIP) model by Eqs. (2) to

(10).

Min Z =
n∑

i=1

Zi (2)

4∑

k=1

Xi,k = 1 ∀i = 1, 2, . . . , n (3)

n∑

i=1

Xi,4 ≤ 1 (4)

n∑

i=1

(
pi .Xi,1

) ≤ d1 (5)

n∑

i=1

(
pi .

(
Xi,1 + Xi,2 + Xi,4

)) ≤ d2 (6)

Zi + M1
(
1 − Xi,2

) ≥ wi

⎡

⎣
n∑

j=1

(
p j .

(
X j,1 + X j,4

)) +
∑

j≤i

(
p j .X j,2

) − d1

⎤

⎦ ∀i (7)

Zi + M2
(
1 − Xi,3

) ≥ si ∀i (8)

Zi + M3
(
1 − Xi,4

) ≥ wi

⎡

⎣
n∑

j=1

(
p j .X j,1

) + pi − d1

⎤

⎦ ∀i (9)

Xi,k ∈ {0, 1} ∀i = 1, . . . , n k = 1, . . . , 4. (10)

Equation (2) indicates the objective function as sum of penalties related to all jobs. Equa-
tion (3) assigns each job to one of the previously defined groups. and fromEq. (4). at most one
job can be straddling in each schedule. Relation (5) ensures that sum process times of early
jobs cannot exceed d1, while (6) restricts sum process times of early, tardy, and straddling
jobs to d2. Equations (7) to (9), respectively, calculate the penalties related to tardy, lost,
and straddling jobs. M1, M2, and M3 are big integers, and supposing, wmax, pmax, and smax
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Table 2 Parameters of jobs in
Example 1

Job i pi wi si

1 2 9 122

2 2 4 44

3 5 8 109

4 7 10 85

5 6 2 18

Fig. 2 Optimal sequence for
Example 1

1 4 3 2 5

0 2 9 14 16 22

1 = 13 2 = 21

represent the maximum values of tardiness weights, process times, and lost penalties, we can
define M1 = wmax (d2 − d1), M2 = smax, and M3 = wmax.pmax.

The above model is original and includes 5n variables as well as 4n + 3 constraints. The
number of variables and constraints is significantly small compared with typical models of
single-machine scheduling. The following example illustrates the solution of the mathemat-
ical model for a small instance.

Example 1 Suppose an instance of problem 1|d1i = d1, d2i = d2|TL with 5 jobs. Here,
d1 = 13 and d2 = 21, and other parameters are described in Table 2. The optimal sequence
(1, 4, 3, 2, 5) will be obtained using the above MIP model, where x1,1 = x2,2 = x3,4 =
x4,1 = x5,3 = 1 and other x’s are equal to zero. Figure 2 shows completion times of the jobs
in the optimal solution. In this solution, jobs 1 and 4 are early, job 3 is straddling, job 2 is
tardy, and job 5 is lost. The penalties related to jobs 1–5 are Z1 = Z4 = 0, Z3 = 8, Z2 = 12,
and Z5 = 18 resulting the total penalty Z = 38.

3 MTLR heuristic algorithm1

In this section, we propose a heuristic algorithm to find near optimal solutions for problem
1|d1i = d1, d2i = d2|TL. Define the ratio of lost penalty to processing time of a job as penalty
ratio. The algorithm tries to schedule lost jobs based on these ratios, and, then, schedules tardy
jobs, because lost penalties are greater than tardiness penalties and are considered first. In
this procedure, four schedules are built and the best one is selected as output of the algorithm.

This algorithm is composed of two phases, where lost jobs are scheduled in the first phase
and tardy jobs are scheduled in the second one. In each iteration of the first phase, a job with
minimum si/pi ratio is selected among the set of unscheduled jobs U and will be placed
into first idle position from the end of schedule. Moreover, if there exist some jobs able to
fill remaining time interval until d2, the algorithm schedules the one with minimum penalty
and saves the obtained secondary schedule, Ĝ1, besides primary schedule G1. Considering

1 Minimum Tardy/Lost Ratio.
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si/min(Ci − d2, pi ) instead of si/pi as ratio for choosing lost jobs creates two other primary
and secondary schedules G2 and Ĝ2. {U1,U2, Û1, and Û2} are the sets of unscheduled jobs
in sequencesG1,G2, Ĝ1, and Ĝ2; in addition, { j1, j2, ĵ1, and ĵ2} are the selected jobs going
to be inserted in each iteration of these four schedules.

In the second phase, MTLR selects unscheduled jobs based on minimum
wi/min(Ci − d1, pi ) ratios and assigns them as tardy jobs in idle positions from the end
of schedules G1, Ĝ1,G2, and Ĝ2. This makes four complete schedules for the problem, and
algorithmMTLR returns the best solution among them as final answer. The time complexity
of this algorithm is O(n2), and its steps are as follows.

1. Set C1 = Psum = ∑n
i=1 pi , G1 = ∅, Z1 = 0, Ẑ1 = ∞ and U1 = {1, 2, . . . , n}.

2. While C1 > d2 repeat steps 2.1 and 2.2.

2.1 Select job j1 = Argmin
i∈U1

{si/pi } and schedule it in first free position from the end of

G1. Set U1 = U1|{ j1}, C1 = C1 − p j1 , G1 = ( j1, (G1)) and Z1 = Z1 + s j1 .
2.2 Select job ĵ1 = Argmin

i∈U1,pi≥C1−d2
{si } if exists and if Z1 + s ĵ1 < Ẑ1, then set Ĝ1 =

( ĵ1, (G1)), Ĉ1 = C1 − p ĵ1
, Û1 = U1|{ ĵ1} and Ẑ1 = Z1 + s ĵ1 .

3. Repeat steps 1 and 2 letting j2 = Argmin
i∈U2

{si/min(Ci − d1, pi )} and create partial sched-
ules G2 and Ĝ2 with total penalties Z2 and Ẑ2, respectively.

4. While C1 > d1 select job j1 = Argmin
i∈U1

{wi/min (pi ,C1 − d1)}. Set G1 =
( j1, (G1))C1 = C1 − p j1 , U1 = U1|{ j1} and Z1 = Z1 + w j1 (C1 − d1).

5. Repeat step 4 for schedules Ĝ1,G2, and Ĝ2.
6. Return the best solution among schedules G1, Ĝ1,G2, and Ĝ2.

4 Dominance rules and lower bounds

In this section, some dominance rules and lower bounds are proposed for problem 1|d1i =
d1, d2i = d2|TLwhich later will be used in designing dynamic programming and branch-and-
bound algorithms. Suppose that groups of early, tardy, and lost jobs are indicated by σE , σT ,
and σL .

Dominance rule DR1 Let i ∈ σE and j ∈ σT be two arbitrary jobs in a sequence
satisfying relations pi ≥ p j and wi ≤ w j . Then, swapping jobs i and j will not increase the
total penalty.

Proof The proof is done by comparing total penalty before and after swapping jobs i and j .
Figure 3 shows these two cases, where π1, π2, and π3, respectively, denote groups sequenced
before, between, and after jobs i and j . Amount of penalty related to groupsπ1 andπ3 remains
unchanged during swap and completion times of jobs in π2 will not increase. Let Z

bef
π2 and

Za f t
π2 denote penalty of jobs in group π2 in these two cases. Therefore, we have

Zbef = Zπ1 + Zbef
π2

+ Zπ3 + w j (C − d1)

Z aft = Zπ1 + Z aft
π2

+ Zπ3 + wi (C − d1)

⇒ Z aft − Zbef = (
Z aft

π2
− Zbef

π2

) + (
wi − w j

)
(C − d1) ≤ 0

and this finalizes the proof. �	
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j i

(a) ji

(b)

Fig. 3 Sequences related to the proof of DR1

Dominance rule DR2 Let i ∈ σT and j ∈ σL be two arbitrary jobs in a sequence satisfying
relations pi ≥ p j and

(
wi − w j

)
.t +ψi, j ≥ 0. Then, swapping jobs i and j will not increase

the total penalty. Here, t is the start time of job i before swapping and parameter ψi, j is
calculated as ψi, j = wi (pi − d1) − w j (p j − d1) + s j − si .

Proof The proof is done similar to the proof of DR1.
Dominance rule DR3 Let i ∈ σE and j ∈ σL be two jobs in a sequence satisfying relations

pi ≥ p j and si ≤ s j . Then, swapping jobs i and j will not increase the total penalty. �	
Proof The proof is done similar to the proof of DR1.

Lower bound LB1 This lower bound is composed of two parts; one for lost jobs (LBL)

and the other for tardy jobs (LBT ). Steps of the algorithm for calculating LBL are as follows.
Algorithm LB_L

1. Let U = {1, 2, . . . , n} be a set of unscheduled jobs. Set C = Psumand LBL = 0.
2. Select a job i from U with minimum si/pi and set LBL = LBL + si

pi
min (C − d1, pi ).

3. Set C = C − pi and U = U |{i} and if C > d2 go back to step 2.

To calculate LBT , create an ordered set � of artificial jobs via rearranging process times and
tardinessweights of the real jobs, such that for each jobs i and i+1 in set�, we have pi ≥ pi+1

and wi ≤ wi+1. Jobs are selected from the beginning of set � and are scheduled into the
tardiness interval from d2 toward d1. If last scheduled job passes across d1, then tardiness
penalty is only calculated for part of the job which falls inside the tardiness interval. The
following algorithm describes this part of the lower bound.

Algorithm LB_T

1. SetC = d2, i = 1, LBT = 0 and� = {(1, 2, . . . , i, . . . , n) | ∀i pi ≥ pi+1, wi ≤ wi+1}.
2. Select ith artificial job from � and set LBT = LBT + wi

pi
(C − d1) .min {C − d1, pi }.

3. Set C = C − pi , i = i + 1 and if C > d1, then go back to step 2.

Finally, the lower bound will be calculated as LB1 = LBT + LBL . �	
Proof Consider minimization of lost penalties as minimizing objects’ weights in a knapsack
problem, where objects can be split and the knapsackmust be filled up. Suppose the knapsack
size is

∑n
i=1 pi − d2, and in addition, pi and wi correspond for size and weight of object i ,

respectively. Algorithm LB_L selects jobs with minimum penalty ratios, and the ability of
splitting jobs guarantee that this algorithm gives a lower bound for the problem ofminimizing
lost penalties.
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Fig. 4 Sequences used for
proving lower bound LB1

Based on the proof of Theorem 2 in reference (Fathi and Nuttle 1990), algorithm LB_T
gives a lower bound for common due date weighted tardiness problem. The only point is that,
algorithm LB_T schedules tardy jobs from time d2, but last tardy job in optimal sequence of
problem 1|d1i = d1, d2i = d2|TL may finish before d2. To show that the proposed algorithm
gives a lower bound in this case, consider three sequences in Fig. 4.

Let σ1 to σ4 be groups of jobs, and according to the definition of artificial jobs in
algorithm LB_T, job k2 has the biggest process time, and we split this job into two jobs
in the artificial sequence (b) from Fig. 4. Considering wk2 = wk′

2
= wk′′

2
, we have

Zσ3 ≤ Zσ1 + sk1
(
pk1 − γ

)
/pk1 that implies

Zσ3 + sk1
(
γ /pk1

) ≤ Zσ1 + sk1 . (11)

From
wk′2
pk2

= wk2
pk2

≤ wi
pi

∀i = 1, . . . , n, we will conclude

wk′
2
(d2 − d1)

(
γ /pk2

) ≤ wk1 (d2 − d1)
(
γ /pk1

) ≤ sk1
(
γ /pk1

)
. (12)

By (11) and (12),wegetwk′
2
(d2 − d1)

(
γ /pk2

)+Zσ3 ≤ Zσ1+sk1 , andbecause ofwk′′
2

≤ wi∀i
we have

wk′
2
(d2 − d1)

(
γ /pk2

) + Zσ3 + Zk′′
2

+ Zσ1 ≤ Zσ2 + Zσ1 + sk1 . (13)

Now, we will show Zk2 ≤ Zk′′
2

+ wk′
2
(d2 − d1)

(
γ /pk2

)
which completes the proof.

Zk′′
2

+ wk′
2

(d2 − d1)(γ/pk2) = wk2 (d2 − γ − d1) + wk′
2

(d2 − d1)(γ/pk2)

= wk2 (d2 − d1) + wk2 .γ.

(
d2 − d1
pk2

− 1

)

≥ wk2 (d2 − d1) = Zk2 . (14)

�	
Lower bound LB2 In this lower bound, the same as LB1, penalties of tardy and lost jobs are

calculated separately, and then, we add them up tomake the final lower bound. Penalty related
to lost jobs is achieved by algorithm LB_L , but we use the approximation algorithm from
(Fathi andNuttle 1990) to create a lower bound for tardy jobs. Fathi andNuttle (1990) propose
an approximation algorithm with worst-case ratio bound 2 for problem 1|di = d|wi Ti . If we
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divide the penalty from this algorithm by 2, we will get a lower bound for tardy jobs in our
problem. In the following, the procedure is described as algorithm LB ′_T .

Algorithm LB’_T

1. Set C = d2, i = 1, LB ′
T = 0, and renumber jobs according to WSPT order.

2. Select job i and calculate LB ′
T = LB ′

T + wi
pi

(C − d1).min {C − d1, pi } .

3. Set C = C − pi , i = i + 1 and if C > d1, then go back to step 2.
4. Return LB ′

T = LB ′
T /2

Therefore, the final lower bound LB2 will be calculated as LB2 = LB ′
T + LBL .

5 Dynamic programming algorithms

In this section, we will propose two dynamic programming algorithms for problem 1|d1i =
d1, d2i = d2|TL. Suppose that jobs are renumbered according to WSPT before developing
these DP algorithms. Each optimal schedule for the considered problem includes four parts
as: (1) a group of early jobs with any arbitrary order, (2) a straddling job, (3) a group of tardy
jobs with WSPT order, and (4) a group of lost jobs with arbitrary order.

5.1 Algorithm DP1

In this dynamic programming algorithm, each state from state space ν
(α,Cα)
k indicates a partial

sequence for first k jobs excluding straddling job α that finishes at time Cα . Each state is
denoted by a vector [t1, t2, f ], where t1 and t2 show sum of process times for early and tardy
groups of jobs, respectively, and f is the penalty for corresponding partial sequence.

Figure 5 shows a state [t1, t2, f ] from state space ν
(α,Cα)
k−1 as well as three states derived

by adding the upcoming job j to different groups of early, tardy, and lost jobs.
Let Z∗

(α,Cα) denote optimal penalty for the problem when job α is straddling with com-
pletion time Cα . Steps of the algorithm are as follows.

1. For each α ∈ {1, 2, . . . , n}and each Cα ∈ [d1 + 1, d1 + pα].

1.1 Set ν(α,Cα)
0 = {[0, 0, 0]}.

1.2 For each k ∈ {1, 2, . . . , α − 1, α + 1, . . . , n} consider all states [t1, t2, f ] in ν
(α,Cα)
k−1 .

• (job k is early) If t1 + pk ≤ Cα − pα and DR1 and DR3 do not eliminate the new
state for job k, then add state [t1 + pk, t2, f ]to ν

(α,Cα)
k .

• (job k is tardy) IfCα+t2+ pk ≤ d2 andDR1,DR2, LB1, andLB2 do not eliminate
the new state for job k, then add state [t1, t2 + pk, f + wk (Cα + t2 + pk)]to ν

(α,Cα)
k .

• (job k is lost) If
∑k

i=1 pi − t1 − t2 < Psum − d2 and DR2, DR3, LB1, and LB2

do not eliminate the new state for job k, then add state [t1, t2, f + sk]to ν
(α,Cα)
k .

• For all the states [t1, t2, f ] ∈ ν
(α,Cα)
k with equal values for t1 and t2, keep at most

one state having the minimum value of f.
• Delete the state space ν

(α,Cα)
k−1 .

1.3 Set Z∗
(α,Cα) = min

[t1,t2, f ]∈ν
α,Cα
n−1

{ f } + Zα .

2. Return Z = min
α,Cα

Z∗
(α,Cα) as optimal solution.
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Fig. 5 Details of creating new states in DP1

Now, we describe the approach of implementing lower bounds in DP1. Suppose job k
is going to be included into group of early jobs from state [t1, t2, f ]. If (15) holds, we can
eliminate the new state. Values δT and δL denote remaining time intervals for scheduling tardy
and lost jobs, respectively, and are calculated as (16). Value for Zheu comes from algorithm
MTLR.

f + LBT [δT ] + LBL [δL ] ≥ Zheu (15)

δ′
L = Psum − max {Cα, d2} −

k−1∑

i=1

pi − t1 − t2

δ′
T = d2 − Cα − t2 + max

{−δ′, 0
}

δL = max
{
δ′
L , 0

}

δT = max
{
δ′
T , 0.

}
(16)

To calculate the time complexity of DP1, consider the maximum number of states in each
state space ν

(α,Cα)
k as d1. (d2 − d1). Step 1.2 iterates by a factor of total feasible states,

∑n−1
k=1

∣
∣
∣ν

(α,Cα)
k

∣
∣
∣, and is O (nd1 (d2 − d1)). Similarly, we can show that complexity of step
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1.3 is O (d1 (d2 − d1)). Step 1 iterates at most Psum = ∑n
i=1 pi times by selecting different

α and Cα values, and its complexity is O (nPsumd1 (d2 − d1)). Finally, considering that
step 2 is implemented in O (Psum), we conclude the overall time complexity of DP1 as
O (nPsumd1 (d2 − d1)).

5.2 Algorithm DP2

The basis of this algorithm is similar to DP1 and their only difference is in selecting straddling
job. In contrast with the previous dynamic programming, we do not need to predefine a job
as straddling at each iteration, and DP2 is able to distinguish suitable straddling job in each
iteration of the algorithm. This algorithm considers the straddling job as a member of first
group (group of early jobs) that makes minimum penalty if finishes at time Cα .

During an iteration, straddling job may change, and we can only determine the correct
straddling job after scheduling all jobs. Algorithm DP2 keeps at most two states with equal
t1 and t2 values in each iteration; the former, [t1, t2, α, f, f(α)], calculates minimum total
penalty and the later, [t1, t2, α′, f ′, f ′

(α′)], gives minimum total penalty excluding straddling
job. In this notation, f and f(α) denote the total penalty and total penalty excluding straddling
job, respectively.

In DP2, if a job is going to be scheduled in the group of early jobs and generates smaller
penalty in comparison with the current straddling job, then the current straddling job will be
considered as an early job and the new job takes the straddling place.

Let [t1, t2, αk−1, f, f(αk−1)] be a state from the previous iteration, and DP2 is going to add
job k to this state. Here, the following cases may arise, and we describe the new penalties
f new and f new(α) generated in each case.

1. Job k is early and the straddling job is not changed: f new = f, f new(αk )
= f(αk−1).

2. Job k is early, the straddling job is changed from αk−1 to αk and Cα ≤ d2: f new =
f + (

wαk − wαk−1

)
(Cα − d1) , f new(αk )

= f(αk−1).
3. Job k is early, the straddling job is changed from αk−1 to αk and Cα > d2: f new =

f + sαk − sαk−1 , f new(αk )
= f(αk−1).

4. Job k is tardy: f new= f +wk (Cα+t2+pk−d1) , f new(αk )
= f(αk−1)+wk (Cα + t2+pk−d1).

5. Job k is lost : f new = f + sk, f new(αk )
= f(αk−1) + sk .

Steps of this algorithm are as follows.

1. For each Cα ∈ [d1 + 1,min (d1 + pmax, Psum)].
1.1. Set ν(Cα)

0 = {[0, 0, 0, 0, 0]}.
1.2. For each k ∈ {1, 2, . . . , n} t1 ∈ {0, 1, . . . ,Cα} and each t2 ∈ {

0, 1, . . . ,
max (0, d2−Cα)

}
consider all states [t1, t2, αk−1, f, f(αk−1)] and [t1, t2, α′

k−1, f ′, f ′(
α′
k−1

)]
in ν

(Cα)
k−1 .

1.2.1 (job k is early) If t1 + pk ≤ Cα and DR1 and DR3 do not eliminate new state
for job k,

• If straddling job is not changed, add states [t1 + pk, t2, αk−1, f, f(αk−1)] and
[t1 + pk, t2, α′

k−1, f ′, f ′(
α′
k−1

)] to state space ν
(Cα)
k .

• If Cα ≤ d2 and straddling job changes, add states [t1 + pk, t2, αk, f +
(wα k − wαk−1)(Cα − d1), f(αk−1)] and [t1+pk, t2, α′

k, f +(wα′ k − wα′
k−1

) (Cα−d1) ,

f ′(
α′
k−1

)] to state space ν
(Cα)
k .
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• If Cα > d2 and straddling job changes, add states [t1 + pk, t2, αk, f + sα k

− sαk−1 , f(αk−1)] and [t1 + pk, t2, α′
k, f + sα′ k − sα′

k−1
, f ′(

α′
k−1

)] to state space ν
(Cα)
k .

1.2.2 (job k is tardy) If Cα + t2 + pk ≤ d2 and
∑k

i=1 pi − t1 ≤ Psum − Cα and
also DR1, DR2, LB1, and LB2 do not eliminate the new state for job k, then add
states [t1, t2 + pk, αk−1, f + wk (Cα + t2 + pk − d1) , f(αk−1) + wk (Cα + t2 + pk
−d1)] and [t1, t2 + pk, α′

k−1, f ′ + wk (Cα + t2 + pk − d1) , f ′(
α′
k−1

) + wk (Cα + t2

+pk − d1)] to ν
(Cα)
k .

1.2.3 (job k is lost) If
∑k

i=1 pi − t1− t2 < Psum−d2 and
∑k

i=1 pi − t1 ≤ Psum−Cα and
also DR2, DR3, LB1, and LB2 do not eliminate the new state for job k, then add states
[t1, t2, αk−1, f + sk, f(αk−1) + sk] and [t1, t2, α′

k−1, f ′ + sk, f ′(
α′
k−1

) + sk] to ν
(Cα)
k .

1.2.4 For all the states [t1, t2, αk, f, f(αk )] ∈ v
(Cα)
k with equal values for t1 and t2, keep at

most one state having theminimumvalue of f and for all the states [t1, t2, α′
k, f ′, f ′

(α′
k)

] ∈
v

(Cα)
k with equal values for t1 and t2, keep at most one state having the minimum value
of f ′

(α′
k)
.

1.2.5 Delete state space ν
(Cα)
k−1 .

1.3. Set Z∗
Cα

= min

⎛

⎝ min
[t1,t2,αn , f, f(αn )]∈ν

(Cα)
n

{ f } , min
[t1,t2,α′

n , f
′, f ′

(α′
n )

]∈ν
(Cα)
n

{
f ′}

⎞

⎠.

2. Return Z = min
Cα

Z∗
Cα

as optimal solution.

While implementing the dominance rules in DP2, it must be noted that we cannot use
them on straddling jobs, because these jobs may change during step 1.2.1. To examine
lower bounds, suppose, job kis considered to be added into group of early jobs from a state
[t1, t2, αk−1, f, f(αk−1)]. If (17) holds, we discard the new state. Here, Zmin

Cα
denotesminimum

penalty caused by an unknown straddling job that completes at time Cα and is calculated by
(18). From the fact that, in DP2, there is no need to prefix a job as straddling, its complexity
is O(n) times less than DP1, and, hence, is O (Psumd1 (d2 − d1)).

f(αk−1) + Zmin
Cα

+ LBT [δT ] + LBL [δL ] ≥ Zheu (17)

Zmin
Cα

=
{
min
i

{wi } . (Cα − d1) if Cα ≤ d2

min
i

{si } if Cα > d2.
(18)

6 Branch-and-bound algorithm

This section introduces a branch and bound algorithm for problem 1|d1i = d1, d2i = d2|TL.
This algorithm prefixes a job as straddling as well as its completion time, and, then, schedules
other jobs into groups of early, tardy, and lost (groups 1–3, respectively) based on depth first
search tree. Jobs are renumbered and selected for scheduling by WSPT order.

Figure 6 shows the depth first tree used for problem 1|d1i = d1, d2i = d2|TL with four
jobs, where job 2 is straddling. Each level is related to one job, excluding the straddling job,
and two numbers in each node show order of creating nodes and the group number, in which
job is added, respectively. According to this figure, we first add job 1 to group 3, and then,
jobs 3 and 4 are added to group 3, respectively.
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Fig. 6 Part of the search tree for algorithm BB1

Details of this branch-and-bound algorithm are described as follows. Variables t1, t2, and
t3 show total process time of jobs in groups 1–3. In this algorithm,we first assign jobs to group
3 and then add them to groups 2 and 1, because experiments show this type of assignment
increases Ẑ rapidly and improves the efficiency of lower bounds.

1. Calculate the upper bound UB from algorithm MTLR. For each α = 1, 2, . . . , n and
each Cα = [d1 + 1,min {d1 + pα, Psum}].
1.1. Set t1 = t2 = t3 = 0 and if Cα ≤ d2, then Ẑ = wα (Cα − d1) else Ẑ = sα .
1.2. Assign jobs to a depth first tree of Fig. 6.

1.2.1 If current job î is a candidate for group 1.

• If t1 + pî > Cα − pα , then fathom current node and return to step 1.2.

• Check DR1 and DR2 for job î and other tardy or lost jobs. If current node is
fathomed, then return to step 1.2 else set t1 = t1 + pi .

1.2.2. If current job î is a candidate for group 2.

• If Cα + t2 + pî > d2 or Cα + t2 + t3 + pi > Psum, then fathom current node
and return to step 1.2.

• Check LB1 and LB2 as well as DR1 and DR3 for job î and other early or lost
jobs. If current node is fathomed, then return to step 1.2.
• Set t2 = t2 + pî and Ẑ = Ẑ + wî (Cα + t2 − d1).

1.2.3 If current job î is a candidate for group 3.

• If t3 ≥ Psum − d2, then fathom current node and return to step 1.2.
• Check LB1 and LB2 as well as DR2 and DR3 for job î and other early or lost

jobs. If current node is fathomed, then return to step 1.2.
• Set t3 = t3 + pî and Ẑ = Ẑ + sî .

1.3 If a complete schedule with total penalty Ẑ is achieved and Ẑ < UB, then set
UB = Ẑ and save this schedule as the best schedule found until now.

2. Return the final UB as optimal solution.

We can use the idea of letting the branch-and-bound algorithm to choose straddling job,
but experiments indicate this idea increases run times in all instances, and hence, here, we
discard this idea.
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Table 3 Properties related to 32 groups of instances

Group τ1 τ2 p w u Group τ1 τ2 p w u Group τ1 τ2 p w u

G1 L L L L L G12 L H L H H G23 H L H H L

G2 L L L L H G13 L H H L L G24 H L H H H

G3 L L L H L G14 L H H L H G25 H H L L L

G4 L L L H H G15 L H H H L G26 H H L L H

G5 L L H L L G16 L H H H H G27 H H L H L

G6 L L H L H G17 H L L L L G28 H H L H H

G7 L L H H L G18 H L L L H G29 H H H L L

G8 L L H H H G19 H L L H L G30 H H H L H

G9 L H L L L G20 H L L H H G31 H H H H L

G10 L H L L H G21 H L H L L G32 H H H H H

G11 L H L H L G22 H L H L H

7 Computational results

In this section, we examine the results of the mathematical model, heuristic algorithm,
dynamic programming, and branch-and-bound algorithms on a number of randomly gen-
erated test problems. Computational experiments were performed on Intel CoreTM i7-2600
CPU 3.4GHz with 4 GB RAM. On this system, CPLEX 12 was used as a mixed integer
programming solver and the algorithms were coded in Visual studio C++ 2008.

We generate random instances for n ∈ {30, 50, 75, 100, 150, 200, 250}. Processing
times, pi , and tardiness weights, wi , are drown from uniform distributions [1, 10] or [1,
100]. Using the method proposed in (Kethley and Alidaee 2002), due date d1 is selected
from uniform distribution between Psum (1 − τ1 − 0.5R1) and Psum (1 − τ1 + 0.5R1), and
d2 is from uniform distribution between d1 + (Psum − d1) (1 − τ2 − 0.5R2) and d1 +
(Psum − d1) (1 − τ2 + 0.5R2), where τ1 ∈ {0.4, 0.8}, τ2 ∈ {0.2, 0.8}, R1 = 0.2, and
R2 = 0.4. Lost penalty steps, ui , are generated from one of uniform distributions
U [0, 0.5wi (d2 − d1)] or U [wi (d2 − d1) , 3wi (d2 − d1)].

According to the above parameters, 32 instance groups are created by combining para-
meters pi , wi , τ1, τ2, and ui . For any given number of jobs, n, 20 random test instances are
generated in each instance group. Table 3 shows the characteristics of these groups were L
and H which show low and high levels for each parameter, respectively.

Table 11 (seeAppendix) shows a summary of computational results obtained from running
proposed methods on test instances in groups G1 to G16. The first two columns show group
number and the number of jobs in each instance. The next two columns indicate the average
and maximum gap between heuristic solutions and optimal ones. The results show that in
more than 95 % of cases, average and maximum gaps are less than 2 and 4 %, respectively.

The next two columns show the average run times and number of instances solved byMIP
model. The model is implemented by CPLEX 12 and is able to optimally solve instances up
to 50 jobs in 1 h time limit.

Results of algorithm DP1 are provided in columns 7 to 14. In column 9, the percentage
of fathomed states by lower bounds and dominance rules out of all created states are given.
This ratio varies between 35 and 65 % in different instance groups and DP1 is able to solve
instances up to 50 jobs. Columns 15 to 22 of Table 11 contain the results of running algorithm
DP2. These results indicate that DP2 is able to optimally solve all instances up to 250 jobs
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Fig. 7 Gap percentages for
MTLR algorithm
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Table 4 Problem parameters
impact on MTLR error
percentage

Value/variation u w p τ2 τ1

Low 0.74 0.64 0.49 0.49 0.69

High 0.46 0.56 0.71 0.71 0.51

with pi ∈ [1, 10] and instances up to 75 jobs with pi ∈ [1, 100] in reasonable times. The last
columns in this table are about algorithm BB1 and show that this algorithm is able to solve
instances up to 50 jobs with 55–65 % percent of fathomed nodes.

Figure 7 shows the average gap from optimal solution for algorithm MTLR in different
instance sizes. This average error is less than 0.8 % and decreases by any increase in the size
of instances. This shows good performance of MTLR in generating near optimal solutions
for problem 1|d1i = d1, d2i = d2|TL. Running times of this algorithm are less than 0.1 s in
all the cases, and hence, are not reported.

In Table 4, we examine how changing the problem parameters influence optimality gap of
algorithmMTLR.As it is seen, the algorithmperforms betterwhen the variation of processing
times is low (i.e. pi ∈ [1, 10]). By increasing the variation of wi and ui parameters, the
average gap decreases, because of that the algorithm can categorize jobs into the groups E,
T, and L more accurately under high variation of these two parameters.

Parameter τ1 has no significant effect on the performance of heuristic algorithm, but when
τ2 increases, more number of jobs will be lost, and high penalties of the lost jobs cause an
increase in optimality gap of algorithm MTLR.

Computational results show that all 30 job instances are solved by themathematical model
in average run time of 18.39 s. However, in the case of 50 job instances, the model is able
to solve 298 instances out of 320 within 1 h time limit, and the average run time for solved
instances is 1647.48 s.

Table 5 shows the impact of varying parameters on run times of mathematical model in 50
job instances. Variation of process times has a direct relation with run times, while increasing
tardiness or lost penalties (w′

i s or u
′
i s)will decrease themodel run times in average. Changing

the parameter τ1 has no significant effect on run times; however, results showa inverse relation
between parameter τ2 and average run times. That is because if τ2 increases, the value of
d2 will decrease and less number of jobs can satisfy the fourth constraint of mathematical
model, and hence, less number of jobs should be examined for laying in lost jobs’ group.

Algorithm DP1 is able to solve instances up to 250 jobs with low variation of process
times (i.e. pi ∈ [1, 10]) and instances up to 50 jobs when process times are generated from
U [1, 100]. Table 6 shows the number of solved instances out of 320, andTable 7 gives average
of run times under low and high process time variation.

Figure 8 shows the percentage of fathomed nods by dominance rules and lower bounds in
DP1.According to this figure, LB1 has the best performance in small-size instances; however,
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Table 5 Problem parameters impact on CPLEX run times

Value/variation u w p τ2 τ1

low 1944.18 1739.57 1565.93 1924.44 1631.83

High 1350.77 1555.38 1729.02 1370.51 1663.12

Table 6 Number of solved instances out of 320 solved by DP1

n = 30 n = 50 n = 75 n = 100 n = 150 n = 200 n = 250

Number of solved instances 320 313 160 160 160 157 92

Table 7 Problem parameters impact on DP1 run times

Process time variation n = 30 n = 50 n = 75 n = 100 n = 150 n = 200 n = 250

Low 0.13 1.43 10.36 33.48 290.24 1105.53 2439.79

High 157.07 1447.97 – – – – –
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Fig. 8 Percentage of fathomed nodes in DP1

by increasing the size of instances, more number of nodes is fathomed by dominance rules
in average. DR1 fathoms more nodes in comparison with other dominance rules, because it
works on early and tardy groups and jobs in these two groups are scheduled before lost jobs.

Algorithm DP2 solves all instances up to 75 jobs. Based on Table 8, in groups with low
variety of process times, DP2 is able to solve instances up to 250 jobs in less than 32 s. In
case of high variety for process times, instances up to 75 jobs are solved in average 183 s,
but larger instances are not solved due to system memory limitations.

Figure 9 shows the percentage of fathomed nodes by dominance rules and lower bounds in
DP2. Here, LB2 has the best performance on instances with less than 100 jobs; however, by
increasing the size of instances, more percentage of nodes is fathomed by dominance rules.
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Table 8 Problem parameters impact on DP2 run times

Process time variation n = 30 n = 50 n = 75 n = 100 n = 150 n = 200 n = 250

Low 0.02 0.07 0.29 0.84 4.96 12.67 31.19

High 11.09 60.63 182.89 – – – –
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Fig. 9 Percentage of fathomed nodes in DP2

Table 9 Number of solved instances out of 320 solved by BB1

n = 30 n = 50 n = 75 n = 100 n = 150 n = 200 n = 250

Number of solved instances 320 294 197 100 0 0 0

Table 10 Problem parameters impact on BB1 run times

Process time variation n = 30 n = 50 n = 75 n = 100 n = 150 n = 200 n = 250

Low 0.28 49.76 1099.78 1941.2 – – –

High 9.93 1025.23 2754.15 2178.65 – – –

This shows the efficiency of LB1 in small- and medium-size instances and dominance rules
in large-size instances.

Tables 9 and 10 give the number of solved instances by BB1 and average run times for
instances with low and high variation of process times. For instances with pi ∈ [1, 10],
algorithm BB1 is able to solve all instances up to 50 jobs in average run time 49.76 s. In case
pi ∈ [1, 100], all instances up to 30 jobs are solved in average 9.39 s.

The percentage of fathomed nodes in BB1 is shown in Fig. 10, where LB1 has the best
performance on fathoming nodes and such a way that it cuts more than 60 % of nodes in all
problem sizes.
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Fig. 10 Percentage of fathomed nodes in BB1

8 Conclusions

In this paper, we studied minimizing Tardy/Lost penalties on a single machine with common
due dates. We examined time complexity of the problem and proposed a MIP model which
classifies jobs into four groups of early, tardy, straddling, and lost jobs. Then, a heuristic
algorithm was developed and, later, was used as upper bound in dynamic programming and
branch-and-bound algorithms.

In Sect. 4, we introduced three dominance rules and two lower bounds, and in the next
section, two dynamic programming algorithms were developed. These DPs are pseudo-
polynomial with time complexities O (nPsumd1 (d2 − d1)) and O (Psumd1 (d2 − d1)). Then,
we proposed a branch-and-bound algorithm based on depth first search tree.

To evaluate the proposed methods, we generated 32 groups of test instances with 30–250
jobs. Experiments indicated that increasing the variety of process times will make instances
harder and cause algorithms need more time to solve them. For instances with 75 jobs or
less, LB1 shows the best performance in cutting down search trees; but with increasing the
size of instances, dominance rules show a better performance in comparison with LBs.

Average optimality gap of MTLR algorithm was less than 2 % for all instances, which
proves the efficiency of this algorithm in finding near optimal solutions for problem 1|d1i =
d1, d2i = d2|TL. In overall, DP2 is the best algorithm for finding optimal solutions. This
algorithm solves all instances with low variety of process times in less than 32 s and for high
process time varieties, the algorithm solves all instances up to 75 jobs in less than 183 s.

The proposed Tardy/Lost penalty function can be considered as a general form for some
well-known performance measures, such as late work, weighted tardiness, and tardiness with
order acceptance assumption. Therefore, efficient solution approaches can also be applied
in the case of these problems. As future researches, we suggest using meta-heuristics or
constraint programming methods.

Appendix

See Table 11.
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