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Abstract In this paper, we consider the balanced truncation method for model reductions
in large-scale linear and time-independent dynamical systems with multi-inputs and multi-
outputs. Themethod is based on the solutions of two large coupledLyapunovmatrix equations
when the system is stable or on the computation of stabilizing positive and semi-definite
solutions of some continuous-time algebraic Riccati equations when the dynamical system is
not stable. Using the rational block Arnoldi, we show how to compute approximate solutions
to these large Lyapunov or algebraic Riccati equations. The obtained approximate solutions
are given in a factored form and used to build the reduced order model. We give some
theoretical results and present numerical examples with some benchmark models.
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1 Introduction

Consider the following linear time invariant (LTI) dynamical system:

(LTI)
{
x ′(t) = Ax(t) + Bu(t); x(t0) = x0
y(t) = Cx(t),

(1)

where x(t) ∈ R
n , u(t) ∈ R

r , y(t) ∈ R
s , A ∈ R

n×n , B ∈ R
n×r and C ∈ R

s×n with
r, s � n. The vector x is called the state vector and it belongs to the state space. The vector
u is the input (or the control) vector and y(t) is the output (to be measured). If s = r = 1,
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then the LTI dynamical system (1) is called single-input single-output (SISO) and is called
multiple-input multiple-output (MIMO) otherwise. The control problem consists in acting
on the input vector u(t) so that the output vector y(t) has a desirable time trajectory and
modifying the input u(t) according to the output y(t) which is observed or to the state x(t)
is called feedback. The LTI dynamical system (1) can also be denoted as

(LTI) ≡
[
A B
C 0

]
. (2)

In many applications, such as circuit simulation, or time-dependent PDE control problems,
the dimension n of the dynamical system (2) is quite large, while the number of inputs and
outputs is small r, s � n. In these large-scale settings, the system dimension makes the
computation infeasible due to memory, time limitations and ill-conditioning. The goal is to
produce a low-dimensional system that has similar response characteristics as the original
system with lower storage requirements and evaluation times.

The reduced order dynamical system can be stated as follows:

(LTI)m

{
x ′
m(t) = Amxm(t) + Bmu(t)
ym(t) = Cmxm(t),

(3)

where xm(t) ∈ R
m , ym(t) ∈ R

s , Am ∈ R
m×m , B ∈ R

m×r and Cm ∈ R
s×m with m � n. The

system (3) is also represented as

(LTI)m ≡
[
Am Bm

Cm 0

]
. (4)

The reduced order dynamical system (3) should be constructed such that

• the output ym(t) of the reduced system approaches the output y(t) of the original system;
• Some properties of the original system such as passivity and stability (if possible) are

preserved, and
• the computation methods are robust and efficient.

One of the most known reduction model techniques is the Balanced Model Reduction first
introduced by Mullis and Roberts (1976) and later in the systems and control literature
by Moore (1981). When applied to stable systems, Lyapunov balanced reduction preserves
stability and provides a bound for the approximation error. For small-to-medium scale prob-
lems, Lyapunov balancing can be implemented efficiently. However, for large-scale settings,
exact balancing is expensive to implement because it requires dense matrix factorizations
and results in a computational complexity of O(n3) and a storage requirement of O(n2), see
Antoulas (2005), Benner et al. (2008) andGugercin andAntoulas (2004). For large problems,
direct methods could not be applied and then Krylov-based (El et al. 2002; Jaimoukha and
Kasenally 1994; Jbilou 2006, 2010) or ADI-based methods (Benner et al. 2008; Penzl 2012)
are required to compute these Gramians that are given in factored forms which allows to
save memory. Besides the Lyapunov balancing method, other types of balancing exist such
as stochastic balancing, bounded real balancing, positive real balancing, LQG balancing and
frequency weighted balancing requiring the solution of continuous time algebraic Riccati
equations; see Fortuna et al. (1992) and Mullis and Roberts (1976).
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2 Lyapunov-balanced truncation

In the sequel we assume that the initial system is stable which means that A is a stable matrix
(all its eigenvalues are in left open part of the complex plane).

2.1 The transfer function

The state space representation is usually referred as an internal representation of a dynamical
system because it involves the state variables x which are internal variables of the system. The
input/output representation, also called external representation, is obtained by eliminating the
state vector, between the state equation and the output equation with zero initial conditions.

To get the frequency domain description we apply the Laplace transform

L ( f (t) =
∫ ∞

0
f (t)e−stdt

to the state equation (1), and we get
{
sX (s) = AX (s) + BU (s)
Y (s) = CX (s),

where X (s) = L (x(t)) and U (s) = L (u(t)). Therefore,

X (s) = (s I − A)−1BU (s),

and by substituting X (s) in the output equation of (1), we get

Y (s) = F(s)U (s), (5)

with

F(s) = C(s I − A)−1B. (6)

The rational function F(s) is called the transfer function related to the dynamical
system (1). The elements of this function are real rational functions. The transfer function
F(.) is stable if its poles lie in the open left-half plane C

−.

We recall that two LTI systems

[
A B
C 0

]
and

[
Ã B̃

C̃ 0

]
are called equivalent if they have

the same transfer function. It is easy to verify that for any nonsingular n × n matrix T , the
LTI system

[
T−1AT T−1B
CT 0

]

is equivalent to the LTI system

[
A B
C 0

]
. Therefore, if the main concern is the output under

some specific inputs, we have many choices of the state-space description. The choice of the
matrix T is very important and the states are connected by the relation x(t) = T x̃(t).

2.2 Controllability and observability Gramians

We assume that the LTI dynamical system is stable.
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Definition 1 The controllability Gramian associated with the LTI system (1) is defined as

P =
∫ ∞

0
et ABBTet A

T
dt, (7)

and the observability Gramian is defined by

Q =
∫ ∞

0
et A

T
CTCet Adt. (8)

By using the Parseval relation, we obtain the following expressions of the Gramians:

P =
∫ +∞

−∞
( jωI − A)−1BBT( jωI − AT)−1dω, (9)

Q =
∫ +∞

−∞
( jωI − AT)−1CTC( jωI − A)−1dω. (10)

The two Gramians are the unique solutions of the following coupled Lyapunov matrix equa-
tions:

AP + PAT + BBT = 0, (11)

and

ATQ + QA + CTC = 0. (12)

We will see later that the product PQ plays an important role in model reduction.
Consider the new equivalent LTI dynamical system

(̃LTI) ≡
[
T−1AT T−1B
CT 0,

]

where T is a nonsingular matrix. Then the associated controllability and observability Grami-
ans P̃ , and Q̃ are expressed as

P̃ =
∫ ∞

0
et Ã B̃ B̃Tet Ã

T
dt,

Q̃ =
∫ ∞

0
et Ã

T
C̃T C̃et Ãdt,

where Ã = T−1AT , B̃ = T−1B and C̃ = CT . Hence, we obtain

P̃ = T−1PT−T, and Q̃ = T TQT . (13)

These last relations show that the Gramians of two equivalent LTI systems are not similar.
However, the similarity is preserved for the product of the controllability and observability
Gramians and we have

P̃ Q̃ = T−1PQT .

2.3 The H∞-norm

In this subsection, we recall the well-known H∞-norm of a transfer function.
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Definition 2 The H∞ norm of the transfer function F(.) is defined as

‖F(.)‖H∞ = sup
ω∈R

σmax(F( jω)), (14)

where σmax denotes the largest singular value.

To approximate the H∞-norm, we choose a set of frequencies �N = {ω1, ω2, . . . , ωN }
and search for

sup
1≤k≤N

σmax(F( jωk)) ≈ ‖F(.)‖H∞ .

2.4 Lyapunov balanced truncation

A well-known model reduction scheme is called Lyapunov-Balanced Truncation and was
first introduced by Mullis and Roberts (1976) and later in the systems and control by Moore
and Glover; see Glover (1984) and Moore (1981). We assume here that the LTI system is
stable, controllable and observable (in this case we call it also stable and minimal). Then
the controllability and observability Gramians are unique positive definite. The concept of
balanced truncation is to transform the original LTI system to an equivalent one in which
the states that are difficult to reach are also difficult to observe. This reduces to finding a
nonsingular matrix T such that the new Gramians P̃ and Q̃ given by (13) are such that

P̃ = Q̃ = diag(σ1, . . . , σn),

where σi is the i-th Hankel singular value of the LTI system, i.e.

σi = √
λi (PQ).

Let us see how to obtain thematrix T . Consider theCholesky decompositions of theGramians
P and Q:

P = LcLc
T , Q = LoLo

T , (15)

and consider also the singular value decomposition of Lc
TLo as

Lc
TLo = Z�Y T, (16)

where Z and Y are unitary n× n matrices and � is a diagonal matrix containing the singular
values. Let T be the matrix defined by

T = LcZ�1/2; (17)

then it can be easily verified that

P̃ = Q̃ = �,

where� is also the diagonal matrix whose elements are the Hankel singular values
√

λi (PQ)

since PQ is similar to P̃ Q̃. There are other possible ways for the construction of the matrix
T . It was remarked by Glover (1984) that the balanced transformation is not unique but
unique up to a nonsingular transformation.

As the concept of balancing has the property that the states which are difficult to reach
are simultaneously difficult to observe, a reduced model is obtained by truncating the states
which have this property, i.e., those which correspond to small Hankel singular values σi .
We have the following theorem:
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Theorem 1 Antoulas (2005)Assume that the LTI dynamical system (1) is stable andminimal
and having the following balanced realization;

(̃LTI) ≡
⎡
⎣ A11 A12 B1

A21 A22 B2

C1 C2 0

⎤
⎦ ,

with P = Q = diag(�m, �̃m), �m = diag(σ1, . . . , σm) and �̃m = diag(σm+1, . . . , σn).
Then, the reduced order model represented by

(̃LTI)m ≡
[
A11 B1

C1 0

]
.

is stable and we have

‖F(.) − Fm(.)‖H∞ ≤ 2(σm+1 + · · · + σn).

The preceding theorem shows that if the neglected singular values σm+1, . . . , σn are small,
then the reduced order LTI system is close to the original one.

Let us see now see how to construct the low-order model (LTI)m . We set

Wm = LoYm�
−1/2
m and Vm = LcZm�

−1/2
m , (18)

where �m = diag(σ1, . . . , σm) and Zm and Ym correspond to the leading m columns of the
matrices Z and Y given by the singular value decomposition (16).
The matrices of the reduced LTI system

(̃LTI)m ≡
[
Am Bm

Cm 0

]
,

are given by

Am = W T
m AVm, Bm = W T

m B andCm = CVm . (19)

Notice that VmW T
m is an oblique projector, P̃Wm = Vm�m and Q̃Vm = Wm�m .

The use of Cholesky factors in the Gramians P and Q is not applicable for large-scale
problems. Instead, and as we will see later, one can compute low rank approximations of
P and Q in factored forms and use them to construct an approximate Lyapunov-balanced
truncation model.

Let Ã, B̃ and C̃ be the following matrices:

Ã =
(
A 0
0 Am

)
, B̃ =

(
B
Bm

)
, C̃ = (

C Cm
)
. (20)

Then, the Gramians corresponding to the error dynamical system

(̃LTI) ≡
(
Ã B̃

C̃ 0

)

are the solutions of the following Lyapunov matrix equations:

Ã P̃ + P̃ ÃT + B̃ B̃T = 0,

and

ÃT Q̃ + Q̃ Ã + C̃T C̃ = 0.
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Therefore, the Hankel norm of the error can be expressed as

‖F(s) − Fm(s)‖H =
√

λmax(P̃ Q̃).

We notice that other model reduction techniques such as the Cross–Gramain method
(Antoulas 2005) require the solution of large Sylvester matrix equations to construct the
reduced order model. Next, we apply the rational block Arnoldi algorithm for solving large
Lyapunov (or in general large Sylvester) matrix equations that are used in the construction
of reduced order models using the balanced truncation techniques.

3 The rational block Arnoldi method for solving large Sylvester matrix
equations

Consider the following Sylvester matrix equation:

AX + XD + EFT = 0, (21)

where A ∈ IRn×n and D ∈ IRp×p are large and sparse stable matrices. We assume that
E ∈ IRn×r , and F ∈ IRp×r are of full rank r , with r � n, p.

The Bartels–Stewart algorithm (Bartels and Stewart 1972) is the standard and widely used
direct method for the solution of Sylvester equations of small to moderate size. Therefore,
this direct method is unsuitable when either one of the matrices A or D is of medium size
or large and sparse. For medium and large coefficient matrices, iterative schemes have to be
used. Krylov-type subspace methods such as those based on the Arnoldi process (El et al.
2002; Jbilou 2010, 2006; Simoncini 2007) are attractive if the matrices are sparse and if no
information about the spectra of A and D is available. The Smith method (Penzl 2012) and
the alternating directional implicit (in short ADI) iterations could also be applied if a spectral
information about A and D is given. Note that ADI iterations allow faster convergence if
sub-optimal shifts to A and D can be effectively computed and linear systems with shifted
coefficient matrices are solved effectively at low cost. Here, we will use a method based on
the rational Krylov subspace; see (Druskin and Simoncini 2011).

Let us first recall the following rational block Krylov subspaces:

Km(A, E) = Range({E, (A − s2 I )
−1E, . . . ,

m∏
i=2

(A − si I )
−1E}), (22)

and

Km(DT, F) = Range({F, (DT − s̃2 I )
−1F, . . . ,

m∏
i=2

(DT − s̃i I )
−1F}), (23)

where the shift-parameters si and s̃i , i = 2, . . . ,m are generated during the construction of
the process or selected a posteriori. In our numerical tests, we used two strategies: the first
one is a priori selection from Lyapack (Mehrmann and Penzl 1998) and the second strategy
consists in selecting, at each iteration, a new shift sm+1 which is used to compute a new basis
vector. For the second case, we used an adaptive selection from Abidi et al. (2016).

The rational block Arnoldi algorithm for the pair (A, V )where V ∈ IRn×r is summarized
as follows:

After m steps, the rational block Arnoldi algorithm generates a block matrix Vm =
[V1, . . . , Vm] ∈ IRn×mr whose columns form an orthonormal basis of the rational block
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Algorithm 1 The Rational block Arnoldi Algorithm (RBA)

• Input: A ∈ IRn×n , V ∈ IRn×r and a fixed integer m.
• Compute V1 = QR(V ), V1 = [V1].
• For j = 1, . . . ,m − 1

1. Ṽ j+1 = (A − s j+1 I )
−1Vj .

2. Orthogonalization step:
For i = 1, 2, . . . , j

Hi, j = VT
i Ṽ j+1;

Ṽ j+1 = Ṽ j+1 − Vi Hi, j ;
End For

3. QR
(
Ṽ j+1

) = Vj+1Hj+1, j .
4. V j+1 = [V j , Vj+1].

• End For.

Krylov subspace Km(A, V ) and an upper (m + 1)r × mr block Hessenberg matrix H A,m

whose blocks H A
i, j are defined by Algorithm 1. Themr ×mr upper block Hessenberg matrix

HA,m is obtained from H A,m by deleting its last r -rows.
When applied to the pairs (A, E) and (DT, F), the rational block Arnoldi algorithm

constructs a system of matrices {V1, . . . , Vm} and {W1, . . . ,Wm} forming two orthonormal
bases of the rational block Krylov subspaces Km(A, E) and Km(DT, F), respectively. Let

TA,m = V T
m AVm, TD,m = W T

m DTWm, (24)

where Vm = [V1, . . . , Vm] and Wm = [W1, . . . ,Wm]. The matrices TA,m and TD,m could
be obtained directly fromHA,m andHD,m , respectively; see Abidi et al. (2016) as follows:

TA,m = (Imp + HA,mSm − V ∗
m AVm+1H

A
m+1,mE

∗
m)H −1

A,m,

and Sm = diag(s2 Ir , . . . , sm+1 Ir ), and ET
m = [0r , . . . , 0r , Ir ] = (eTm ⊗ Ir ).

From Algorithm 1, we can deduce the following relations:

AVm = VmTA,m − �A,mH A
m+1,mE

T
mH

−1
A,m + Vm+1H

A
m+1,mE

T
mSmH

−1
A,m, (25)

where

�A,m = (In − VmV
∗
m )AVm+1. (26)

We also have

DTWm = WmTD,m − �D,mHD
m+1,mE

T
mH

−1
D,m + Wm+1H

D
m+1,mE

T
m S̃mH

−1
D,m, (27)

where

�D,m = (In − WmW
T

m )DTWm+1, (28)

and S̃m = diag(s̃2 Ir , . . . , s̃m+1 Ir ).
We have ET

mSm = (eTm ⊗ Ir )(Dm ⊗ Ir ) where Dm = diag(s2, . . . , sm+1), and then
ET
mSm = (eTmDm ⊗ Ir ) = sm+1(eTm ⊗ Ir ) = sm+1ET

m , and ET
m S̃m = s̃m+1ET

m .
Using the relations given in (25) and (27), we get

AVm = VmTA,m + (sm+1Vm+1 − �A,m)H A
m+1,mE

T
mH

−1
A,m, (29)
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and

DTWm = WmTD,m + (s̃m+1Wm+1 − �D,m)HD
m+1,mE

T
mH

−1
D,m . (30)

When applying Krylov-based methods for solving Sylvester matrix equation (21), one seeks
for low rank approximate solution of the form

Xm = VmYmW
T
m , (31)

such that the following Galerkin condition is satisfied:

V T
m R(Xm)Wm = 0, (32)

where R(Xm) is the residual corresponding to the approximation Xm and given by

R(Xm) = AXm + XmD + EFT. (33)

Therefore, replacing Xm by VmYmW
T
m in (32), we obtain

V T
m AVmYmW

T
m Wm + V T

m VmYmW
T
m DWm + V T

m EFTWm = 0. (34)

We get the following low-dimensional Sylvester matrix equation:

TA,mYm + YmT
T
D,m + (V T

m E)(W T
m F)T = 0. (35)

Now, as [V1, R] = QR(E) and [W1, S] = QR(F) (the QR factorisation of the matrices V1
and W1, respectively), we have

V T
m E = V T

m V1R = E1R et W T
m F = W T

m W1S = E1S, (36)

with E1 = e1⊗ Ir . The Sylvester matrix equation (35) will be solved by a direct method such
as the Bartels–Stewart algorithm (Bartels and Stewart 1972). In the next theorem, we give a
computational expression for the norm of the residual without computing the approximate
solution which is given only at the end of the process and in a factored form.

Theorem 2 Let Vm = [V1, . . . , Vm] and Wm = [W1, . . . ,Wm] be the matrices whose
columns form bases of the rational Krylov subspaces given by (22) and (23), respectively.
LetXm = VmYmW

T
m be the approximate solution of the Sylvester matrix equation (21); then

the residual norm is given as follows:

‖R(Xm)‖2 = ‖S1 J ST2 ‖2, J =
[
0 Ir
Ir o

]
,

where S1 and S2 are the 2×2 upper triangularmatrices obtained from the QR decomposition
of the matrices

U1 =
[
VmYmH

−T
D,mEmHDT

m+1,m sm+1Vm+1 − �A,m

]

and

U2 =
[
WmY

T
m H −T

A,mEmH AT

m+1,m s̃m+1Wm+1 − �D,m

]
.

The quantities �A,m and �D,m are given by the expressions (26) and (28), respectively.
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Proof We have

R(Xm) = AXm + XmD + EFT

= AVmYmW
T
m + VmYmW

T
m D + EFT.

Replacing AVm and W T
m D by (29) and (30), respectively, we get

R(Xm) = [
VmTA,m + (sm+1Vm+1 − �A,m)H A

m+1,mE
T
mH

−1
A,m

]
YmW

T
m

+VmYm
[
WmTD,m + (s̃m+1Wm+1 − �D,m)HD

m+1,mE
T
mH

−1
D,m

]T + EFT

= VmTA,mYmW
T
m + (sm+1Vm+1 − �A,m)H A

m+1,mE
T
mH

−1
A,mYmW

T
m

+VmYmT
T
D,mW

T
m + VmYmH

−T
D,mEmHDT

m+1,m(s̃m+1W
T
m+1 − �T

D,m) + EFT.

Using the fact that Ym solves the low-dimensional Sylvester equation (35), it follows that

R(Xm) = (sm+1Vm+1 − �A,m)H A
m+1,mE

T
mH

−1
A,mYmW

T
m

+VmYmH
−T
D,mEmHDT

m+1,m(s̃m+1W
T
m+1 − �T

D,m)

=
[
VmYmH

−T
D,mEmHDT

m+1,m sm+1Vm+1 − �A,m

] [
0 Ir
Ir o

][
H A
m+1,mE

T
mH

−1
A,mYmW T

m

s̃m+1WT
m+1 − �T

D,m

]

= U1 JU
T
2 .

Therefore, using the QR factorizations of U1 = Q̃1S1 and U2 = Q̃2S2, the result follows.

The following result shows that Xm is an exact solution of a perturbed Sylvester matrix
equation.

Proposition 1 The approximate solution Xm = VmYmW
T
m solves the following perturbed

Sylvester matrix equation:

[A − �A,m]Xm + Xm[D − �D,m] + EFT = 0,

where

�A,m = (sm+1Vm+1 − �A,m)H A
m+1,mE

T
mH

−1
A,mV

T
m ,

and

�D,m = WmH
−T
D,mEmHDT

m+1,m(s̃m+1W
T
m+1 − �T

D,m).

Proof Multiplying Eq. (35) from the left by Vm and from the right by W T
m , and using the

relations (29) and (30), the result follows:

An important issue when dealing with high-dimensional problems is the storage that
requires a large amount of memory. In order to save memory, we can give the approximation
Xm in a factored form. Let Ym = Ũ�̃Ṽ T be the SVD of Ym where �̃ is the matrix of
the singular values of Ym sorted in decreasing order; Ũ and Ṽ are unitary matrices. We
choose a tolerance dtol and define Ũl and Ṽl the matrices of the first l columns of Ũ and Ṽ
corresponding to the l singular values of magnitude greater than dtol.

Setting �̃l = diag[σ1, . . . , σl ], we get the approximation Ym ≈ Ũl�̃l Ṽ T
l (which is the

best l-rank approximation of Ym).
Then we have the low-rank approximation

Xm ≈ Z A
m(ZD

m )T , (37)
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with Z A
m = VmŨl�̃

1/2
l and ZD

m = WmṼl�̃
1/2
l .

Remark 1 When considering the Lyapunov balanced truncation method, we have seen that
one has to compute the Gramians P and Q by solving the two coupled Lyapunov matrix
equations (11) and (12), respectively. For large problems, these Gramians are computed by
using the rational block Arnoldi algorithm and given in factored form P ≈ ZP ZP

T with
Q ≈ ZQ ZQ

T . These factorizations are then used instead of Cholesky factors to build the
balanced truncation reduced order model.

The rational block Arnoldi algorithm for solving large-scale Sylvester matrix equations
is given as follows:

Algorithm 2 The rational block Arnoldi algorithm for Sylvester equations (RBAS)

• Input: A ∈ IRn×n , D ∈ IRp×p , E ∈ IRn×r , F ∈ IRp×r .
• Choose ε, mmax and dtol.
• For m = 1, 2, . . . ,mmax

1. Apply the rational block Arnoldi algorithm to the pairs (A, E) and (DT, F) to get Vm , Wm , TA,m
and TD,m .

2. Solve forYm the low dimensional Sylvester equation (35) and compute the residual norm ‖R(Xm )‖2
using Theorem 2.

If ‖R(Xm )‖2 < ε, stop.

• End
• Compute Z A

mmax and ZD
mmax to get Xmmax from (37) in a factored form.

4 The Riccati-balanced truncation method

4.1 The LQG-Riccati method for model reduction

In this subsection,we assume that the original system is no longer stable and present a reduced
ordermodelmethod, called the linear quadraticGaussian (LQG) balanced truncationmethod;
see Fortuna et al. (1992) and Mullis and Roberts (1976). The basic idea of (LQG) balanced
truncation is to replace the Lyapunov Gramians P and Q used for the classical balanced
truncation for stable systems by the stabilizing solutions of the dualKalmanfiltering algebraic
Riccati equation (FARE) and continuous-time algebraic Riccati equation (CARE) defined as
follows:

AP + PAT − PCTCP + BBT = 0, (FARE) (38)

and

AT Q + QA − QBBT Q + CTC = 0. (CARE) (39)

Assuming that the classical conditions of controllability and detectability are satisfied, let P+
and Q+ be the stabilizing and positive semidefinite solutions of the matrix Riccati equations
(FARE) and (CARE), respectively, which means that the eigenvalues of the closed loops
A− P+CTC and AT −Q+BBT lie in the open left half-plane C

−. It is known (Fortuna et al.
1992) that, as for the classical balanced truncation, the eigenvalues of the product P+Q+
are invariant quantities under any state coordinate transformation x̃(t) = T x(t) where T is
a nonsingular n × n matrix and we have

P̃+ Q̃+ = T P+Q+T−1.
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The Riccati Gramians P+ and Q+ are then used as we explained in Subsection 4.2, to
construct the model reduction in the same way as when using balanced truncation via the
LyapunovGramians obtained by solving two coupled Lyapunovmatrix equations. Here those
Lyapunov Gramians are replaced by the Riccati ones: P+ and Q+.

As we mentioned earlier, the solutions P+ and Q+ have usually low numerical rank and
could then be approximated by low-rank factorizations P+ ≈ Zm ZT

m and Q+ ≈ YmY T
m

where the matrix factors Ym and Zm have low ranks. As in the classical Lyapunov balanced
truncation method, the factors Ym and Zm could be used to construct the (LQG)-balanced
truncation reduced order model.

Next, we show how to construct low-rank approximate solutions to algebraic Riccati
equations (38) and (39) by using the rational block Arnoldi process.

4.2 The rational block Arnoldi for continuous-time algebraic Riccati equations

Consider the continuous-time algebraic Riccati equation

ATX + X A − XBBTX + CTC = 0, (40)

where A ∈ R
n×n is nonsingular, B ∈ R

n×r and C ∈ R
r×n . The matrices B and C are

assumed to be of full rank with r � n.
Riccati equations play a fundamental role in many other areas such as control, filter design

theory, differential equations and robust control problems. For historical developments, appli-
cations and importance of algebraic Riccati equations, we refer to Abou-Kandil et al. (2003),
Bittanti et al. (1991), Datta (2003), Heyouni and Jbilou (2009), Jbilou (2003, 2006) and
Kleinman (1968) and the references therein.

Under the hypotheses, the pair (A, B) is stabilizable (i.e., ∃ a matrix S such that A− B S
is stable) and the pair (C, A) is detectable (i.e., (AT,CT) stabilizable), Eq. (40) has a unique
symmetric positive semidefinite and stabilizing solution.

To extract low-rank approximate solutions to the continuous-time algebraic Riccati equa-
tion (40),we project the initial problemonto the rational blockKrylov subspaceKm(AT,CT).
Applying the Rational block Arnoldi process (Algorithm 1) to the pair (AT,CT) gives us an
orthonormal basis {V1, . . . , Vm} of Km(AT,CT).

We consider low-rank approximate solutions that have the form

Xm = Vm Ym V T
m , (41)

where Vm = [V1, . . . , Vm] and Ym ∈ R
2mr×2mr .

From now on, the matrix Tm is defined by Tm = V T
m AT Vm .

Setting Rm(Xm) = ATXm+Xm A−Xm BBTXm+CTC andusing theGalerkin condition
V TRm(Xm)W = 0,weget the low-dimensional continuous-time algebraicRiccati equation:

Tm Ym + Ym T T
m − Ym B̃m B̃T

m Ym + C̃T
m C̃m = 0, (42)

where B̃m = V T
m B, C̃m = CVm . We assume that the projected algebraic Riccati equation

(42) has a unique symmetric positive semidefinite and stabilizing solution Ym . This solution
can be obtained by a standard direct method such as the Schur method (Laub 1979).

Proposition 2 Let Vm = [V1, . . . , Vm] whose columns form an orthonormal basis of the
rational block Krylov subspaceKm(AT,CT). LetXm = VmYmV

T
m the approximate solution

given by (41) and let Rm(Xm) be the corresponding residual. Then

‖Rm(Xm)‖2 = ‖S̃ J S̃T‖2, J =
[
0 Ir
Ir o,

]
(43)
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where S̃ is the 2 × 2 upper triangular matrix obtained from the QR decomposition of

Ũ =
[
VmYmH

−T
AT,m

EmH AT

m+1,m sm+1Vm+1 − �AT,m

]
(44)

Proof The proof is similar to the one given for Theorem 37.

Remark 2 The approximate solution Xm could also be approximated here as a product of
two matrices of low ranks. Consider the eigendecomposition of the matrix Ym = Ũ D̃ Ũ T ,
where D̃ is the diagonal matrix of the eigenvalues of the symmetric and positive semi-
definite solution Ym sorted in decreasing order. Let Ũl be the matrix of the first l columns
of Ũ corresponding to the l eigenvalues of magnitude greater than some tolerance toler .
We obtain the truncated eigendecomposition Ym ≈ Ũl Dl ŨT

l where Dl = diag[λ1, . . . , λl ].
Setting Zm = Vm Ũl D

1/2
l , we get

Xm ≈ ZmZ
T
m . (45)

As we have seen earlier, the factor Zm is used to build the low-order (LQG) balanced trun-
cation model.

The Rational block Arnoldi algorithm for computing low-rank approximate solutions to
the continuous-time algebraic Riccati equation (40) is described as follows:

Algorithm 3 The rational block Arnoldi algorithm for CAREs (RBA-CARE)

• Input: A ∈ IRn×n , B ∈ IRn×r , C ∈ IRr×n .
• Choose ε, mmax and toler .
• For m = 1, 2, . . . ,mmax

1. Apply the rational block Arnoldi algorithm to the pairs (AT,CT) to getVm and the block Hessenberg
matrix Tm ..

2. Solve for Ym the low-dimensional CARE (42) and compute the residual norm ‖R(Xm )‖2 using
Theorem 2.

If ‖R(Xm )‖2 < ε, stop.

• End
• Compute Zmmax to getXmmax from (40) in a factored form.

5 Numerical experiments

In this section, we give some experimental results to show the effectiveness of the proposed
approaches. The experiments were performed on a computer of Intel Core i5 at 1.3GHz and
8GB of RAM. The algorithms were coded in Matlab R2010a and we used different known
benchmark models listed in Table 1.

The matrices for the benchmark problems CDplayer, FOM were obtained from
NICONET (Mehrmann andPenzl 1998)while thematrices for theFlowmodelwere obtained
from the discretization of a 2D convective thermal flow problem ( flow meter model v0.5)
from the Oberwolfach collection.1 Some information on these matrices is reported in Table 1.
For theFDMmodel, the correspondingmatrix A is obtained from the centered finite difference
discretization of the operator

1 Oberwolfach model reduction benchmark collection, 2003. http://www.imtek.de/simulation/benchmark.
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Table 1 Test matrices Matrix A Size n ‖A‖F cond(A)

FOM 1006 1.8283e+04 1006

CDplayer 120 2.3095e+05 1.8149e+04

Flow 9669 2.5438e+04 1.6193e+07

FDM 90,000 1.56e+08 7.8768e+04
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Fig. 1 The maximum singular values for the balanced-rational block Arnoldi (solid) and IRKA (dashed)
with ω ∈ [10−5, 105]. Left The CDplayer model with r = s = 2. Right the FOM model with s = r = 2.

L A(u) = �u − f (x, y)
∂u

∂x
− g(x, y)

∂u

∂y
− h(x, y)u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions with⎧⎨
⎩

f (x, y) = sin(x + 2y),
g(x, y) = ex+y,

h(x, y) = x + y,

and the matrices B and C were random matrices with entries uniformly distributed in [0, 1].
The number of inner grid points in each direction was n0 = 300 and the dimension of A is
n = n20.

Example 1 In the first experiment, we considered the models CDplayer and FOM. For the
FOM model B and C were random matrices. Although the matrices of these models have
small sizes they are usually considered as benchmark examples. In Fig. 1 we plotted the
maximum singular values of the exact (solid) and approximated (dashed) transfer functions
for the CDplayer (left) with a space dimension of m = 25 and the FOMmodel (right) with
a space dimension of m = 20. For the two models we used s = r = 2.

The plots of Fig. 2 show the norms of the errors for the balanced-rational block Arnoldi
(solid) and IRKA (dashed) with ω ∈ [10−5, 105] for CDplayer (left figure) and FOM (right
figure). The sizes of the reduced order dynamical systems were m = 30 for the CDplayer
model and m = 40 for the FOM model.

Example 2 For this example, we compared the performances of the balanced Rational block
Arnoldi and the IRKA algorithms. In Table 2, we reported the H∞ norm of the errors, the
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Fig. 2 The norms of the errors for the balanced-rational block Arnoldi (solid) and IRKA (dashed) with
ω ∈ [10−5, 105]. Left The CDplayer model with r = s = 2. Right the FOM model with r = s = 2

Table 2 The H∞ of the errors, the size of the reduced order system and the execution times for rational
balanced-truncation and IRKA methods

Model/method Rational-balanced IRKA

FDM, n = 90.000, p = 3, dim = 80,

Errors 2.5 × 10−9 –

Times (s) 109 > 300

Flow , n = 9669, p = 3, dim = 100

Errors 2.6 × 10−6 –

Times (s) 13.5 > 300

size of the reduced order system and the execution times. As seen from this table, IRKA has
difficulties for large-scale problems and cannot converge within a maximum of 300 s. The
H∞ norm of the errors was computed for the frequencies: ω ∈ [10−5, 105].

6 Conclusion

In thiswork,we proposed a newmethod based on the rational blockArnoldi algorithm to com-
pute low-rank approximate solutions to large Sylvester (or Lyapunov) and continuous-time
algebraic Riccati equations having low-rank right-hand sides. These approximate solutions
are given in factored forms and are used to build reduced order models that approximate
the original large-scale dynamical linear system. We showed how the obtained approximate
Gramians could be used in the balanced truncation method. We gave some theoretical results
and present numerical experiments on some benchmark examples.
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