Comp. Appl. Math. (2018) 37:867-895 @ CrossMark
https://doi.org/10.1007/s40314-016-0370-4

Exact and heuristic algorithms for minimizing Tardy/Lost
penalties on a single-machine scheduling problem

K. Kianfar!® - G. Moslehi? . A. S. Nookabadi?

Received: 4 June 2015 / Revised: 17 May 2016 / Accepted: 22 July 2016 / Published online: 10 August 2016
© SBMAC - Sociedade Brasileira de Matemadtica Aplicada e Computacional 2016

Abstract This paper addresses minimizing Tardy/Lost penalties with common due dates
on a single machine. According to this penalty criterion, if tardiness of a job exceeds a
predefined value, the job will be lost and penalized by a fixed value. The problem is formulated
as an integer programming model, and a heuristic algorithm is constructed. Then, using
the proposed dominance rules and lower bounds, we develop two dynamic programming
algorithms as well as a branch and bound. Experimental results show that the heuristic
algorithm has an average optimality gap less than 2 % in all problem sizes. Instances up to
250 jobs with low variety of process times are optimally solved and for high process time
varieties, the algorithms solved all instances up to 75 jobs.

Keywords Scheduling - Tardy/Lost penalty - Integer programming - Heuristic algorithm -
Branch-and-bound algorithm - Dynamic programming

Mathematics Subject Classification 90B35 - 90C11 - 90C39 - 90C57
1 Introduction

In this study, we analyze minimizing total Tardy/Lost penalties on a single machine about
two common due dates. Every job i (1 < i < n) has a processing time, p;, and tWwo common
due dates, namely d; and d5. In the case that a job finishes before the first due date, d, no
penalty is assigned; if the completion time is between d| and d», the job will be penalized
by a tardiness weight, w;; and finally, the job will be lost if it is completed after the second
due date and a fixed amount of penalty, s;, will be incurred. We can formulate the Tardy/Lost

Communicated by Ernesto G. Birgin.

X K. Kianfar
k.kianfar@eng.ui.ac.ir

1 Faculty of Engineering, University of Isfahan, Isfahan 81746-73441, Iran

2 Department of Industrial and Systems Engineering, Isfahan University of Technology,

Isfahan 84156-83111, Iran

@ Springer f DMAC

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-016-0370-4&domain=pdf
http://orcid.org/0000-0003-0067-7583

868 K. Kianfar et al.

Fig. 1 Tardy/Lost penalty 7 A
function with common due dates i

C,

1

objective function as in Eq. (1), where C; is the completion time of job i. It is assumed that
si > w; (da — d) which means penalty for losing a job is greater than the maximum possible
tardiness penalty for the same job, and this difference is denoted by parameter u; .

0 if C; <d
Zi =13 w;(C; —dy) ifdi <Ci <dy n
si=wi(d—d)+u, ifC >d

Figure 1 shows the Tardy/Lost penalty function for job i based on its completion time. The
problem is denoted by l|dil = dl,di2 = dy| ZieRl w; T; + Zi€R2 si, where R; and R,
indicate the sets of tardy and lost jobs, respectively. For the sake of brevity, we use 1|dl.l =
dy, di2 = d>|TL in the rest of this paper, where TL indicates the Tardy/Lost performance
criteria.

To determine time complexity of this problem, we can set d» > > /_; p; and simplify
it to the problem of minimizing weighted tardiness with common due date. Yuan (1992)
showed that minimizing weighed tardiness with common due date on a single machine is
ordinary NP-hard. According to this, the problem considered in this study is at least NP-hard
in ordinary sense.

Objective functions of real-life manufacturing problems are often much more complex
than the well-known scheduling performance measures. Depending on the type of con-
tractual penalties and expected goodwill of future revenue losses incurred, many types of
non-linear tardiness penalty functions may arise. Tardy/Lost measure combines the futures
of two parameters; weighted tardiness and weighted number of tardy jobs. On the other
hand, the Tardy/Lost performance measure can be considered as a special case for schedul-
ing problems with order acceptance assumption. Here, the objective is minimizing weighted
tardiness on a single machine and common due date, where the rejection cost for a job i
can be defined as (d, — dp)w;. Order acceptance assumption has been widely investigated
in the literature. Engels and Karger (2003) investigated the problem of minimizing weighted
completion times and rejection penalties and developed some approximation algorithms. The
survey papers by Slotnick (2011) and Shabtay et al. (2013) study a number of scheduling
problems with order acceptance.

From a practical point of view, the Tardy/Lost penalty function is applicable in delivery
contracts, most of which are arranged based on two due dates. If an order is early, then no
penalty is considered; the order will be penalized if its delivery time exceeds the first due
date. The penalty increases in proportion to the delivery time until the second due date is
reached. If the delivery happens later than the second due date, we will lose the order and
a maximum fixed penalty occurs. Other applications of Tardy/Lost measure are perishable
goods and food industries.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 869

Table 1 Penalty functions derived from TL measure

Measure Penalty Function TL parameter adjustment
Weighted completion Z; = w;C; dy =0and dy = o0
time
. . 0 if C;<d _
Weighted tardiness Zi = wi (Ci —dy) if C; > dy dy = o0
Weighted number Z; = Ow Zi g’ i Zl dy=dy
of tardy jobs ! ! !
0 if Ci<d
Late work Zi=1Ci—dyif di<Cij <d> w; =landdy =d| + p;j andu; =0
pi if Ci>dy
0 if ¢ <d
Weighted tardiness Zi = w;(C; —dy) if di <C;j <dy s;j=R;=rejection cost
with order R; i Ci>dy dy = rejection point for tardiness penalty

acceptance

Minimizing weighted tardiness is a special case of Tardy/Lost performance measure which
has been widely investigated in scheduling area. The problem 1|| > w;7; is NP-hard in a
strong sense (Lenstra et al. 1977) and is optimally solvable in pseudo-polynomial time for
a fixed number of distinct due dates (Kolliopoulos and Steiner 2006). Cheng et al. (2005)
presented an O(n?) time approximation algorithm for the problem as well as a pseudo-
polynomial algorithm when all job due dates have equal slacks. Kolliopoulos and Steiner
(2006) considered the problem with a fixed number of due dates and designed a pseudo-
polynomial algorithm. Karakostas et al. (2009) studied the same problem and designed a
dynamic programming algorithm, as well as an approximation scheme. Koulamas (2010)
considered the latest theoretical developments for problem 1|| > 7; and reviewed some
exact algorithms, fully polynomial time approximation schemes, heuristic algorithms, special
cases, and generalizations of the problem.

In a special case of problem 1|| >_ w; T;, where due date is common for all jobs, Lawler and
Moore (1969) provided a pseudo-polynomial dynamic programming algorithm in O (n*d)
time and Fathi and Nuttle (1990) developed a 2-approximation algorithm in O (n?) time.
Kellerer and Strusevich (2006) converted a dynamic programming algorithm to an FPTAS
of O (n°log W/e3) time complexity, where W is the sum of tardiness weights; later, Kianfar
and Moslehi (2013) studied the same problem and developed a more effective FPTAS in
0(n3/e) time.

According to Table 1, some of the most common performance measures in scheduling
literature are special cases for Tardy/Lost measure. The third column of this table describes
how the parameters of TL measure should be adjusted in each case.

Tardy/Lost performance measure is a kind of regular measure which is continuous and
non-decreasing in completion times of jobs. Detienne et al. (2012) studied a single-machine
problem, whose objective is to minimize a regular step total cost function and they proposed
an exact approach based on Lagrangian relaxation. Zhou and Cai (1997) examined two types
of regular performance measures, the total cost, and the maximum cost, with general cost
functions. In the paper by Shabtay (2008), two continuous and non-decreasing objective
functions are considered that include penalties due to earliness, tardiness, number of tardy
jobs, and due date assignments. The research by Ventura and Radhakrishnan (2003) was
focused on scheduling jobs with varying processing times and distinct due dates on a single

@ Springer f DMAC

870 K. Kianfar et al.

machine. Carrasco et al. (2013) studied convex non-decreasing cost functions for single-
machine problems subject to precedence constraints. Colin and Quinino (2005) proposed
a pseudo-polynomial time algorithm to find a solution within some tolerance of optimality
for the same problem. The objective function considered by Baptiste and Pape (2005) was
minimizing a regular sum objective function »; f;(C;) that corresponds to the cost of the
completion of job i at time C;. They introduced lower bounds and dominance properties
for this problem and described a branch-and-bound procedure with constraint propagation.
Chandra et al. (2014) developed a binary branch and bound for single-machine problem of
minimizing the maximum scheduling cost that is non-decreasing with job completion time.

Pinedo (1995) indicates that, in practice, the penalty function associated with a scheduling
problem may follow from a function, in which early jobs are assigned no penalty and those
that are finished after their due dates are assigned a penalty that increases at a given rate.
Within the penalty function, the job reaches a point, where the penalty assignment changes
and increases at a much slower pace. The function identified by Pinedo (1995) is general;
however, two more specific functions that react similarly are the deferral cost function (Lawler
1964) and the late work criterion.

Deferral cost functions have been studied by Kahlbacher (1993) who considered general
penalty functions monotonous with respect to absolute lateness. He examined several specific
cases of the penalty function for situations, in which machine idle times are allowed or not
allowed. Federgruen and Mosheiov (1994) considered a class of single-machine scheduling
problems with a common due date and general earliness and tardiness penalties. In this study,
some polynomial greedy algorithms were proposed and for convex cost structures, they also
examined the worst-case ratio bound if the due date is non-restrictive. Baptiste and Sadykov
(2009) considered the objective of minimizing a piecewise linear function. They introduced
a new Mixed Integer Programming (MIP) model based on time interval decomposition.

The problem of late work minimization on a single machine, as a special case for
Tardy/Lost measure, has been addressed in many studies. Potts and Van Wassenhove (1992b)
proposed a polynomial time algorithm based on the similarity between tardiness and late work
parameters. In another study (Potts and Van Wassenhove 1992a), they developed a branch-
and-bound algorithm for the problem which formed a family of approximation algorithms
based on truncated enumeration. The results concerning late work are partially reviewed in
Chen et al. (1998) and Leung (2004), but Sterna (2011) addresses the first complete review
of the topic. Kethley and Alidaee (2002) modified the definition of the late work criterion
by introducing two due dates for each job, called due date and deadline. They called the
proposed performance criterion as “modified Total Weighted Late Work” which is a special
case for Tardy/Lost penalty function if we set #; = 0 in Eq. (1).

The main contribution of this research is introducing a new general penalty function,
namely Tardy/Lost, for scheduling problems. By adjusting parameters, Tardy/Lost can be
converted into some traditional penalty functions, such as weighted tardiness, tardiness with
order acceptance assumption, late work, and penalties applied in delivery contracts. From
solution point of view, this paper proposes both exact and heuristic methods for a novel prob-
lem, in which exact solutions outperform commercial software CPLEX 12 in test instances.

The rest of this paper is organized as follows. In Sects. 2 and 3, we propose a mathematical
model and a heuristic algorithm, respectively. Section 4 deals with some dominance rules
and lower bounds for problem 1|a,’l.1 =d, di2 = d|TL which later will be used in design-
ing dynamic programming and branch-and-bound algorithms of Sects. 5 and 6. In the next
section, we examine the performance of the proposed methods using experimental tests and
concluding remarks will be presented in Sect. 8.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 871

2 Mathematical model

To formulate a mixed integer programming model for problem 1|di] =d, dl.2 = d,|TL, jobs
are partitioned into four groups of early, tardy, lost, and straddling. In each optimal solution,
all tardy jobs except the first one must be sorted by WSPT (Weighted Shortest Processing
Time) ordering. The first tardy job in any optimal schedule may not belong to WSPT, and
we call it straddling job. The straddling job is started before or at due date d; and is finished
after d;. If the straddling job « is finished after d», no job belongs to the set of straddling and
job o will be considered as lost. However, in the next sections of this paper, it is assumed that
there is exactly one straddling job in each schedule and the straddling job may be finished
after ds.

We renumber jobs according to WSPT ordering and define groups of early, tardy, lost,
and straddling jobs as groups 1-4, respectively. Decision variables used in this model are as
follows.

Z; is the amount of penalty related to job i.

Xk is the binary variable that takes value 1 if job i belongs to group k and otherwise is O.

In the following, we present a mixed integer programming (MIP) model by Eqgs. (2) to
(10).

n
MmZ:ZL)
i=1

4
D Xix=1 Vi=12....n (3)
k=1

IA

“

n
> Xia
i=1

n

Z (pi-Xin) <di %)
i=1

Z (pi- (Xi1+ Xio+ Xi4)) < da (6)

i=1
B n

Zi+ M (1= Xi2) = w (pj- (Xj1+Xja4)) + Z (pjXj2)—di| Vi (7)
| j=1 j<i

Zi+ My (1= X;3) =5 Vi (8)
B n

Zi+ M3 (1= X4) = w Z (pj-Xj1)+pi—di| Vi 9)
Li=1

Xire{0,1} Vi=1,...,n k=1,...,4 (10)

Equation (2) indicates the objective function as sum of penalties related to all jobs. Equa-
tion (3) assigns each job to one of the previously defined groups. and from Eq. (4). at most one
job can be straddling in each schedule. Relation (5) ensures that sum process times of early
jobs cannot exceed d;, while (6) restricts sum process times of early, tardy, and straddling
jobs to d>. Equations (7) to (9), respectively, calculate the penalties related to tardy, lost,
and straddling jobs. M1, M>, and M3 are big integers, and supposing, Wmax, Pmax»> and Smax

@ Springer f DMAC

872 K. Kianfar et al.

Table 2 Parameters of jobs in

Example 1 Jobi Pi Wi Si

1 2 9 122

2 2 4 44

3 5 109

4 7 10 85

5 6 2 18
Fig. 2 Optimal sequence for 1 1
Example 1 t t
T+ [i 5.
T T

0 2 9 114 16 122
1 1

d, =13 dy =21

represent the maximum values of tardiness weights, process times, and lost penalties, we can
define M| = wmax (d2 — dy), M2 = Smax, and M3 = Wmax. Pmax-

The above model is original and includes 5n variables as well as 4n + 3 constraints. The
number of variables and constraints is significantly small compared with typical models of
single-machine scheduling. The following example illustrates the solution of the mathemat-
ical model for a small instance.

Example 1 Suppose an instance of problem lldi1 = di, dl-2 = d,|TL with 5 jobs. Here,
dy = 13 and d» = 21, and other parameters are described in Table 2. The optimal sequence
(1,4, 3,2,5) will be obtained using the above MIP model, where x1; = x22 = x34 =
X4,1 = x53 = 1 and other x’s are equal to zero. Figure 2 shows completion times of the jobs
in the optimal solution. In this solution, jobs 1 and 4 are early, job 3 is straddling, job 2 is
tardy, and job 5 is lost. The penalties related to jobs 1-5are Z; = Z4 =0, Z3 =8, Z, = 12,
and Z5 = 18 resulting the total penalty Z = 38.

3 MTLR heuristic algorithm'

In this section, we propose a heuristic algorithm to find near optimal solutions for problem
1 |all.1 =d, dl.2 = d,|TL. Define the ratio of lost penalty to processing time of a job as penalty
ratio. The algorithm tries to schedule lost jobs based on these ratios, and, then, schedules tardy
jobs, because lost penalties are greater than tardiness penalties and are considered first. In
this procedure, four schedules are built and the best one is selected as output of the algorithm.

This algorithm is composed of two phases, where lost jobs are scheduled in the first phase
and tardy jobs are scheduled in the second one. In each iteration of the first phase, a job with
minimum s; / p; ratio is selected among the set of unscheduled jobs U and will be placed
into first idle position from the end of schedule. Moreover, if there exist some jobs able to
fill remaining time interval until d», the algorithm schedules the one with minimum penalty
and saves the obtained secondary schedule, G1. besides primary schedule G;. Considering

' Minimum Tardy/Lost Ratio.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 873

si/min(C; — d», p;) instead of s; / pi asratio for choosmg lost jobs creates two other primary
and secondary @chedule@ Go and G2 {Uy, Ua, U 1, and U2} are the sets of unscheduled jobs
insequences G, G2, G1 and Gz, in addition, {1, j2,]1, and]2} are the selected jobs going
to be inserted in each iteration of these four schedules.

In the second phase, MTLR selects unscheduled jobs based on minimum
w; /min(C; — dy, p;) ratios and assigns them as tardy jobs in idle positions from the end
of schedules G, G 1, G, and Gz This makes four complete schedules for the problem, and
algorithm MTLR returns the best solution among them as final answer. The time complexity
of this algorithm is 0(n?), and its steps are as follows.

1. SetCy = Pym = 24 pi»G1 =, Z1 =0, Z) =coand Uy = {1,2,...,n}.
2. While C; > d; repeat steps 2.1 and 2.2.

2.1 Selectjob j; = Argmin {s; /p;} and schedule it in first free position from the end of

l€U1
Gi.SetUy = Uil{j1},C1 =C1 — pj;, G1 = (j1,(G1)) and Z| = Z; + 5.
2.2 Select job j; = Argmin {s;} if exists and if Z1 + $5 < Zl, then set G1 =
ieUy,pi=Ci—da

(1, (GD), €1 = Cr = p;, Uy = Uil{ji} and Z1 = Z1 + 55,

3. Repeatsteps 1 and 2 letting j» = Arg min {s; /min(C; — d1, p;)} and create partial sched-
ieUy
ules G, and Gg with total penalties Z, and 22, respectively.
4. While C; > d; select job ji = Argmin{w;/min(p;,C; —dj)}. Set G| =
l€U|
(1, (G))Cr=C1 — pj;, Uy =Uil{ji}and Z; = Z; + wj, (C; — dy).
. Repeat step 4 for schedules G, G2, and G».
6. Return the best solution among schedules G, G, G2, and G».

W

4 Dominance rules and lower bounds

In this section, some dominance rules and lower bounds are proposed for problem lldl =
di, d = dp|TLwhich later will be used in designing dynamic programming and branch-and-
bound algorithms. Suppose that groups of early, tardy, and lost jobs are indicated by o, o,
and op..

Dominance rule DRI Leti € of and j € or be two arbitrary jobs in a sequence
satisfying relations p; > p; and w; < w;. Then, swapping jobs i and j will not increase the
total penalty.

Proof The proof is done by comparing total penalty before and after swapping jobs i and j.
Figure 3 shows these two cases, where 771, 2, and 73, respectively, denote groups sequenced
before, between, and after jobs i and j. Amount of penalty related to groups 771 and 773 remains

unchanged during swap and completion times of jobs in 7, will not increase. Let Z;béf and
ng " denote penalty of jobs in group 7 in these two cases. Therefore, we have

2% = Zp + 25+ Zpy + w0 (C —dy)
Z% = Zn + Z8 4 Zay +wi (C —dy)
= 7% — 2% = (23 = Z5) + (wi —w;) (C —d1) <0

and this finalizes the proof. O

@ Springer f DMAC

874 K. Kianfar et al.

(a)

N
N
-~
N

d,'

(b) T, J T, i

N

dl: ' I d?

Fig. 3 Sequences related to the proof of DR1

Dominance rule DR2 Leti € o7 and j € o be two arbitrary jobs in a sequence satisfying
relations p; > p; and(wi - wj) 1+ j > 0. Then, swapping jobs i and j will not increase
the total penalty. Here, ¢ is the start time of job i before swapping and parameter ; ; is
calculated as \/I,',j =w;(pi —dy) — wj(pj —d) + Sj —Si-

Proof The proof is done similar to the proof of DR1.
Dominance rule DR3 Leti € o and j € o, be two jobs in a sequence satisfying relations
pi > pjand s; < s;. Then, swapping jobs i and j will not increase the total penalty. O

Proof The proof is done similar to the proof of DR1.
Lower bound LB1 This lower bound is composed of two parts; one for lost jobs (LBy)
and the other for tardy jobs (LB7). Steps of the algorithm for calculating LB, are as follows.
Algorithm LB_L

1. LetU ={1,2,...,n} be aset of unscheduled jobs. Set C = Pgmand LBy, = 0.
2. Selectajob i from U with minimum s;/p; and set LBy = LB + v—’l min (C — dy, p;).
3. SetC =C —pjand U = U|{i} and if C > d, go back to step 2.

To calculate LB7, create an ordered set €2 of artificial jobs via rearranging process times and
tardiness weights of the real jobs, such that for each jobs i and i 41 in set 2, we have p; > p;41
and w; < w;41. Jobs are selected from the beginning of set 2 and are scheduled into the
tardiness interval from d» toward d. If last scheduled job passes across di, then tardiness
penalty is only calculated for part of the job which falls inside the tardiness interval. The
following algorithm describes this part of the lower bound.

Algorithm LB_T

1. SetC =dp,i = 1,LBy =0andQ ={(1,2,...,i,...,n)| Vip; > pit1, wi < wiy1}.
2. Select i artificial job from €2 and set LBy = LBy + "—’l' (C —dy).min{C —dy, p;}.

3. SetC =C — pj,i =i+ landif C > dy, then go back to step 2.
Finally, the lower bound will be calculated as LB1 = LB + LBy. O

Proof Consider minimization of lost penalties as minimizing objects’ weights in a knapsack
problem, where objects can be split and the knapsack must be filled up. Suppose the knapsack
size is > i, pi — d, and in addition, p; and w; correspond for size and weight of object i,
respectively. Algorithm LB_L selects jobs with minimum penalty ratios, and the ability of
splitting jobs guarantee that this algorithm gives a lower bound for the problem of minimizing
lost penalties.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 875

Fig. 4 Sequences used for V4
H 1 1
proving lower bound LB 1 ! !
1 1
(a) | o, ki o,
i i
1 }/ 1
: '—l—\l
(b) L o, k| K o,
1
1 1
i i
1
(c) i 0-4 k 2 0-3
: 1
d\ dz

Based on the proof of Theorem 2 in reference (Fathi and Nuttle 1990), algorithm LB_T
gives a lower bound for common due date weighted tardiness problem. The only point is that,
algorithm LB_T schedules tardy jobs from time d5, but last tardy job in optimal sequence of
problem lldi1 =d, all.2 = d»|TL may finish before d;. To show that the proposed algorithm
gives a lower bound in this case, consider three sequences in Fig. 4.

Let o1 to o4 be groups of jobs, and according to the definition of artificial jobs in
algorithm LB_T, job k; has the biggest process time, and we split this job into two jobs
in the artificial sequence (b) from Fig. 4. Considering wy, = Wy, = wyy, we have

Zoy < Zoy + sk, (Pry — ¥)/ Pk, that implies

Zos + Sk (V/Pkl) < Zo + Sky- (11)
w;’
From —2 = 22 < Yiy; — | . n, we will conclude
Pky DPiy Pi
wké (dz - dl) ()//sz) < Wiy (d2 — d]) (y/pkl) < Sk (V/Pkl) . (]2)

By (11)and (12), we getwy, (d2 — d1) (v/Pe)+Zoy < Zo, sk, and because of wyy < w;¥i
we have

wké (dZ - dl) (V/sz) + ZO‘3 + Zké’ + ZU] = Zaz + ZO'1 + Sky - (13)
Now, we will show Zy, < Zyy + wyy (da — d)) (v/Pk,) which completes the proof.

Zyy +wy, (d2 —d)(v/py) = wiy (d2 —y — di) +wyy (da — d1)(¥/Pry)

dr — d;
= Wi, (d2 —dy1) + wy,.y. » —1

k2

W, (d2 —di) = Zi,. (14)

A%

[}

Lower bound LB2 In this lower bound, the same as LB 1, penalties of tardy and lost jobs are
calculated separately, and then, we add them up to make the final lower bound. Penalty related
to lost jobs is achieved by algorithm LB_L, but we use the approximation algorithm from
(Fathi and Nuttle 1990) to create a lower bound for tardy jobs. Fathi and Nuttle (1990) propose
an approximation algorithm with worst-case ratio bound 2 for problem 1|d; = d|w; T;. If we

@ Springer f DMAC

876 K. Kianfar et al.

divide the penalty from this algorithm by 2, we will get a lower bound for tardy jobs in our
problem. In the following, the procedure is described as algorithm LB’_T.
Algorithm LB’_T

1. SetC =dp,i =1, LB/T = 0, and renumber jobs according to WSPT order.
2. Select job i and calculate LB} = LB} + % (C —dy).min{C —d, p;}.
3. SetC =C — pj,i =i+ 1landif C > dj, then go back to step 2.

4. Return LB} = LB} /2

Therefore, the final lower bound LB2 will be calculated as LB2 = LB’T + LB..

5 Dynamic programming algorithms

In this section, we will propose two dynamic programming algorithms for problem 1|a,’1
dy, d2 = d>|TL. Suppose that jobs are renumbered according to WSPT before developing
these DP algorithms. Each optimal schedule for the considered problem includes four parts
as: (1) a group of early jobs with any arbitrary order, (2) a straddling job, (3) a group of tardy
jobs with WSPT order, and (4) a group of lost jobs with arbitrary order.

5.1 Algorithm DP1
In this dynamic programming algorithm, each state from state space v(“ o) indicates a partial
sequence for first k& jobs excluding straddling job « that finishes at time C,. Each state is
denoted by a vector [t1, f, f], where ¢; and t, show sum of process times for early and tardy
groups of jobs, respectively, and f is the penalty for corresponding partial sequence.
Figure 5 shows a state [t1, #, f] from state space v,Eoi’]) a5 well as three states derived
by adding the upcoming job j to different groups of early, tardy, and lost jobs.
Let ZZX’ ¢, denote optimal penalty for the problem when job « is straddling with com-
pletion time C,. Steps of the algorithm are as follows.

1. Foreacha € {1,2,...,n}and each Cy, € [d] + 1, d; + pu]-

1.1 Set v = {[0, 0, 0]}.
1.2 Foreachk € {1,2,...,a — 1, + 1, ..., n}considerall states [{, 17, f]inv,E‘flc").

e (job kisearly) If #{ + px < Cy — py and DR1 and DR3 do not eliminate the new
state for job k, then add state [#] + pk, t2, f]to v(a Ca)

e (job kistardy) If Cy +t2+ pr < dr and DRI, DR2 LB1 and LB2 do not eliminate
the new state for job k, then add state [t1, t2 + pi, f + wik (Cy + 12 + pir)]to v(a o)

e (job kis lost) If z _1 Pi —t1 —t < Pyym —dz and DR2, DR3, LB1, and LB2

do not eliminate the new state for job k, then add state [1, 2, f + si]to v(a Ca),

e For all the states [t1, 12, f] € v,&a C) \with equal values for #; and #,, keep at most

one state having the minimum value of f.

e Delete the state space v,ioi lc"‘).

1.3 SetZ(*aC)_ min {(f}1+ Zqg.

o,Cy
(11,12, flev,

2. Return Z = mm ZE* C,) 8 optimal solution.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 877

A partial sequence related to state [7,,7,, f] from states space y*“)

sum

t, d dz

1 1
o] R !
s IR PR (B
e Job 140 i
T T
hd .

N J
P d

sum

{ |

Adding state [tlatp f +sk] to states space Viam'a) if Z:l p,—t,—t, <P, —d,

sum

1 1
s s ols 1 P
RO 1 b
Jobl.a ! S
M T T
7 X d, un

Fig. 5 Details of creating new states in DP1

Now, we describe the approach of implementing lower bounds in DP1. Suppose job k
is going to be included into group of early jobs from state [t1, 2, f]. If (15) holds, we can
eliminate the new state. Values §7 and §7, denote remaining time intervals for scheduling tardy
and lost jobs, respectively, and are calculated as (16). Value for Zj,, comes from algorithm
MTLR.

S+ LBr[67]1+LBL[0L] = Zpeu 15)

k—1
S/L = Pyym — max {Cy, da} — Zpi -1 —n
i=1
87 =dy — Cq — 1y + max {—8', 0}
8, = max {8}, 0}
87 = max {67, 0.} (16)

To calculate the time complexity of DP1, consider the maximum number of states in each

state space v,ﬁa’c")

n—11 (a,Cq)
k=1 ’Vk

as dj. (d» —dy). Step 1.2 iterates by a factor of total feasible states,
,and is O (nd; (dy — dy)). Similarly, we can show that complexity of step

@ Springer f DMAC

878 K. Kianfar et al.

1.31is O (dy (d2 — d1)). Step 1 iterates at most Psym = >, p; times by selecting different
o and C, values, and its complexity is O (nPsymd; (da» — dy)). Finally, considering that
step 2 is implemented in O (Psum), we conclude the overall time complexity of DP1 as
O (nPaymd) (d2 — d1)).

5.2 Algorithm DP2

The basis of this algorithm is similar to DP1 and their only difference is in selecting straddling
job. In contrast with the previous dynamic programming, we do not need to predefine a job
as straddling at each iteration, and DP2 is able to distinguish suitable straddling job in each
iteration of the algorithm. This algorithm considers the straddling job as a member of first
group (group of early jobs) that makes minimum penalty if finishes at time Cy,.

During an iteration, straddling job may change, and we can only determine the correct
straddling job after scheduling all jobs. Algorithm DP2 keeps at most two states with equal
t1 and 1, values in each iteration; the former, [#1, 2, @, f, f(«)], calculates minimum total
penalty and the later, [, 12, ', f/, f(’a nls gives minimum total penalty excluding straddling
job. In this notation, f and f{«) denote the total penalty and total penalty excluding straddling
job, respectively.

In DP2, if a job is going to be scheduled in the group of early jobs and generates smaller
penalty in comparison with the current straddling job, then the current straddling job will be
considered as an early job and the new job takes the straddling place.

Let[t1, 22, ax—1, f5 fi_,)] be a state from the previous iteration, and DP2 is going to add
job k to this state. Here, the following cases may arise, and we describe the new penalties
f% and f(';f)w generated in each case.

1. Job k is early and the straddling job is not changed: f™" = f, f(';ek")v = flu_1)-

2. Job k is early, the straddling job is changed from aj—; to o and C,, < do: f™V =
f+ (wak — wak,]) (Co —dy), f(&i‘gl = flun)-

3. Job k is early, the straddling job is changed from oj_1 to ax and Cy > dp: f™V =
£+ Sa = Seas 2 = frann)-

4. Jobkistardy: V= f4wi (Co+t2+pi—di), f&i")’ = fla_) Wi (Co + t2+pr—dy).

5. Jobkislost: f* = f +si, foN = fay_y) + Sk

Steps of this algorithm are as follows.

1. For each Cy € [dy + 1, min (d] + pmax> Psum)]-
1.1. Set vi = {[0,0,0,0,0]}.
1.2. For each k € {1,2,...,n} 1, € {0,1,...,Cq} and each r, € {0,1,...,

max (0, dy—Cy) }considerall states [71, 2, ak—1, fo flgy_pland[t, 2, 0y, f', f(’a,)]
-
(Ca)

inv, 7.

1.2.1 (job kis early) If 11 + px < C, and DR1 and DR3 do not eliminate new state
for job k,

e If straddling job is not changed, add states [t| + px, 2, otk—1, f, f(o_)] and

c
[t1 + p. 2, oy, fs f(/“;i_l)] to state space V/i 2

e If Cy, < d> and straddling job changes, add states [t; + pi, t2, @k, f +
(Wak — Way_) (Co — d1), flap_pland [t1+pr, 12, 0, f+H(wer, — W) (Ca—di),
(Cq)

PR

!/
, to state space v
f(ak—l)] P

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 879

e If Cy > dr and straddling job changes, add states [t1 + pi, 2, ak, [+ So,

— Say_1» flag_pland [t1 + pe, 12, o, f+ o7, — Sef_,» f(/‘% 1)] to state space VIECQ).
1.2.2 (job k is tardy) If Cy + 12 + px < d> and Zle pi —t1 < Pym — Cy and
also DR1, DR2, LB1, and LB2 do not eliminate the new state for job k, then add
states [t1, + pr,ox—1, f + wi (Co + 12+ px —d1), fa_) + wi (Co +12 + pr
—d)] and [t1,00 + pr.ag_;, f' + wi (Co + 12+ pi —dl),f('a;() + wi (Co + 12

Co
+pr —dyp)] to v,E).

1.2.3 (job kis lost) Ifo-‘zl pi—t —ty < Poym—dpand zle pi—t < Pgym—Cgyand

also DR2, DR3, LB1, and LB2 do not eliminate the new state for job k, then add states
Cqy

(11, 02, 01, f + Sy flgopy + skl and [11, 12, 0, f/ + sx, f(/a;) + 5] to v,ﬁ),

1.2.4 For all the states [t1, to, ok, f, fiap)] € v,ic") with equal values for ¢#; and #,, keep at

most one state having the minimum value of fand for all the states [t1, 2, ay, f', f (/a,)] €
X

v,ic“) with equal values for #; and #,, keep at most one state having the minimum value

of fiagy:

1.2.5 Delete state space v,ici‘ﬁ).
1.3. Set Z¢ = min min - {f}, min {f}
(1102, f famlevn™ 000 1 £ TenS

2. Return Z = rr(}in Z¢,, as optimal solution.

While implementing the dominance rules in DP2, it must be noted that we cannot use
them on straddling jobs, because these jobs may change during step 1.2.1. To examine
lower bounds, suppose, job kis considered to be added into group of early jobs from a state
[t1, 12, ak—1, f, fiay_p]- If (17) holds, we discard the new state. Here, Z?in denotes minimum
penalty caused by an unknown straddling job that completes at time C,, and is calculated by
(18). From the fact that, in DP2, there is no need to prefix a job as straddling, its complexity
is O(n) times less than DP1, and, hence, is O (Pyumd) (dy — dy)).

f(ak,l) + Z?{i“ + LBt [(ST] + LB, [5L] > Zheu (17)
. min{w;}.(Cy —dy) if Cy <do
o — L . (18)
Ca min {s;} if Cy > dy.
1

6 Branch-and-bound algorithm

This section introduces a branch and bound algorithm for problem 1|di] =d, di2 = d,|TL.
This algorithm prefixes a job as straddling as well as its completion time, and, then, schedules
other jobs into groups of early, tardy, and lost (groups 1-3, respectively) based on depth first
search tree. Jobs are renumbered and selected for scheduling by WSPT order.

Figure 6 shows the depth first tree used for problem 1|di] =d, all.2 = d>|TL with four
jobs, where job 2 is straddling. Each level is related to one job, excluding the straddling job,
and two numbers in each node show order of creating nodes and the group number, in which
job is added, respectively. According to this figure, we first add job 1 to group 3, and then,
jobs 3 and 4 are added to group 3, respectively.

@ Springer f DMAC

880 K. Kianfar et al.

Job 1

Job 3

Fig. 6 Part of the search tree for algorithm BB1

Details of this branch-and-bound algorithm are described as follows. Variables ¢, #, and
13 show total process time of jobs in groups 1-3. In this algorithm, we first assign jobs to group
3 and then add them to groups 2 and 1, because experiments show this type of assignment
increases Z rapidly and improves the efficiency of lower bounds.

1. Calculate the upper bound UB from algorithm MTLR. For each « = 1,2,...,n and
each Cy = [d] + 1, min {d] + py, Psum}]-
1.1. Sett; =1y =13 = 0 and if Cy < da, then Z = wy (Cy — di) else Z = s,.
1.2. Assign jobs to a depth first tree of Fig. 6.

1.2.1 If current job i is a candidate for group 1.

o If] + p; > Co — pa, then fathom current node and return to step 1.2.

e Check DR1 and DR2 for job i and other tardy or lost jobs. If current node is
fathomed, then return to step 1.2 else set 11 = 11 + p;.

1.2.2. If current job i is a candidate for group 2.

o IfCoy + 12+ p; >dyror Cy + 12+ 13+ pi > Psum, then fathom current node
and return to step 1.2.

e Check LB1 and LB2 as well as DR1 and DR3 for job i and other early or lost
jobs. If current node is fathomed, then return to step 1.2.

o Settr =1+ prand Z = Z + w; (Cy + 12 — dy).

1.2.3 If current job i is a candidate for group 3.

e Ift3 > Pym — d>, then fathom current node and return to step 1.2.

e Check LB1 and LB2 as well as DR2 and DR3 for job i and other early or lost
jobs. If current node is fathomed, then return to step 1.2.

o Setiz =13+ p; and Z = 2+S?"

1.3 If a complete schedule with total penalty Z is achieved and Z < U B, then set
U B = Z and save this schedule as the best schedule found until now.
2. Return the final U B as optimal solution.

We can use the idea of letting the branch-and-bound algorithm to choose straddling job,
but experiments indicate this idea increases run times in all instances, and hence, here, we
discard this idea.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 881

Table 3 Properties related to 32 groups of instances

Group 77 ©» p w wu Group 1@ T p w u Group T T p w U
Gl L L L L L GI2 L H L H H G23 H L H H L
G2 L L L L H GI3 L H H L L G24 H L H H H
G3 L L L H L Gl4 L H H L H G25 H H L L L
G4 L L L H H GI5 L H H H L G26 H H L L H
G5 L L H L L Gl6 L H H H H G27 H H L H L
G6 L L H L H GI7 H L L L L G28 H H L H H
G7 L L H H L GI8 H L L L H G29 H H H L L
G8 L L H H H GI9 H L L H L G30 H H H L H
G9 L H L L L G2 H L L H H G3l H H H H L
G10 L H L L H G2l H L H L L G32 H H H H H
G11 L H L H L G22 H L H L H

7 Computational results

In this section, we examine the results of the mathematical model, heuristic algorithm,
dynamic programming, and branch-and-bound algorithms on a number of randomly gen-
erated test problems. Computational experiments were performed on Intel Core™ i7-2600
CPU 3.4GHz with 4 GB RAM. On this system, CPLEX 12 was used as a mixed integer
programming solver and the algorithms were coded in Visual studio C++ 2008.

We generate random instances for n € {30, 50, 75, 100, 150, 200, 250}. Processing
times, p;, and tardiness weights, w;, are drown from uniform distributions [1, 10] or [,
100]. Using the method proposed in (Kethley and Alidaece 2002), due date d; is selected
from uniform distribution between Py, (1 — 71 — 0.5R) and Pgym (1 — 71 + 0.5R}), and
dy is from uniform distribution between di + (Paym —di) (1 — 0 — 0.5R>) and d; +
(Psym — d1) (1 — 5 +0.5R), where 71 € {0.4,0.8}, » € {0.2,0.8}, Ry = 0.2, and
R, = 0.4. Lost penalty steps, u;, are generated from one of uniform distributions
U [0, 0.5w; (d2 — dp)] or U [w; (d2 — d1) , 3w; (d2 — d1)].

According to the above parameters, 32 instance groups are created by combining para-
meters p;, w;, T1, T2, and u;. For any given number of jobs, n, 20 random test instances are
generated in each instance group. Table 3 shows the characteristics of these groups were L
and H which show low and high levels for each parameter, respectively.

Table 11 (see Appendix) shows a summary of computational results obtained from running
proposed methods on test instances in groups G1 to G16. The first two columns show group
number and the number of jobs in each instance. The next two columns indicate the average
and maximum gap between heuristic solutions and optimal ones. The results show that in
more than 95 % of cases, average and maximum gaps are less than 2 and 4 %, respectively.

The next two columns show the average run times and number of instances solved by MIP
model. The model is implemented by CPLEX 12 and is able to optimally solve instances up
to 50 jobs in 1 h time limit.

Results of algorithm DP1 are provided in columns 7 to 14. In column 9, the percentage
of fathomed states by lower bounds and dominance rules out of all created states are given.
This ratio varies between 35 and 65 % in different instance groups and DP1 is able to solve
instances up to 50 jobs. Columns 15 to 22 of Table 11 contain the results of running algorithm
DP2. These results indicate that DP2 is able to optimally solve all instances up to 250 jobs

@ Springer f DMAC

882 K. Kianfar et al.

Fig. 7 Gap percentages for 1
MTLR algorithm
0.8 X«

0.6

0.4 O

0.2

0 T T T T T T T T T 1
0 25 50 75 100 125 150 175 200 225 250

Table 4 Problem parameters

impact on MTLR error Value/variation u w P 1%) 71
percentage Low 0.74 0.64 0.49 0.49 0.69
High 0.46 0.56 0.71 0.71 0.51

with p; € [1, 10] and instances up to 75 jobs with p; € [1, 100] in reasonable times. The last
columns in this table are about algorithm BB1 and show that this algorithm is able to solve
instances up to 50 jobs with 55-65 % percent of fathomed nodes.

Figure 7 shows the average gap from optimal solution for algorithm MTLR in different
instance sizes. This average error is less than 0.8 % and decreases by any increase in the size
of instances. This shows good performance of MTLR in generating near optimal solutions
for problem 1|ali1 =d, di2 = d»|TL. Running times of this algorithm are less than 0.1 s in
all the cases, and hence, are not reported.

In Table 4, we examine how changing the problem parameters influence optimality gap of
algorithm MTLR. As itis seen, the algorithm performs better when the variation of processing
times is low (i.e. p; € [1, 10]). By increasing the variation of w; and u; parameters, the
average gap decreases, because of that the algorithm can categorize jobs into the groups E,
T, and L more accurately under high variation of these two parameters.

Parameter 71 has no significant effect on the performance of heuristic algorithm, but when
77 increases, more number of jobs will be lost, and high penalties of the lost jobs cause an
increase in optimality gap of algorithm MTLR.

Computational results show that all 30 job instances are solved by the mathematical model
in average run time of 18.39 s. However, in the case of 50 job instances, the model is able
to solve 298 instances out of 320 within 1 h time limit, and the average run time for solved
instances is 1647.48 s.

Table 5 shows the impact of varying parameters on run times of mathematical model in 50
job instances. Variation of process times has a direct relation with run times, while increasing
tardiness or lost penalties (wfs or u;s) will decrease the model run times in average. Changing
the parameter 7 has no significant effect on run times; however, results show a inverse relation
between parameter 7o and average run times. That is because if 1 increases, the value of
dp will decrease and less number of jobs can satisfy the fourth constraint of mathematical
model, and hence, less number of jobs should be examined for laying in lost jobs’ group.

Algorithm DP1 is able to solve instances up to 250 jobs with low variation of process
times (i.e. p; € [1, 10]) and instances up to 50 jobs when process times are generated from
U[1, 100]. Table 6 shows the number of solved instances out of 320, and Table 7 gives average
of run times under low and high process time variation.

Figure 8 shows the percentage of fathomed nods by dominance rules and lower bounds in
DP1. According to this figure, LB 1 has the best performance in small-size instances; however,

@ Springer f bMA

Exact and heuristic algorithms for minimizing...

883

Table 5 Problem parameters impact on CPLEX run times

Value/variation u w P 1) 71
low 1944.18 1739.57 1565.93 1924.44 1631.83
High 1350.77 1555.38 1729.02 1370.51 1663.12
Table 6 Number of solved instances out of 320 solved by DP1

n=30 n=50 n=75 n=100 n=150 n=200 n=250
Number of solved instances 320 313 160 160 160 157 92
Table 7 Problem parameters impact on DP1 run times
Process time variation ~ n = 30 n=50 n=75 n=100 n=150 n=200 n=250
Low 0.13 1.43 10.36 33.48 290.24 1105.53 2439.79
High 157.07 144797 - - - - -

50

45 \
40

ceeees DR1 \ ."”......
30 <

- = DR2 '.-..\
25 -

DR3
20 -— = - = =
LB1 - -
15
LB2 S~—
10
5
0 T T T T T T

30 50 75 100 150 200

Fig. 8 Percentage of fathomed nodes in DP1

by increasing the size of instances, more number of nodes is fathomed by dominance rules
in average. DR1 fathoms more nodes in comparison with other dominance rules, because it
works on early and tardy groups and jobs in these two groups are scheduled before lost jobs.

Algorithm DP2 solves all instances up to 75 jobs. Based on Table 8, in groups with low
variety of process times, DP2 is able to solve instances up to 250 jobs in less than 32 s. In
case of high variety for process times, instances up to 75 jobs are solved in average 183 s,

but larger instances are not solved due to system memory limitations.

Figure 9 shows the percentage of fathomed nodes by dominance rules and lower bounds in
DP2. Here, LB2 has the best performance on instances with less than 100 jobs; however, by
increasing the size of instances, more percentage of nodes is fathomed by dominance rules.

@ Springer f DMAC

884 K. Kianfar et al.

Table 8 Problem parameters impact on DP2 run times

Process time variation n =30 n=>50 n="75 n =100 n =150 n =200 n =250

Low 0.02 0.07 029 0.84 4.96 12.67 31.19
High 11.09 60.63 182.89 - - - -

80

70

60 \
ceeees DRI \
50
= == DR2 \
40
DR3 \
30 \\

——1B1 =
veeot® -
LB2 20 — ge0°°® - — -
..--"" _ - - \
10 7#
0 T T T T T T 1
30 50 75 100 150 200 250

Fig. 9 Percentage of fathomed nodes in DP2

Table 9 Number of solved instances out of 320 solved by BB1

n=30 n=50 n=75 n=100 n=150 n=200 n=250

Number of solved instances 320 294 197 100 0 0 0

Table 10 Problem parameters impact on BB1 run times

Process time variation n =30 n=>50 n="175 n =100 n=150 n =200 n =250

Low 0.28 49.76 1099.78 1941.2 - - -
High 993 102523 2754.15 2178.65 - - -

This shows the efficiency of LB1 in small- and medium-size instances and dominance rules
in large-size instances.

Tables 9 and 10 give the number of solved instances by BB1 and average run times for
instances with low and high variation of process times. For instances with p; € [1, 10],
algorithm BB1 is able to solve all instances up to 50 jobs in average run time 49.76 s. In case
pi € [1,100], all instances up to 30 jobs are solved in average 9.39 s.

The percentage of fathomed nodes in BB1 is shown in Fig. 10, where LB1 has the best
performance on fathoming nodes and such a way that it cuts more than 60 % of nodes in all
problem sizes.

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 885

90
80

70 T~

.eeeee DR1 60

= == DR2 50

DR3 4
LB1 5,
LB2

20

TP

10 = -_...;-w--o-—i"“ -’

0 : : X
0 50 75 100

Fig. 10 Percentage of fathomed nodes in BB1

8 Conclusions

In this paper, we studied minimizing Tardy/Lost penalties on a single machine with common
due dates. We examined time complexity of the problem and proposed a MIP model which
classifies jobs into four groups of early, tardy, straddling, and lost jobs. Then, a heuristic
algorithm was developed and, later, was used as upper bound in dynamic programming and
branch-and-bound algorithms.

In Sect. 4, we introduced three dominance rules and two lower bounds, and in the next
section, two dynamic programming algorithms were developed. These DPs are pseudo-
polynomial with time complexities O (n Psymd; (d> — dy)) and O (Pgymdi (d2 — dy)). Then,
we proposed a branch-and-bound algorithm based on depth first search tree.

To evaluate the proposed methods, we generated 32 groups of test instances with 30-250
jobs. Experiments indicated that increasing the variety of process times will make instances
harder and cause algorithms need more time to solve them. For instances with 75 jobs or
less, LB1 shows the best performance in cutting down search trees; but with increasing the
size of instances, dominance rules show a better performance in comparison with LBs.

Average optimality gap of MTLR algorithm was less than 2 % for all instances, which
proves the efficiency of this algorithm in finding near optimal solutions for problem lld,-l =
di, di2 = d»|TL. In overall, DP2 is the best algorithm for finding optimal solutions. This
algorithm solves all instances with low variety of process times in less than 32 s and for high
process time varieties, the algorithm solves all instances up to 75 jobs in less than 183 s.

The proposed Tardy/Lost penalty function can be considered as a general form for some
well-known performance measures, such as late work, weighted tardiness, and tardiness with
order acceptance assumption. Therefore, efficient solution approaches can also be applied
in the case of these problems. As future researches, we suggest using meta-heuristics or
constraint programming methods.

Appendix

See Table 11.

@ Springer f DMAC

K. Kianfar et al.

886

v'e 96 €6l 981 ey Sy ¥ 6'G8Y¢ 0 0 I S0 0sT
134 el S8l 8l L'Ly oy 0l [a04! 0 0 ! ¥0 00C
(43 891 981 961 81y A 44 01 I'eLe 0 0 81 Lo 0s1
€9 €'LT 4! 991 gee 891 01 6'6C 0 0 [g0 001
'y Y43 el 991 gee 6'6Y 01 €0l 0 0 60 0 SL
Y 9'1¢ €l 'Ll 9ce ¥'0S 0l L1 6 9'6ILI 91 g0 0s
(44 Svy 811 991 6CC 8¢ 0l 0 01 Ly LT 90 0¢ €D
S0 [91 68 457 6°0v S 8'69¢¢ 0 0 91 90 0S¢
0 8'€T 991 8L 8'1¢ ey 01 8°LTT1 0 0 80 €0 00T
¥'0 9'8¢ Ll 98 sy sy 01 9'68¢ 0 0 91 g0 0sI
0 9'¢e S91 6 ¥'8¢ oy 01 0¢ 0 0 I o 001
80 ['8¢ 4! I Se 8'CS 0l S'6 0 0 ! €0 SL
1o SIS vl 69 €'LT £6S 0l [6 L'98YC ST €0 0s
€1 605 €01 €6 (414 §'8¢ 0l 1o 01 8°0¢ I o o¢ (43}
0 6Cl LT ¥l 6CS '8¢ I 6'98Y¢ 0 0 1l g0 0sT
60 €Ll §'0c 801 S'0s $'8¢ 01 €9CLI 0 0 7'l 80 00T
S0 1'ce v'6l (! 891 L'6¢ 01 6981 0 0 1l Lo 0s1
S0 I'le 91 4! €0y Sy 0l Sy 0 0 I 70 001
vl Ie v'L1 87l €LE 8'er 0l 9°0¢ 0 0 6’1 80 SL
Cl 8'6€ L'ST 601 ¥'ee os 0l e 01 8'ee6l 9 80 05
90 123 901 L0l I've 1'9¢ 0l 0 01 618 [0 0¢ D
a1 1971 s (€] aaa ¥aa XeN oAy
Aq sayeys pawoyie] Jo oSejuadrod - sejels pawoypey 'oN [ewmndo ON owm uni oAy [ewmndo 'ON QW) UNI Ay 9 10119
1dd Xd1dD ATLN u dnoip

sooue)sul 1s9) uo spoypouwt pasodoid Juruunt Jo Arewwing T QL

@ Springer f bMA

887

Exact and heuristic algorithms for minimizing...

0 ¢'8¢ €C 49! £¢T yey o1 e 0 0 €T I 001
0 L'Se g'ic 8°ClI LT (344 01 ¥'S 0 0 C 60 SL
€0 918 8'0C L'El Lel ¥'0S 0l €0 6 L1€91 I'e el 0S
0 ¥'9¢ 91 Tl Sl ¥S 0l 0 01 ee € 70 0¢ 6D
- - - - - - - - 0 0 C S0 SL
9 9v¢ 9 9'8 e 19 ol 1'1€91 6 7'or81 91 €0 0S
Sl ¥'9¢ 69 68 €9t 879 01 Tole 01 911 €0 0 0¢ 8D
- - - - - - - - 0 0 €T L0 SL
L'L L'8¢ Lol 91 §9¢ L'LS 6 9°660C 6 TTyie I'e Lo 0S
L'y 6’15 8L L€l 6'1C 1'09 0l L'1ye 01 £'89 € 60 0¢ LD
- - - - - - - - 0 0 % 't SL
! 6F 98 88 (43 129 (0] yeele 6 L'SEET 80 0 0§
€0 8¢ 9 9¢ 6'6C 6’19 01 8'0T¢ 01 691 €€l 61T 0¢ 95
- - - - - - - - 0 0 I ¥0 SL
€0 8Ly Il €l 8C 8'6S o1 9°690C 01 S9991 Sl 70 0§
91 908 I I 8'6T S'6S 01 S'L8T 01 €yL (3 €l 0¢ S9)
(44 9C1 (Y| 6CI SS Ser 6 §'€T9T 0 0 ¥'0 I'0 0SC
9y 91 S91 Syl S8y VLY 0l 9CLOT 0 0 ¥'0 I'0 00t
60 L'yt 961 424! 9ty '8y (0] 9'6¥C 0 0 91 0 0SI
S¢ L'ce €€l L'yl 8'6¢ Tes 01 1'ce 0 0 60 0 001
4 6'9¢ [l 149! 71e Tss 0l 18 0 0 9C 90 SL
¥'e 7'y ! 6'Cl coe 6'LS 01 I'r 01 LYl €0 0 0s
'l 1'96 8 9'6 6'1C 1'09 0l 1’0 01 €l ¥ S0 0¢ D
(451! 1971 s (€] [2: (el ¥aa XN oAV
£q sa1e)s pawioyiey Jo o3vIU0Id saw)s pawoyiey ‘oN [ewndo foN owmn uni-oay pwmdo ON W UNIOAY 95 JoLg
1dd Xd1dD AL u dnoip

panunuod Yy dqel,

JBINAC

pringer

&Hs

K. Kianfar et al.

888

(4! Tse 861 661 6°LT 6'SY o1 [0 0 Sl 70 001
€0 Sy g'ic 961 I'Ie yov 0l S¢ 0 0 9¢ 80 SL
1'0 98 43! ¥'01 6°LI S'0s 0l ¥'0 01 gece I ¥0 0§
S0 L'8S el €0l Ll L'9S 0l 0 01 96 6'S I 0¢ [489]
€0 861 8'6C £'6T 8¢ 'y 0l 9'1vS 0 0 I §0 0sT
71 L91 ¥'8¢C |%Y4 €8¢ 6’1y 01 oLy 0 0 Sl 90 00¢
! 8'LT LYT LTt L'€T L0y 01 oL 0 0 [80 0ST
Lo 6'1¢ 6'¢T €C 9Ll (34 01 6L 0 0 €1 80 001
0 cee (¢4 £YC €81 L'Ly 0l 9% 0 0 1'C 't SL
0 (34 1'oc L'1ec 9¢l 9Cs 0l 90 8 7081C ¥'e 't 0s
€0 6'0S S'LI 81 el g'ss 0l 0 01 6’61 %Y 81T 0¢ 115
0 e ¥'9C ol 6¢ 8'9¢ 0l £evL 0 0 ¥'0 1I'0 0sc
0 9'9¢ ¢'8¢C Lel £le 6¢ 0l £'10¢ 0 0 ¥'0 0 00T
0 9'6¢ ¥'€T 6 L'1e 8Ty o1 I'vL 0 0 90 [V
0 ly 144 €01 9v¢C 1514 01 811 0 0 L0 70 001
0 S99 L'1c 8 L'€T 6'LY 0l (43 0 0 Lo 0 SL
0 L'eS Y 6’8 6'1C I'vS 0l €0 01 7608 6’1 90 0§
0 19¢ L0t 89 791 es 0l 10 01 96 98 LT 0€ 01D
0 8'0C 8'0¢ 91 £Ce 8'LE 01 (433! 0 0 [S0 0Ssc
0 've 9'6¢ 6'ST 1'og 98¢ 0l 8V19 0 0 [L0 00T
0 1'0¢ 8'ST Syl 96T oy (0] £Tel 0 0 L1 80 0S1
a1 1471 €dda [2: (el R (€1 XBN oAV
£q sa1e)s pawoyiey Jo o3vIU0Id soyw)s pawoyiey 'oN [ewndo foN owmn uni-oay pwmdoON WD UNIOAY 95 Jolg
1da Xd71dD YTLN u dnoip

penunuod Ty dqe

@ Springer f bMA

889

Exact and heuristic algorithms for minimizing...

- - - - - - - - 0 0 91 90 SL
0 819 9'6 901 8'LI 8'6S ()1 081 0l 8'6cr ¥l €0 0§
o ¥'L9 98 89 Ll (Y 0l ey ol 9y [90 0¢ 91D
- - - - - - - - 0 0 81 I SL
I |44 6'81 Tye 671 8'SS 01 TT6S 8 €0091 |4 L0 0§
€0 8% Sel L'€T I'vl 8'6S 01 98 o1 [433 s ¥ 0g SID
- - - - - - - - 0 0 €1l S0 SL
0 Tes (341 I'T1 8'0C 98 ()1 §90S 6 T8LOT €C S0 0§
I LSS 891 €9 [\ S¥s ()1 86 ol 01 'L I'c 0¢ 1489
- - - - - - - - 0 0 e 1 SL
0 144 661 6°LT 1’81 T8¢ 01 #0011 L £'889C 6'1 I 0S
0 9'9¢ 4! 991 Syl 6S 01 L'ey 01 9'8¢ s 91T 0¢ 1D
70 L'81 LTt LT 'ty (014 01 LT6 0 0 80 0 0S¢
¥'0 ¥'LT 69C 91 £6C 6'Cr 01 6'SPl 0 0 90 0 00C
60 9°LT 9°0¢ 961 (493 I'ey ()1 G'es 0 0 90 0 0SI
a1 1971 £dd aqa aa XBN AV
£q sore1s powoyey Jo oSeIue0I0g sarels powoyey 'oN pwmdo foN own unioay pwmdooN oW UNIOAY 9 1oL
1dd Xd1dD YILN u dnoip
ponunuod Y IqeL,

inger JDIMAC

pringer

Qs

=
B
8 - - - - - - 0 0 v¥ €U 0T L¥T 98¢ 9% o1 L'€E 08T
ma - - - - - - 0 0 65 Tyl YL vT 98¢ v ol S1 00T
v - - - - - - 0 0 S TIT T9l T'tT SE 67 o1 88 0SI
9¥l S8 6+ vEl L8l 9 9 00T 0 L¥e 911 €SI +'8¢C €9F o1 80 001
9¢ €79 9¢ 4) P9 6 6589 L TSy 68 9T 8ST L8y o1 70 SL
101 S Lv TPl 191 8’19 o1 €0T 901 9SH 6 €7 ¥e 89t o1 10 0S
€L IL 8T T9 LU 919 o1 TO 68 899 Tt €L 8Tl 1'¢S o1 0 0¢ %9)
- - - - - - 0 0 60 6Lz 9Ll 88 8 TLY o1 1'LT 08T
- - - - - - 0 0 0 9¥¢ <1 9 Vb S8y o1 ¥I1 00T
- - - - - - 0 0 L0 LT 91 €6 86¢ 9'6¥ o1 ¥ 0SI
0 95 801 66 LT 679 0l €€ SO0 Le€S 6L ¥y o See €S o1 L0 001
S0 €79 L Sor 96l 9 o1 oLy 61 SLS 6S I't S0¢g %Y 01 T0 SL
0 8vL €S 8¢ 91 L'Y9 o1 Tl €0 SeL 81 I'T €€T S'LS o1 0 0S
61 LT §s 6F S $T9 o1 10 8T 8vL Tl 60 TOT LS o1 0 0¢ (43}
- - - - - - 0 0 10 9€¢l 6vT €81 Teh 6’1 o1 L8 0ST
- - - - - - 0 0 Tl ¥81 61T 6T S 80 o1 €81 00T
- - - - - - 0 0 80 Svc ToT 1T ST w o1 L 0SI
81T L1989 901 61 Sv9 9 9¢¢Iz L0 I8 6€l 601 €9¢ Ty o1 I'T 001
T8 VIS €9 Sl 96l TH9 6 11811 9T L8E SHl 801 Pee 4 01 S0 SL
e 80L L€ L8 8¢l 8’19 o1 81 € TES 6 L SLT v'8p o1 10 0S
90 €08 T¢ 8¢ 1Tl 919 o1 0TI ¥vL 6v LE 8CI L'€S o1 0 0¢ £9)
91 191 €dd d 1dd 41 1971 €dd d a
sopou own sqeys [ewndo oun
£Qq sapou pawioye} Jo 93ejuadIdd pawoyie) "oN [ewndo 'ON uni ‘oAy £q saje)s pawoyjej Jo 93eIUADIdd pAwWoyle) ‘ON 'ON UNI "9AY
a4 da u dnoin
S ponunuod || d[qeL
oo

@ Springer f bMA

891

Exact and heuristic algorithms for minimizing...

0 SO0L 99 eI $6 9°€9 6 vYIL 0ty 61 ¥I1 TSt Sey o1 0 SL
L0 86L 9 L 9 L'8S o1 80 90 LIL 6T1 LS I'6 'S o1 0 0S
0 98 TS Sy LS T8¢ o1 10 0 I8 6'8 T 9L €08 o1 0 0¢ 69
9¢ I'L9 TS v9 LSI Tr9 S LT8IT 911 8€ 9 'L 11T Tss o1 L'86 SL
9L SL €T Le ¥l 679 ol 9Tl 96 LIL 80 9T €91 LSS o1 199 0S
61 8¢8 61 T 1ol Y9 o1 91 LT T8 S0 90 19l '8¢ o1 86l 0¢ 8D
€S 9 €T 88 161 $79 v €66LT L 88F 16 LSI 61 1°0S o1 S6LT SL
I'8T €8¢ €T T8 Tl 19 6 TIS 68 819 9¢ 6 Lyl 8'96 o1 8IL 0S
98 1'8L I S €L 909 o1 Y ¥El €L9 tT S (4 98 o1 91T 0¢ LD
9T €IL tE 6S 891 $'€9 0l +'LOSI 60 99 € 8T LT '8¢ o1 SI8 SL
vT LTL TP T9 Sl Y9 o1 €95 S ¥89 ¥ 'l 9T $'6S o1 T8L 0§
S0 18 L1 €T €01 €9 o1 €1 80 ¥8L Y0 90 86l $'6S o1 0T 0¢ 9D
Tl 8oL ST '8 LI 8'€9 € €66LC 60 6LS L6 TL ¥t LTS o1 6081 SL
€0 TO8 7T s cu 8'€9 o1 8¢ SO0 6€9 YL €9 61¢ €'LS o1 T8 0
9T L18 ST v T6 09 o1 e €S TIL Sy €T 891 9'6$ o1 9Ll 0€ 93]
- - - - - - 0 0 tvL tv¥c 8SI 61l SOF TS o1 'l 0SC
- - - - - - 0 0 €8 €T¢ SO0I TII 9LE v'Ts o1 €01 00T
- - - - - - 0 0 ST ¥ $6 6 9%¢ I'1§ o1 6'S 061
89 S¥S TL TIIL €0C $'69 L 9€gel 99 9T ¥S TL TS %9 o1 90 001
e 809 'L ¥ €Ll €69 o1 691 ¢ 809 9F 69 6€C A7 o1 0 SL
'S 9 9% L 991 $'€9 o1 €9 €9 $L9 I T¢ 80T 989 o1 0 0S
vIo €18 9'¢ e 901 9°€9 o1 10 1T <¢8 €0 L0 S¢l 1°9¢ o1 o o€ D
91 191 €©9d dd 1¥d a1 191 €9d Tdd 1¥d
sopou own soreys Tewndo own
Aq sopou pawoyjej Jo 93ejuad0 pawoyiey oN [ewndo "ON UnI oAy Aq so1e)S pawoyIe) JO AFRIUADIDJ pIwoyIe) "ON 'ON UNI "9AY
1ag wda u dnorp
ponunuod 1y d[qe],

JBINAC

pringer

&Hs

=
B
8 TO0 €0L TOI 96 86 1°09 o1 98 Lo +T9 6Tl 68 16l 9Ly o1 10 SL
ma 0 68 8 LS €L T ol I'c €0 908 9§ €T €Il 9°0S o1 0 0
v S0 v¥8 TS 8¢ 19 9'8¢ o1 0 Tl €98 TT Ll 98 L'0S o1 0 o0¢ TID
- - - - - - 0 0 90 ¥¥T T0¢ 6€C ¥4 9°Sh o1 vy 0ST
- - - - - - 0 0 ST 10T SLt LSt Tt 54 o1 'S 00T
- - - - - - 0 0 T TEg 9z T6l 861 94 o1 T 0SI
TI €89 €L €SI 8L 19 8 TT80I1 ST vvP 61T €81 Tl 9T o1 To0 001
0 99 L 191 +0I v'T9 0l I'¥LI 10 TOr L8l L0T vVl 'S o1 10 SL
O S9L 9 601 9 $09 o1 81 S0 L9 8Tl I 88 98t o1 0 0
vo 18 LS YL ¥ T09 o1 0 80 8SL oI 9 89 "6 o1 0 o0¢ 11D
- - - - - - 0 0 0 86r ¥LT €L SSE v'Sy o1 79 0ST
- - - - - - 0 0 0 $€ 99T €0l 96T 9y o1 T 00T
- - - - - - 0 0 0 19 691 8¢ ¢lI¢ L9 o1 I 0SI
0 L9 6¥I TL S0l 8'LS 0l 6611 0 €65 I¢l L's 61t €8 o1 To0 001
0 L6S 81 L8 Sl L'19 o1 Syl 0 80L '8 9T t8l L6 ol 10 SL
0 v¥8 6T e 96 T8¢ o1 S0 0 6¥L 89 ST 89l L8 o1 10 0
0 LS8 L9 I 19 v'LS o1 0 0 08 8L ¥ 801 6°0S o1 0 0¢ 01D
- - - - - - 0 0 0 TITz 9T¢ 9¢l 8TE (47 o1 S0l 0ST
- - - - - - 0 0 0 8ST €0¢ L€l €0¢ L'y 01 €9 00T
- - - - - - 0 0 0 6¢ IST SII 96C T o1 8T 0SI
0 SIL SL 611 6 v'19 6 TILII 0 TSK ¥IT 80l 97T X34 o1 €0 001
a1 191 €dd tdd d 41 191 €dd tdd [¥d
sopou own soe)s [ewndo own
Kq sopou pawoyjej jJo a3ejuadiod pawoylej ‘-oN [ewndo 'ON uni ‘oAy £q saye)s pawioyjey Jo 95.IUADIDd PAWOYIL] "ON ‘ON UNI "9AY
1dd zda u dnoin
N ponunuod || d[qeL
oo

@ Springer f bMA

893

Exact and heuristic algorithms for minimizing...

91 I'LL €9 8L TL S19 6 6968 T T TOlL vL TLI 98t o1 65 SL
0 88 It 6T 6 S19 ol LTl 0 6¥8 91 61 TII 9 ol €8l 0
0 L06 €€ ST V¥ 8'6S o1 70 TO 698 ST I 16 6'8% o1 v'T 0 91D
I'c 8LL S¢ 16 SL €9 8 691 TE S€9 I 611 #01 €I o1 9¢s <L
vIooTe6L It 96 LS 79 o1 86¢ €T LT9 6T ¥I L6 I'1s o1 st 08
€0 €68 LT €6 S L09 01 81 80 VL. ¥L 8S 8 99 o1 S 0 SID
0 98. ¥8 ¥S 9L L'6S 6 179 0 LTIL ¥S TT 96l S o1 Lyc SL
0 v¥8 € LY 99 L'8S o1 99T 0 88L 8%F T vyl 9°¢S o1 L6l 0§
€1 €06 81 €I TS YSY ol €0 1€ 6L 1€ I 6¢l I'1s ol v'e 0¢ ¥ID
0 68L S¥ or L9 8’19 S Lo6lc TO 10S 9Ll 9T $6l 6'St o1 9Tl SL
0 €18 € LL L9 9'€9 0 SThe T0 ¥S9 vel TL 4! L'¥S o1 6L 0S
0 <06 €I S¥ 9¢ T09 01 80 0 ¥S8 9 €T LL 9Y 01 LT 0 €ID
- - - - - - 0 0 L0 LLT L¥T 6%l 61¢ L'Ly o1 '8 0ST
- - - - - - 0 0 60 Itk L6l ST 8T S'op o1 Sl 00T
- - - - - - 0 0 81 ToF L1 €1 18T 6'St o1 €l 0ST
4 09 ¢¢€I gTr Tl 29 6 $900I 8T 6r €SI 60l (44 454 o1 70 001
a1 197 €dd dd 1¥d a1 197 €dd dd 1¥d
sopou awn S9ILIS E:Emo awmn
£q sapou pawioye) Jo 93ejuadIdd powoyiey 'oN [ewndo "ON UNI "9AY £q sare)s pawioyjey Jo 95.IUADIdd pawoye) "ON 'ON UNI "9AY
rad da u dnorp

penunuod Ty dqe

JBINAC

pringer

&Hs

894 K. Kianfar et al.

References

Baptiste P, Pape C (2005) Scheduling a single machine to minimize a regular objective function under setup
constraints. Discrete Optim 2(1):83-99

Baptiste P, Sadykov R (2009) On scheduling a single machine to minimize a piecewise linear objective function:
A compact MIP formulation. Naval Res Logist 56(6):487-502

Carrasco RA, Iyengar G, Stein C (2013) Single machine scheduling with job-dependent convex cost and
arbitrary precedence constraints. Oper Res Lett 41(5):436—441

Chandra C, Liu Z, He J, Ruohonen T (2014) A binary branch and bound algorithm to minimize maximum
scheduling cost. Omega 42(1):9-15

Chen B, Potts CN, Woeginger GJ (1998) A review of machine scheduling. In: Du DZ, Pardalos PM (eds)
Handbook of combinatorial optimization. Kluwer Academic Publishers, Boston, pp 21-169

Cheng TCE, Ng CT, Yuan JJ, Liu ZH (2005) Single machine scheduling to minimize total weighted tardiness.
Eur J Oper Res 165:423-443

Colin EC, Quinino RC (2005) An algorithm for insertion of idle time in the single-machine scheduling problem
with convex cost functions. Comput Oper Res 32(9):2285-2296

Detienne B, Dauzere-Péres S, Yugma C (2012) An exact approach for scheduling jobs with regular step cost
functions on a single machine. Comput Oper Res 39(5):1033-1043

Engels DW, Karger DR, Kolliopoulos SG, Sengupta S, Uma RN, Wein J (2003) Techniques for scheduling
with rejection. J Algorithms 49(1):175-191

Fathi Y, Nuttle HWL (1990) Heuristics for the Common due date weighted tardiness problem IIE. Transactions
22(3):215-225

Federgruen A, Mosheiov G (1994) Greedy heuristics for single-machine scheduling problems with general
earliness and tardiness costs. Oper Res Lett 16:199-208

Kahlbacher HG (1993) Scheduling with monotonous earliness and tardiness penalties. Eur J Oper Res 64:258—
271

Karakostas G, Kolliopoulos SG, Wang J (2009) An FPTAS for the minimum total weighted tardiness problem
with a fixed number of distinct due dates. In: Ngo HQ (ed) Computing and combinatorics. Lecture Notes
in Computer Science, vol 5609. Springer, Berlin Heidelberg, pp 238-248

Kellerer H, Strusevich VA (2006) A fully polynomial approximation scheme for the single machine weighted
total tardiness problem with a common due date. Theor Comput Sci 369:230-238

Kethley RB, Alidaee B (2002) Single machine scheduling to minimize total weighted late work: a comparison
of scheduling rules and search algorithms. Comput Ind Eng 43:509-528

Kianfar K, Moslehi G (2013) A note on “Fully polynomial time approximation scheme for the total weighted
tardiness minimization with a common due date”. Discrete Appl Math 161(13-14):2205-2206

Kolliopoulos SG, Steiner G (2006) Approximation algorithms for minimizing the total weighted tardiness on
a single machine. Theor Comput Sci 355(3):261-273

Koulamas C (2010) The single-machine total tardiness scheduling problem: Review and extensions. Eur J
Oper Res 202(1):1-7

Lawler EL (1964) On scheduling problems with deferral costs. Manag Sci 11(2):280-288

Lawler EL, Moore JM (1969) A functional equation and its application to resource allocation and sequencing
problems. Manag Sci 16:77-84

Lenstra JK, Rinnoy-Kan AHG, Brucker P (1977) Complexity of machine scheduling problems. Ann Discrete
Math 1:343-362

Leung JYT (2004) Minimizing total weighted error for imprecise computation tasks and related problems.
In: Leung JYT (ed) Handbook of scheduling: algorithms models and performance analysis. CRC Press,
Boca Raton, pp 3416-3431

Pinedo M (1995) Scheduling: theory algorithms and systems. Prentice Hall, New Jersey

Potts CN, Van Wassenhove LN (1992a) Approximation algorithms for schrduling a single machine to minimize
total late work. Oper Res Lett 11(5):261-266

Potts CN, Van Wassenhove LN (1992b) Single machine scheduling to minimize total late work. Oper Res
40(3):586-595

Shabtay D (2008) Due date assignment and scheduling a single machine with a general earliness/tardiness
cost function. Comput Oper Res 35:1539-1545

Shabtay D, Gaspar N, Kaspi M (2013) A survey on offline scheduling with rejection. J Sched 16(1):3-28

Slotnick SA (2011) Order acceptance and scheduling: A taxonomy and review. Eur J Oper Res 212(1):1-
11

Sterna M (2011) A survey of scheduling problems with late work criteria. Omega 39:120-129

@ Springer f bMA

Exact and heuristic algorithms for minimizing... 895

Yuan J (1992) The NP-hardness of the single machine common due date weighted tardiness problem. Syst Sci
Math Sci 5:328-333

Zhou X, Cai X (1997) General stochastic single-machine scheduling with regular cost functions. Math Comput
Model 26(3):95-108

@ Springer f DMAC

	Exact and heuristic algorithms for minimizing Tardy/Lost penalties on a single-machine scheduling problem
	Abstract
	1 Introduction
	2 Mathematical model
	3 MTLR heuristic algorithm
	4 Dominance rules and lower bounds
	5 Dynamic programming algorithms
	5.1 Algorithm DP1
	5.2 Algorithm DP2

	6 Branch-and-bound algorithm
	7 Computational results
	8 Conclusions
	Appendix
	References

